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Abstract

We first establish the relationship between the largest eigenvalue
of the Laplacian matrix of a graph and its bipartite density. Then we
present. lower and upper bounds for the largest Laplacian eigenvalue
of a graph in terms of its largest degree and diameter.
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1 Introduction.

Let G = (V. E) be a graph of order n on vertex set. V(G) and edge set
£(G). For u € V(G). the degree of u is denoted by d,. We adopt. the
notations and terminology following from Cling’s book [5]. The Leplecian
matriz L(G) of @ (sce [5]) is defined to be the matrix

1. if u=0v and d, #0.
Llu.r) = ——'\/-,17:. if « and ¢ are adjacent.
0. otherwise.

Howoever. in some literature. the matrix D(G) — A(G) is called the Lapla-
cian matrix of a graph G. where D{G) and A(G) are degree diagonal and
adjacency matrices of a graph G (see {10] for example). Clearly. £(G) is a
real svimmnetrie positive semidefinite matrix. The cigenvalues of L£(G) are
denoted by

0= A(G) <A(G) £ --- <A 1(G).
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Moreover. A {(G) > 0 if and only if G is comected (see [5] for example).
The spectra of £(G) can be used to obtain much information about. the
graphs. For example. Ching and Oden in {6] established the relationship
between A} and the isoperimetric munber of a graph.  Aranjo and Pefia
in [1] gave the upper bonud for the m—comnectivity index in terms of the
spectrun of £(G). For more related results. readers may be referved o [5).
{10]. [11] and the references therein.

Let U be a subset of vertices of a graph G with edge set L(C). We
denote by QU the set of edges with exactly one vertex in U and the othoer
in VAU. The bipartite density of a graph G is defined to be the munber

bG) = max —I‘)U| .
vevie |E(G))
It is & very important parateter in the graph theory. Bondy and Locke
in [2]. Locke in [8] and Bylka. Idzik and Komar in [3] studied some prop-
erties and gave the lower bouuds for some classes of graphs, Poljak and
Tuza in [11] provided a good survey on maximum euts and large bipartite
stubgraphs.

The organization of the paper is as follows. In Section 2. we establish
the relationship hetween the largest eigenvalue of the Laplacian matrix and
the bipartite density of a graph. The result. in turn. is used to give lower
bounds for the largest eigenvalue of the Laplacian matrix of a graph in
tenns of its lagest degree. In Section 3. we obtain an upper bound for
the largest cigenvalue of the Laplacian matrix of a non-bipartite graph in
terms of its diameter.

2 The lower bound for the largest eigenvalue

We begin with the relationship hetween the largest cigenvalie of the Lapla-
cian matrix of a graph and its bipartite density.

Theorem 2.1 Let G be a graph on n vertices with degree d,,.u € V(G).
Then )
(2.1) hG) < 5 wmin{A,, ((L(G)+ W) | Z dywe, =0}

neV(C)

where W is diagonal matric with diagonal clement w, . u € V(G).

Proof. Let B = (U.WW) be a bipartite partition of G corresponding to
the maxinun cardinality of OU. Let D = diag(d,,) be the degree diagonal
matrix of G. The value of a function f : V(G) — R at a vertex u is
denoted by fi,. We can view f as a cohunn veetor corresponding to V(G).
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For any real-valued function f. we can consider quadratic form of L(G)+W
for any diagonal matrix W with 30\ dutry, = 0.

<[ (LGY+W)f > < DV, L(G)DY2g > < D2y WDY24>
<f.f> = < D2y DV/2g > < DV2g DV2g >
< g. DV2L(G)DV3g > <g. DWg>
- <g.Dg > < g.Dg >
 Zwmeren(9e - ge)? + Ttwme e Quttady
B 2 wevic Wl 2ueve) dug;

where f = DY%g. Nowlet g, = L.ifu€ Urand g, = —1.ifu € V(G\U =
W. Then Z(".',)U,;((‘.)(y" — g )? = 4aU}| and Zue\ﬂ'((.')‘l"-'/ﬁ = 2|E(G)-
Morcover. 3,y dutvutfs = e (e dutrn = 0. Hence
< fALGY+W)f > S 1|dU|
<fS> ~2|E(G)

A (L+ W) = 1}1;%{ = 20(G).

Corollary 2.2 Let G be a graph. Then
(22) A 1(G) 2 25(G).

Moreover. if G is cither bipartite graph or G is the line graph of an coen
semi-regular graph (i.c.. coen semi-reqular graph is o biparlite and the de-
grees of verlices in each bipartite partition of the verter sel are even p and
cven q. respectively). then equality in (2.2) holds.

Proof. The (2.2) follows fromn (2.1) and W = (). Morcover, if (7 is bipartite.
then H(G) = 1. On the othier hand. by [5]. A, - ((G) = 2 = 2(G). Now
we assume that G is the line graph of a (p. q)-semiregular graph with
partition V(G)) = (U.W). where p and ¢ are even. It is casy to see the
Laplacian matrix of G is £(G) = [ — 1/(p + q — 2)A(G). where A(G) is
the adjacency matrix of G. Since G is the line graph of G). the least
eigenvalue of A(Q) is —2. which yields A, .1(G) = (p+ q)/(p + q - 2).
On the other hand. by Theorem 1 in [12]. the maximun edge number of
bipartite subgraph of G is %(pleI + W) = (1/49)plUNp + q)- Hence
WG =p+@)/(p+q-2)= X 1(G). B

Remark 2.3 Since the problem of determining the bipartite densily is NP-
problem (sce [11] or [14] for example), it is difficult Lo delermine the cract
valuc of the bipartite density of graphs. But the cigenvalue approzimation to
bipartite density is easy to compute and perhaps useful. On the other hand.
we may use the resulls of the bipartite densily Lo give the lower bounds for
the laryest cigenvalue of the Laplacian malriz of o graph.
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Corollary 2.4 Let G be r-regular Rumanujan graph (scef9]). Then

1 vr=1

bG) < 5+

Proof. It follows from the fact that A, ((G) < 1 + 2—@ by [9] and
Corollary 2.2. B

Corollary 2.5 Let G be a triangle-frec graph with d—regular graph. Then

d+4

) 7)) > .
\n l(()—(l+2

Proof. By [8]. it is casy to sce that b(G) > T(:i‘;IT) Thercfore the result
follows from Corollary 2.2. H

Remark 2.6 If 0 is not triangle-free. the resull may not hold. For ca-
ample, Lel K, be complete graph on n > 4 vertices. Then A, _1(K,) =
nf(n—=1) < (m+3)/(n+1).

Corollary 2.7 Let G be a triangle-free graph with mazimum degree 3.
Then A, 1(G) 2 8/5.

Proof. By [2]. W) > 4/5 which yiclds the desired resnlt from Corollary

22. 1

Denoted by an () the average of the degrees of the vertices adjacent. to
. Then d,m, is the 2 — degree of vertex u (sce [4]).

Lemma 2.8 Let G be a graph. Then the largest cigenvalue of the adjacency
matriz of G. X, .1 (A(G)) < m. where im = max{m,.v € V(G)}.

Proof. Lect f be the real-valued function f —— d,. Then by Perron-
Frobenius Theorem. we have the largest cigenvalue of the adjacency matrix
A(G) satisfies

\ (AG) )
) < ax —— g ax WY =m.
Ao MO < g, STETS = o =

n

Theorem 2.9 Le! G be a graph and m = max{m,.v e V(G)}. Then
) 1

(2.3) (@) 2 14 =

with equality if and only if G is complete graph.
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Proof. Let x(G) be the chromatic number of G. By [5]. we have

‘ . 1
(_).41) \((v) 2 1+ m

On the other hand. by [13]. we have
(2.5) \(G) < 1+ A, 11(A(G)).

Cowmbining (2.1) and (2.5). we have A, .1(G) > 1+ T—”—l,m Hence (2.3)
follows from Leinna 2.8

If G is complete graph on n vertices, then A, . ((G) = nf{(n —1) =
1+ 1/m. Conversely. il equality in (2.3) holds. then equality in (2.5) holds.
By [13]). G mmst be either an odd eyele or a complete graph. However. by
a simple calculation, the equality in (3.2) does not hold for an odd eycle
on » > 3 vertices. Henee G is a complete gmph..

Corollary 2.10 Let G be a graph with the largest degree A. Then
(2.6) A (G) =21+ !
Z£.0 " T} = N
' A
with equality if and only if G is complete graph.
Proof. It follows from Theorem 2.9 and A > m. Il

Remark 2.11 [ is obviouws that Corollary 2.10 improves the known. vesulls
A (G) = nf(n = 1) in [5].

3 The Upper Bound for Largest Eigenvalue

If G is bipartite graph. the known result is A, ((G) = 2 (sece [5] for ex-
ample). Henee we only need to consider the non-bhipartite graph for the
largest. cigenvalue of £(G). In this section. we will give an upper bound
for the largest cigenvalue of £(G) in terms of its diameter. when G is a
non-bipartite grapl.

Theorem 3.1 Let G = (V. E) be a non-bipartite graph on n vertices with
diameler D and the number | 2(G)| of edges of G. Then

1

(3.1) A (G) £ 2= SR THIEG)
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Proof. Let I be a real-valued fuuction on vertex set V(G). h: u —
dy. u € V(G). We can also view I oas a cohunm vector on vertex sot.
Then b is cigenvector of L£(G) corresponding to cigenvalue 0. Let [ be a
real-valued function on vertex set V(G) such that f is cigenvector of £(G)
corresponding to A, 1(G). Hence

< [. L(G)f >

T <IT>

<g. DV2L(G)DY?y >

<4¢.Dg >

Z(u.r)gﬁ(r:)(!lu - !Ir)2
Zue\‘((.') duyy
Z(u,r}( I;'((:)(!l:: +40)?

- Z..c\'((:) duy?

A 1(G)

2

where f = DY2g. Since £(G) is symmietric, < f.h >= > Jub = 0. Hence
neither U = {u € V(G): f, 2 0} nor W = {u € V(G): f, < 0} is cmpty.
Without loss of generality. we may assmne that there exists oy € U such
that fo, > Oand f,, > |fu] for any v € V((). Beeause @ is a nou-bipartite
graph. there exists an edge ¢ = (wo. wo) € E(G) such that cither wg. wg € U
or ug. wy € W, Now we consider the following two cases.

Case 1 up.umg € U, Let P be a shortest. path from ¢y to the set
{uo. wo}. Then either P or P + (ugy. wy) has odd length which is bounded
by D + 1. since the diameter of G is D. Let @ be such a path from oy to
g or wy( say uy) with odd k'ugl.h k < D+ 1. By the Cauchy-Schwartz
inequality and 3204 | > [ S8 =) tay).

Yo era) 2D (guto)?
()6 1(C) (u.r)e
1 )
e S lgu +aeh)?
(w.r)eq
. 1 2
> Z(!/ru + Hun)
D41

Morcover.

ST odu <t Y dy=gR 2L,

u€ V() neE V()

Thercfore the inequality in (3.1) holds.
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Case 2 ug.wqy € W, Using an similar argiinent of Case 1. there exists
a path B from ry to uy(say) with even length 1 € D + 1. Furthennore, we
can use an argument similar to that in the previous case show that

2o (Ga = 9ua)? - 42
Yo (g z R NE
fu)e lX(G) D+1 D +1

Henee the inequality in (3.1) holds. This completes the proof, Il

Remark 3.2 The upper bound in (3.1) is best possible up lo o conslant
Jactor in second term. We consider the odd cycle C,, on n = 2D + 1
vertices. 1 follows from the fuct thal

2

T
A G)=1l4+0s=22 - —o

" l( ) + cos n = Q(D n l)lb(G)l
On the other hand. by Theovem 3.1, we have

1

)<2 -
A 1{G) £ 2D+ DE(G)]

In some sense. our result is best possible.
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