Partitioning a strong tournament into k cycles

Hao Li 1

L.R.I., Bat. 490, Université de Paris-Sud, 91405, Orsay Cedex, France

Jinlong Shu ²
Department of Mathematics, East China Normal University,
Shanghai 200062, China

Abstract

A digraph T is called strongly connected if for every pair of vertices u and v there exists a directed path from u to v and a directed path from v to v. Denote the in-degree and out-degree of a vertex v of T by $d^-(v)$ and $d^+(v)$, respectively. We define $\delta^- = \min_{v \in V(T)} \{d^-(v)\}$, and $\delta^+ = \min_{v \in V(T)} \{d^+(v)\}$. Let T_0 be a 7-tournament which contains no transitive 4-subtournament. Let T be a strong tournament, $T \not\cong T_0$ and $k \geq 2$. In this paper, we show that if $\delta^+ + \delta^- \geq \frac{k-2}{k-1}n + 3k - 1$, then T can be partitioned into k cycles. When $n \geq 3k(k-1)$ a regular strong n-tournament can be partitioned into k cycles and a almost regular strong n-tournament can be partitioned into k cycles when $n \geq (3k+1)(k-1)$. Finally, if a strong tournament T can be partitioned into k cycles, k is an arbitrary positive integer not large than k. We prove that k can be partitioned into k cycles.

Key words: Strong Tournament, Regular Tournament, Transitive Tournament, Quasi-transitive Tournament.

AMS classification: 05C20, 05C75.

1 Introduction and Notation

A digraph is called *strongly connected* or *strong* if for every pair of vertices u and v there exists a directed path from u to v and a directed path from v to u. A digraph is *disconnected* if it is not strong. Let k be a positive integer. A digraph T is k-connected if the removal of any set of fewer than k vertices results in a strong digraph. A digraph T can be partitioned into k subgraphs, say as, T_1, T_2, \ldots, T_k , if $\bigcup_{i=1}^k V(T_i) = V(T)$ and $V(T_i) \cap V(T_j) = \emptyset$ $(1 \le i < j \le k)$.

¹ Email: li@lri.fr

²The research was partially supported by NNSF of China(19971027) and Shanghai Priority Academic Discipline. The research was done while the second author was visiting LRI. *Email:* jl_shu@yahoo.com

A tournament is an orientation of a complete graph. A tournament (a subtournament) with n vertices will be called an n-tournament (n-subtournament respectively). Let T be a tournament with vertex set V(T) and arc set E(T). $A = \{v_1, v_2, \ldots, v_m\}$ is a subset of V(T), < A > denotes the subtournament of T induced by A. We also write T - A for < V(T) - A >. Specially, if $A = \{v\}$, we denote < V(T) - v > by T - v. If no confusion arises, $< v_1, v_2, \ldots, v_m >$ will be used to denote < A > which contains a directed hamiltonian path $v_1 v_2 \ldots v_m$. v_1 and v_m are called the first vertex and the last vertex of the path, respectively. If T is a 1-connected tournament, $v \in V(T)$ is a cut vertex of T if T - v is a disconnected subtournament. v is a non-cut vertex if v is not a cut vertex.

Let T_1 be a subtournament of T and $v \in V(T)$, the in-neighborhood of v in T_1 is $N_{T_1}(v) = \{u \in V(T_1) | (u,v) \in E(T)\}$, the out-neighborhood of v in T_1 is $N_{T_1}^+(v) = \{u \in V(T_1) | (v,u) \in E(T)\}$. $d_{T_1}^-(v) = |N_{T_1}^-(v)|$ and $d_{T_1}^+(v) = |N_{T_1}^+(v)|$ are in-degree and out-degree of a vertex v in T_1 , respectively. In the case $T_1 = T$, we use $N^+(v)$, $N^-(v)$, $d^+(v)$ and $d^-(v)$ instead of $N_{T_1}^+(v)$, $N_{T_1}^-(v)$, $d_{T_1}^+(v)$ and $d_{T_1}^-(v)$, respectively. In fact that $N_{T_1}^-(v) = N^-(v) \cap V(T_1)$ and $N_{T_1}^+(v) = N^+(v) \cap V(T_1)$. If T can be partitioned into k subgraphs, say as, T_1, T_2, \ldots, T_k , then $N^-(v) = \bigcup_{i=1}^k N_{T_i}^-(v)$, $N^+(v) = \bigcup_{i=1}^k N_{T_i}^+(v)$, $d^-(v) = \sum_{i=1}^k d_{T_i}^-(v)$ and $d^+(v) = \sum_{i=1}^k d_{T_i}^+(v)$.

We define $\delta^- = \min_{v \in V(T)} \{d^-(v)\}, \ \delta^+ = \min_{v \in V(T)} \{d^+(v)\}, \ \delta = \min\{\delta^+, \delta^-\},$ $\Delta^- = \max_{v \in V(T)} \{d^-(v)\}, \ \Delta^+ = \max_{v \in V(T)} \{d^+(v)\}, \ \text{and} \ \Delta = \max\{\Delta^+, \Delta^-\}. \ \text{A tournament is } regular \text{ when } \delta = \Delta \text{ and } almost regular \text{ when } \Delta - \delta \leq 1.$

If (u,v) is an arc in T, then u dominates v, we denote $u\Rightarrow v$ or $v\Leftarrow u$. A set $A\subseteq V(T)$ dominates a set $B\subseteq V(T)$ if every vertex of A dominates every vertex of B, we denote $A\Rightarrow B$ or $B\Leftarrow A$. If some vertex in A dominates some vertex in B and vice versa, this will be denoted by $A\leftrightarrow B$.

It is well-known that every tournament contains a directed hamiltonian path and every strong tournament contains a directed hamiltonian cycle. Conversely, a tournament is strong if it contains a directed hamiltonian cycle.

Let $P=v_1v_2v_3\ldots v_n$ be a directed hamiltonian path of a n-tournament T. T is a transitive tournament if $v_i\Rightarrow v_j$ whenever $1\leq i< j\leq n$. Clearly, a transitive tournament is not strong. T is a quasi-transitive tournament if $v_k\Rightarrow v_{k+1}$ and $v_j\Rightarrow v_i$ whenever $1\leq k\leq n-1$ and $1\leq i< j-1\leq n-1$. It is evident that a quasi-transitive tournament is strong when it contains at least three vertices. Let T be a quasi-transitive n-tournament. Specially, T contains an isolated vertex when n=1. T only contains an arc when n=2. T is a strong triangle when n=3.

Let T_0 be a 7-tournament which contains no transitive 4-subtournament.

For a tournament, the following problem was posed by Bollobás[See [4]].

Problem A. If k is a positive integer, what is the least integer g(k) so that all but a finite number of g(k)-connected tournaments contain k vertex-disjoint cycles that span V(T)?

Clearly, g(1) = 1. In 1985, Reid [4] showed Theorem 1 to answer that g(2) = 2.

Theorem 1 [4]. If T is a 2-connected n-tournment, $n \geq 6$, and $T \not\cong T_0$, then T contains two vertex-disjoint cycles that span V(T). That is, T can be partitioned into two cycles. In particular, one of the two cycles can be a triangle.

In 2001, Chen, Gould and Li [2] proved that g(k) = k. Theorem 2 was obtained.

Theorem 2 [2]. Every k-connected n-tournament T with $n \ge 8k$ contains k vertex-disjoint cycles that span V(T).

So Problem A was solved completely.

Recently, we studied the structure of an arbitrary strong tournament which can not be partitioned into two cycles. A strong tournament without the condition of connectivity can be partitioned into two cycles. We obtain Theorem 3 and Corollary 4.

Theorem 3[3]. Let T be a strong n-tournament with $n \ge 6$ and p cut vertices. If T can not be partitioned into two cycles and $T \not\cong T_0$. Then

(1) $\max\{\delta^+, \delta^-\} \leq 2$ and

(2) an arbitrary directed hamiltonian cycle of T can be partitioned into two consecutive segments Q and L, where Q is a transitive (n-l)-subtournament, L is a quasi-transitive l-subtournament and l = p, p + 1 or p + 2.

Moreover, all vertices in Q are non-cut vertices of T and $|V(Q)| \ge 3$. Let u and v are the first vertex and the last vertex of Q, respectively. Then $d_T^+(v) \le 2$ and $d_T^-(u) \le 2$. All cut vertices of T are consecutive on an arbitrary directed hamiltonian cycle and are included in L and $p \le \frac{n+1}{2}$.

Corollary 4[3]. Let T be a strong n-tournament with $n \ge 6$. If $T \not\cong T_0$ and $\max\{\delta^+, \delta^-\} \ge 3$, then T can be partitioned into two cycles.

Let d be the maximum number of vertices of a transitive subtournament in T. Theorem 5 give a sufficient condition of T such that T can be partitioned into k cycles.

Theorem 5[3]. Let T be a strong n-tournament with $n \ge 6$. If $d \le \frac{n-9k+8}{2}$, then T can be partitioned into k cycles.

Indeed our research is motivated by these results above. Can we find some conditions about δ^+ or δ^- instead of "k-connected" or the condition in Theorem 5 such that T can be partitioned into k cycles? The answer is positive. The main result in this paper, Theorem 6 gives another sufficient condition about $\delta^+ + \delta^-$ such that T can be partitioned into k cycles.

Theorem 6. Let T be a strong n-tournament and $T \not\cong T_0$. k is a positive integer larger than one. If $\delta^+ + \delta^- \geq \frac{k-2}{k-1}n + 3k - 1$. Then T can be partitioned

into k cycles.

If T is a regular tournament, then $\delta^+ = \delta^- = \Delta^+ = \Delta^- = \delta = \Delta$ and $\delta^+ + \delta^- = n - 1$.

Let T be a almost regular tournament. By the definition, $\Delta - \delta \le 1$. We obtain $\delta^+ + \delta^- \ge n - 2$ since $\Delta^- - \delta^- \le 1$ and $\Delta^- = n - 1 - \delta^+$.

By Theorem 6, it is easy to get the following Corollary 7.

Corollary 7. Let T be a strong n-tournament and $T \not\cong T_0$. k is a positive integer larger than one.

- (1) If T is a regular tournament and $n \ge 3k(k-1)$, then T can be partitioned into k cycles;
- (2) If T is a almost regular tournament and $n \ge (3k+1)(k-1)$, then T can be partitioned into k cycles;

We consider the union of vertex-disjoint cycles.

Theorem 8. If a strong tournament T can be partitioned into k cycles. For any positive integer q satisfying $1 \le q \le k$, then T can be partitioned into q cycles.

Now we give some notation.

Let C be a cycle in T. For every vertex $v \in V(C)$, v_C^+ denote the successor of v on C and let v_C^- denote the predecessor of v on C. If no confusion arises, v^+ and v^- will be used to denote v_C^+ and v_C^- , respectively. Let X be a cycle or a path of T and let u and v be two vertices on X (u, v are in that order along X if X is a path). We define X[u,v] as the subpath(or the consecutive segment) of X from u to v. For any $u \notin V(C)$, if u is dominated by a vertex $v \in V(C)$ and u dominates x^+ , then $ux^+C[x^+,x]xu$ is a cycle longer than C. In this case, we say that u can be inserted into C. Let S be a vertex subset of T and $S \cap V(C) = \emptyset$. If $\langle S \cup V(C) \rangle$ is a strong subtournament, i.e., $\langle S \cup V(C) \rangle$ contains a directed hamiltonian cycle, we call S can be inserted into C. If $u \notin V(C)$ and $u \leftrightarrow V(C)$, then u can be inserted into C. Moreover, if C_1 and C_2 are two vertex-disjoint cycles of a tournament T and $V(C_1) \leftrightarrow V(C_2)$, it is clearly that $\langle V(C_1) \cup V(C_2) \rangle$ is a strong subtournament, i.e., C_1 and C_2 can be united into a cycle which contains all vertices of them. So if u cannot be inserted into a cycle C, then $u \Rightarrow V(C)$ or $V(C) \Rightarrow u$. If C_1 and C_2 can not be united into a cycle, then $V(C_1) \Rightarrow V(C_2)$ or $V(C_2) \Rightarrow V(C_1)$.

Other notation and terminology not defined here can be found in [1].

2 Proofs of Main Results

Proof of Theorem 6. As $\delta^+ + \delta^- \le n-1$ and $\delta^+ + \delta^- \ge \frac{k-2}{k-1}n + 3k - 1$, $n \ge 3k(k-1)$.

If k=2, then $\delta^+ + \delta^- \ge 5$ and $n \ge 6$. So $\max\{\delta^+, \delta^-\} \ge 3$. By $T \not\cong T_0$ and Corollary 4, T can be partitioned into two cycles.

Now, we assume $k \geq 3$. Then $n \geq 9(k-1)$.

Suppose, to the contrary, k is the smallest integer such that Theorem 6 fails. Then, $k \geq 3$ and T can be partitioned into k-1 cycles, say as, $C_1, C_2, \ldots, C_{k-1}$. So C_i can not be partitioned into two cycles for every $1 \leq i \leq k-1$.

We choose a partition of T such that C_1 is the longest cycle and any vertex subset $S \subset V(C_i)$ cannot be inserted into C_1 if $V(C_i) - S > i$ s strong whenever $2 \le i \le k - 1$.

Thus, $|V(C_1)| \ge \frac{n}{k-1} \ge 9$. By Theorem 3, C_1 can be partitioned into a transitive subtournament Q_1 and a quasi-transitive subtournament L_1 . Let u and v are the first vertex and the last vertex of Q_1 , respectively. Moreover, we have $d_{C_1}^+(v) \le 2$ and $d_{C_1}^-(u) \le 2$. So

$$d_T^-(u) = \sum_{i=1}^{k-1} d_{C_i}^-(u) \le 2 + \sum_{i=2}^{k-1} d_{C_i}^-(u)$$

and

$$d_T^+(v) = \sum_{i=1}^{k-1} d_{C_i}^+(v) \le 2 + \sum_{i=2}^{k-1} d_{C_i}^+(v).$$

We will show that $d_T^-(u) + d_T^+(v) \le \frac{k-2}{k-1}n + 3k - 2$, which produces a contradiction.

It is evident that we can obtain Proposition A.

Proposition A. Let $w_1w_2...w_tw_1$ be a directed hamiltonian cycle of C_i where $2 \le i \le k-1$. If $V(C_1) \Rightarrow w_a$, $w_b \Rightarrow V(C_1)$ and $w_a^- \Rightarrow w_b^+$ where $1 \le a \le b \le t$, $w_1^- = w_t$, $w_t^+ = w_1$. Then the segment $C_i[w_a, w_b]$ can be inserted into C_1 and the other vertices of C_i form a cycle

$$w_1C_i[w_1, w_a^-]w_a^-w_b^+C_i[w_b^+, w_t]w_tw_1.$$

In the proof, we will often use Proposition A to produce a contradiction of the choice of C_1 .

Let

$$\mathcal{F} = \{C_i \mid |V(C_i)| \ge 6 \text{ and } \langle V(C_i) \rangle \not\cong T_0 \text{ where } 2 \le i \le k-1\}$$

and

$$\mathcal{H} = \{C_i \mid |V(C_i)| \le 5 \text{ or } \langle V(C_i) \rangle \cong T_0 \text{ where } 2 \le i \le k-1\}.$$

So

$$\mathcal{F} \cup \mathcal{H} = \{C_2, C_3, \dots, C_{k-1}\}$$
 and $\mathcal{F} \cap \mathcal{H} = \emptyset$.

We distinguish two cases.

Case 1. $C_i \in \mathcal{F}$.

By Theorem 3, C_i can be partitioned into a transitive subtournament Q_i and a quasi-transitive subtournament L_i . All vertices of Q_i are the non-cut vertices of C_i . Let $|V(C_i)| = n_i$, $|V(L_i)| = l_i$ and $|V(Q_i)| = q_i \ge 3$. So $n_i = l_i + q_i$.

CLAIM 1. If w is an arbitrary vertex of Q_i , then $w \Rightarrow V(C_1)$ or $V(C_1) \Rightarrow w$.

Proof of Claim 1. As w is a non-cut vertex of C_i , $C_i - w$ is a strong. If $w \leftrightarrow V(C_1)$, then w can be inserted into C_1 . $\langle C_1 \cup \{w\} \rangle$ is a new cycle longer than C_1 . It contradicts the choice of C_1 . So $w \Rightarrow V(C_1)$ or $V(C_1) \Rightarrow w$.

By Claim 1, we have $d_{Q_i}^-(u)+d_{Q_i}^+(v)=|V(Q_i)|=q_i$. We assume $Q_i=< v_1,v_2,\ldots,v_{q_i}>$, $L_i=< u_1,u_2,\ldots,u_{l_i}>$ and $v_1v_2\ldots v_{q_i}u_1u_2\ldots u_{l_i}v_1$ is a directed hamiltonian cycle of $< C_i>$.

CLAIM 2. One of the following cases holds.

- (1) $V(Q_i) \Rightarrow V(C_1)$ for $1 \leq i \leq q_i$;
- (2) $V(C_1) \Rightarrow V(Q_i)$ for $1 \le i \le q_i$;
- (3) There is a integer m such that

$$v_j \Rightarrow V(C_1)$$
 for every $1 \leq j \leq m$

and

$$V(C_1) \Rightarrow v_j$$
 for every $m+1 \leq j \leq q_i$,

where $1 \leq m \leq q_i - 1$;

- (4) $V(C_1) \Rightarrow v_1$ and $Q_i v_1 \Rightarrow V(C_1)$;
- (5) $V(C_1) \Rightarrow Q_i v_{q_i}$ and $v_{q_i} \Rightarrow V(C_1)$.

Proof of Claim 2. If all these cases do not occur, we must have v_j and v_{j+1} such that $v_{j+1} \Rightarrow V(C_1)$, $V(C_1) \Rightarrow v_j$ and $2 \leq j, j+1 \leq q_i-1$. It is evident that v_j and v_{j+1} can be inserted into C_1 and $C_i = \{v_j, v_{j+1}\}$ is strong. It is a contradiction.

Now, we consider $d_{L_i}^-(u) + d_{L_i}^+(v)$.

CLAIM 3. Let $v \Rightarrow u_j$ and $u_r \Rightarrow u$. If $j \geq 5$ then $r \geq j-3$.

Proof of Claim 3. To the contrary, $r \leq j - 4$. Then

$$u_j L_i[u_j, u_{l_i}] u_{l_i} v_1 Q_i[v_1, v_{q_i}] v_{q_i} u_1 L_i[u_1, u_r] u_r$$

can be inserted into C_1 and $\langle u_{r+1}, u_{r+2}, \dots, u_{j-1} \rangle$ is strong. It is a contradiction. \square

Let $j_0 = \max\{j \mid v \Rightarrow u_j, u_j \in V(L_j)\}.$

CLAIM 4. $d_{L_i}^-(u) + d_{L_i}^+(v) \le l_i + 4$.

Proof of Claim 4. If $j_0 \geq 5$, clearly, $d_{L_i}^+(v) \leq j_0$. By Claim 3, u_1, u_2, \ldots , u_{j_0-4} can not dominate u. So $d_{L_i}^-(u) \leq l_i - (j_0 - 4) = l_i - j_0 + 4$. Thus $d_{L_i}^+(u) + d_{L_i}^+(v) \leq l_i + 4$.

If $j_0 \leq 4$, clearly, $d_{L_i}^+(v) \leq j_0 \leq 4$ and $d_{L_i}^-(u) \leq l_i$. We have $d_{L_i}^-(u) + d_{L_i}^+(v) \leq l_i + 4$. \square

CLAIM 5. $d_{L_i}^-(u) + d_{L_i}^+(v) \le l_i + 3$.

Proof of Claim 5. By Claim 4, we have $d_{L_i}^-(u) + d_{L_i}^+(v) \le l_i + 4$. When the equality holds, we obtain $j_0 \ge 4$,

$$v \Rightarrow u_j$$
 for every $1 \le j \le j_0$

and

$$u_i \Rightarrow u$$
 for every $j_0 - 3 \le j \le l_i$.

- (1) If $V(Q_i) \Rightarrow u$, then $V(Q_i) \Rightarrow V(C_1)$. So $u_{j_0}u_{j_0+1} \dots u_{l_i}v_1v_2 \dots v_{q_i}$ can be inserted into C_1 and the other vertices of C_i contains a cycle $u_1u_2 \dots u_{j_0-1}u_1$. It is a contradiction.
- (2) If $v \Rightarrow V(Q_i)$, then $V(C_1) \Rightarrow V(Q_i)$. Similarly, $v_1 v_2 \dots v_{q_i} u_1 u_2 \dots u_{j_0-3}$ can be inserted into C_1 and the other vertices of C_i contains a cycle $u_{j_0-2}u_{j_0-1} \dots u_{l_i}u_{j_0-2}$. It is a contradiction.
 - (3) By Claim 2, if there is a integer m such that

$$v_j \Rightarrow V(C_1)$$
 for every $1 \le j \le m$

and

$$V(C_1) \Rightarrow v_i$$
 for every $m+1 \leq j \leq q_i$,

where $1 \leq m \leq q_i - 1$. We have $v_1 \Rightarrow V(C_1)$ and $V(C_1) \Rightarrow v_{q_i}$. As $q_i \geq 3$, $m \geq 2$ or $q_i - m \geq 2$. Without loss of generality, we assume $m \geq 2$.

If $v_m \Rightarrow u_{j_0-1}$, then $v_m u_{j_0-1} u_{j_0} \dots u_{l_i} v_1 v_2 \dots v_m$ is a cycle and

$$v_{m+1}v_{m+2}\ldots v_{q_i}u_1u_2\ldots u_{j_0-2}$$

can be inserted into C_1 . It is a contradiction.

If $u_{j_0-1} \Rightarrow v_m$, then $v_m v_{m+1} \dots v_{q_i} u_1 u_2 \dots u_{j_0-1} v_m$ is a cycle and

$$u_{j_0}u_{j_0+1}\ldots u_{l_i}v_1v_2\ldots v_{m-1}$$

can be inserted into C_1 . It is a contradiction.

- (4) If $V(C_1) \Rightarrow v_1$ and $Q_i v_1 \Rightarrow V(C_1)$. Then $u_{j_0}u_{j_0+1} \dots u_{l_i}v_1v_2 \dots v_{q_i}$ can be inserted into C_1 , $u_1u_2 \dots u_{j_0-1}u_1$ is a cycle. It is a contradiction.
- (5) If $V(C_1) \Rightarrow Q_i v_{q_i}$ and $q_i \Rightarrow V(C_1)$. Similarly, we have $u_{j_0} u_{j_0+1} \dots u_{l_i} v_1$ $v_2 \dots v_{q_i}$ can be inserted into $C_1, u_1 u_2 \dots u_{j_0-1} u_1$ is a cycle. It is a contradiction.

By these contradictions, we have $d_{L_i}^-(u) + d_{L_i}^+(v) \le l_i + 3$.

From $d_{Q_i}^-(u) + d_{Q_i}^+(v) = |V(Q_i)| = q_i$ and $d_{L_i}^-(u) + d_{L_i}^+(v) \le l_i + 3$, we have $d_{C_i}^-(u) + d_{C_i}^+(v) \le n_i + 3$ whenever $C_i \in \mathcal{F}$.

Case 2. $C_i \in \mathcal{H}$.

Define $R_i = \{ w \in V(C_i) \mid w \Rightarrow u \text{ and } v \Rightarrow w \}$. Clearly $|R_i| \leq |V(C_i)| = n_i$.

We will prove $d_{C_i}^-(u) + d_{C_i}^+(v) \le n_i + 3$ whenever $C_i \in \mathcal{H}$. Clearly, $d_{C_i}^-(u) + d_{C_i}^+(v) \le n_i + |R_i|$, so we will only prove $|R_i| \le 3$.

- (1) If $n_i = 3$. It is evident that $|R_i| \le 3$ since $|R_i| \le n_1 \le 3$.
- (2) If $n_i = 4$. As C_i contains a directed triangle. Let v_0 be a vertex of C_i and not belong to the triangle. So v_0 is a non-cut vertex of C_i . Clearly, if $v_0 \in R_i$, then $v_0 \Rightarrow u, v \Rightarrow v_0$, v_0 can be inserted into C_i . It is a contradiction. Thus $|R_i| \leq 3$.
- (3) If $n_i = 5$. Let $w_1w_2w_3w_4w_5w_1$ be a directed hamiltonian cycle of C_i . If $|R_i| \geq 4$, without loss of generality, we can assume $\{w_1, w_2, w_3, w_4\} \subseteq R_i$.

If $w_2 \Rightarrow w_5$, then $w_1 w_2 w_5 w_1$ is a cycle of C_i . Clearly, the segment $C_i[w_3, w_4]$ can be inserted into C_1 . It is a contradiction.

If $w_5 \Rightarrow w_2$, then $w_2w_3w_4w_5w_2$ is a cycle of C_i . Clearly, w_1 can be inserted into C_1 . It is a contradiction.

Thus $|R_i| \leq 3$.

(4) If $\langle V(C_i) \rangle \cong T_0$. Clearly, T_0 is 2-connected. All vertices of T_0 are non-cut vertex and $R_i = \emptyset$. So $|R_i| \leq 3$.

By Case 1 and Case 2, we have $d_{C_i}^-(u) + d_{C_i}^+(v) \le n_i + 3$ whenever $2 \le i \le k - 1$. Thus

$$\begin{split} \delta^- + \delta^+ & \leq d_T^-(u) + d_T^+(v) \\ & = \sum_{i=1}^{k-1} \left(d_{C_i}^-(u) + d_{C_i}^+(v) \right) \\ & \leq 4 + \sum_{i=2}^{k-1} \left(d_{C_i}^-(u) + d_{C_i}^+(v) \right) \\ & \leq 4 + \sum_{i=2}^{k-1} (n_i + 3) \\ & = 4 + (n - n_1) + 3(k - 2) \\ & \leq 3k - 2 + n - \frac{n}{k-1} \\ & = \frac{k-2}{n} + 3k - 2. \end{split}$$

These contradict the hypothesis of Theorem 6 and complete the proof.

Proof of Theorem 8. T can be partitioned into k cycles, say so C_1 , C_2 , ..., C_k , where $k \geq 2$. We need only to prove that T can be partitioned into k-1 cycles, i.e., C_1 , C_2 , ..., C_k can be combined into k-1 vertex-disjoint cycles.

To the contrary, for two arbitrary vertex-disjoint cycles C_i and C_j , as C_i and C_j can not be combined into one cycle, we have $V(C_i) \Rightarrow V(C_j)$ or $V(C_j) \Rightarrow V(C_i)$.

Define

$$\mathfrak{I}_{1}^{\mathrm{in}} = \{C_{i} \mid V(C_{i}) \Rightarrow V(C_{1})\}$$

and

$$\mathfrak{I}_1^{\text{out}} = \{C_j \mid V(C_1) \Rightarrow V(C_j)\}.$$

So

$$\left(\bigcup_{C_i \in \mathfrak{A}_1^{\text{in}}} V(C_i)\right) \bigcup \left(\bigcup_{C_j \in \mathfrak{A}_1^{\text{out}}} V(C_j)\right) \bigcup V(C_1) = V(T).$$

CLAIM 6. For an arbitrary cycle $C_i \in \mathfrak{I}_1^{in}$ and an arbitrary cycle $C_j \in \mathfrak{I}_1^{out}$, then $V(C_i) \Rightarrow V(C_j)$.

Proof of Claim 6. To the contrary, thus $V(C_i) \Rightarrow V(C_1) \Rightarrow V(C_j) \Rightarrow V(C_i)$. We assume $x \in V(C_i)$, $y \in V(C_1)$ and $z \in V(C_j)$. So xyzx and

$$x^+C_i[x^+,x^-]x^-y^+C_1[y^+,y^-]y^-z^+C_j[z^+,z^-]x^+$$

are two vertex-disjoint cycles. Thus we can combine C_i , C_1 and C_j into two vertex-disjoint cycles. With the other k-3 unused cycles, T can be partitioned into k-1 cycles, a contradiction.

Without loss of generality, we may assume $C_2 \in \Im_1^{\mathrm{in}}$. We define

$$\Im_2^{\mathrm{in}} = \{ C_i \mid V(C_i) \Rightarrow V(C_2), C_i \in \Im_1^{\mathrm{in}} \}$$

and

$$\mathfrak{I}_2^{\text{out}} = \{C_i \mid V(C_2) \Rightarrow V(C_i), C_i \in \mathfrak{I}_1^{\text{in}} \}.$$

Similarly, we know $V(C_i) \Rightarrow V(C_2) \Rightarrow V(C_j)$ and $V(C_i) \Rightarrow V(C_j)$ for an arbitrary cycle $C_i \in \mathfrak{I}_2^{in}$ and an arbitrary cycle $C_j \in \mathfrak{I}_2^{out}$.

Repeating this course, we can order all of cycles as

$$V(C_{i_1}) \Rightarrow V(C_{i_2}) \Rightarrow \ldots \Rightarrow V(C_{i_k})$$

and $V(C_{i_j}) \Rightarrow V(C_{i_l})$ whenever $1 \leq j < l \leq k$. So T has k strong components. It contradicts that T is strong. This completes the proof. \square

Acknowledgments

We would like to thank one referee for many useful suggestions, which have considerably improved the presentation of the article.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and New York, 1976.
- [2] Guantao Chen, Ronald J. Gould and Hao Li, Partitioning vertices of a tournament into independent cycles, J. Combin. Theory (B) 83 (2001), 213-220.
- [3] Hao Li and Jinlong Shu, The partition of a strong tournament, Preprint, 2002.
- [4] K. B. Reid, Two complementary circuits in two-connected tournaments. In "Cycles in Graphs". B.R. Alspach and C.D. Godsil, Eds. Annal of Discrete Math., Vol. 27 (1985), 321-334.