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Abstract

A digraph T is called strongly connected if for every pair of vertices
u and v there exists a directed path from » to v and a directed path
from v to u. Denote the in-degree and out-degree of a vertex v of T' by
d~(v) and d*(v), respectively. We define §~ = min,ev(r){d~(v)}, and
6% = minyev(r){d*(v)}. Let To be a 7-tournament which contains no
transitive 4-subtournament. Let T be a strong tournament, T ¥ T and
k > 2. In this paper, we show that if 6% + 6~ > ¥=2n + 3k -1, then T
can be partitioned into k cycles. When n > 3k(k — 1) a regular strong
n-tournament can be partitioned into k cycles and a almost regular strong
n-tournament can be partitioned into k cycles when n > (3k + 1)(k — 1).
Finally, if a strong tournament T can be partitioned into k cycles, ¢ is
an arbitrary positive integer not large than k. We prove that T can be
partitioned into g cycles.

Key words: Strong Tournament, Regular Tournament, Transitive Tourna-
ment, Quasi-transitive Tournament.
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1 Introduction and Notation

A digraph is called strongly connected or strong if for every pair of vertices u and
v there exists a directed path from u to v and a directed path from v to u. A
digraph is disconnected if it is not strong. Let k be a positive integer. A digraph
T is k-connected if the removal of any set of fewer than k vertices results in a
strong digraph. A digraph T can be partitioned into k subgraphs, say as, T, T3,
ey T, FUELLV(T) = V(D) and V(T)NV(T;) =0 (1 <i<j<k).
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A tournament is an orientation of a complete graph. A tournament (a sub-
tournament) with n vertices will be called an n-tournament (n-subtournament
respectively). Let T be a tournament with vertex set V(T') and arc set E(T).
A= {v,v2,...,un} is asubset of V(T'), < A > denotes the subtournament of T
induced by A. We also write T~ A for < V(T') — A >. Specially, if A = {v}, we
denote < V(T') —v > by T' —wv. If no confusion arises, < v;,vz,...,um > will be
used to denote < A > which contains a directed hamiltonian path vvs...vp
v; and vy, are called the first vertex and the last vertex of the path, respectively.
If T is a 1-connected tournament, v € V(T) is a cut vertezof Tif T ~v is a
disconnected subtournament. v is a non-cut vertez if v is not a cut vertex.

Let T} be a subtournament of T and v € V(T') , the in-neighborhood of v in
Tl is Np, (v) = {u € V(T1)|(u,v) € E(T)}, the out-neighbarhood of v in T} is

Nf,(v) = {u € V(T1)|(v,u) € E(T)}. dg, (v) = |Ng, (v)] and dF, (v) = [N (v)|
are m-degree and out-degree of a vertex v in T}, respectively. In the case T} =
T, we use N*(v), N~ (v), d*(v) and d~(v) instead of N, (v), Ny, (v), df, (v)
and dr, (v), respectively. In fact that Np (v) = N~(v) N V(T}) and N (v) =
N*(w)NV(T1). If T can be partitioned into k subgraphs, say as, Tl, Tz, .
Ty, then N“(v) Uizi N5 (), N*(v) = Uk, N (v), d(v) = T, d7, (v)
and d+(v) = s=l d;; (‘U)

We define 6~ = min {d'(v)} §t = H‘l/l(l'}l_){d+(v)}, é = min{é+,6"},

S + _ — + -
AT = ”3%){d (v)} A = én‘%‘){d*(v)} and A = max{A+,A"}. A tour-
nament is regular when § = A and almost regular when A — 6 < 1.

If (u,v) is an arc in T, then u dominates v, we denote u = v or v < u. A
set A C V(T') dominates a set B C V(T) if every vertex of A dominates every
vertex of B, we denote A => B or B <« A. If some vertex in A dominates some
vertex in B and vice versa, this will be denoted by A & B.

It is well-known that every tournament contains a directed hamiltonian path
and every strong tournament contains a directed hamiltonian cycle. Conversely,
a tournament is strong if it contains a directed hamiltonian cycle.

Let P = v;v2v3... v, be a directed hamiltonian path of a n-tournament 7.
T is a transitive tournament if v; = v; whenever 1 < i < j < n. Clearly,
a transitive tournament is not strong. T is a quasi-transitive tournament if
Vg = Upy1 and v; => v; whenever 1 S k<n-land1<i<j-1<n-11t
is evident that a quasi-transitive tournament is strong when it contains at least
three vertices. Let T be a quasi-transitive n-tournament. Specially, T' contains
an isolated vertex when n = 1. T only contains an arc when n = 2. T is a
strong triangle when n = 3.

Let Tp be a 7-tournament which contains no transitive 4-subtournament.
For a tournament, the following problem was posed by Bollobds[See [4]).

Problem A. 1If k is a positive integer, what is the least integer g(k) so that
all but a finite number of g(k)-connected tournaments contain k vertex-disjoint
cycles that span V(T)?
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Clearly, g(1) = 1. In 1985, Reid (4] showed Theorem 1 to answer that
9(2)=2.

Theorem 1 [4]. IfT is a 2-connected n-tournment, n > 6, and T % Ty,
then T contains two vertez-disjoint cycles that span V(T). That is, T can be
partitioned into two cycles. In particular, one of the two cycles can be a triangle.

In 2001, Chen, Gould and Li [2] proved that g(k) = k. Theorem 2 was
obtained.

Theorem 2 [2]. Every k-connected n-tournament T with n > 8k contains
k vertez-disjoint cycles that span V(T).

So Problem A was solved completely.

Recently, we studied the structure of an arbitrary strong tournament which
can not be partitioned into two cycles. A strong tournament without the con-
dition of connectivity can be partitioned into two cycles. We obtain Theorem 3
and Corollary 4.

Theorem 3([3]. Let T be a strong n-tournament with n > 6 and p cut
vertices. If T can not be partitioned into two cycles and T ¥ Ty. Then

(1) max{6+,6"} < 2 and

(2) an arbitrary directed hamiltonian cycle of T can be partitioned into two
consecutive segments Q and L, where Q i3 a transitive (n — l)-subtournament,
L is a quasi-transitive l-subtournament andl =p,p+ 1 or p+ 2.

Moreover, all vertices in Q are non-cut vertices of T and |V(Q)| > 3. Letu
and v are the first vertez and the last vertez of Q, respectively. Then df(v) < 2
and d(u) < 2. All cut vertices of T are consecutive on an arbitrary directed
hamiltonian cycle and are included in L and p < "2—"'—1-

Corollary 4[3]. Let T be a strong n-tournament withn > 6. If T T,
and max{d%,6~} > 3, then T can be partitioned into two cycles.

Let d be the maximum number of vertices of a transitive subtournament in
T. Theorem 5 give a sufficient condition of T such that T can be partitioned
into k cycles.

Theorem 5(3]. Let T be a strong n-tournament withn > 6. Ifd <
%ﬂ, then T can be partitioned into k cycles.

Indeed our research is motivated by these results above. Can we find some
conditions about §*-or 6~ instead of “k-connected” or the condition in Theorem
5 such that T can be partitioned into k cycles? The answer is positive. The
main result in this paper, Theorem 6 gives another sufficient condition about
6% + 6~ such that T can be partitioned into k cycles.

Theorem 6. Let T be a strong n-tournament and T 2 Ty. k is a positive
integer larger than one. If 6+ +6~ > £=2n+ 3k —1. Then T can be partitioned
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into k cycles.

If T is a regular tournament, then 6t = §~ = A* = A~ = § = A and
dt4+6 - =n-1.

Let T be a almost regular tournament. By the definition, A —§ < 1. We
obtain 6t +6~ >n—-2since A" -6 <land A~ =n-1-46t.

By Theorem 6, it is easy to get the following Corollary 7.

Corollary 7. Let T be a strong n-tournament and T $ To. k is a positive
integer larger than one.

(1) If T is a regular tournament and n > 3k(k—1), then T can be partitioned
into k cycles;

(2) If T is a almost regular tournament and n > (3k+1)(k—1), then T can
be partitioned into k cycles;

We consider the union of vertex-disjoint cycles.

Theorem 8. If a strong tournament T can be partitioned into k cycles.
For any positive integer q satisfying 1 < q < k, then T can be partitioned into q
cycles. :

Now we give some notation.

Let C be a cycle in T. For every vertex v € V(C), v} denote the successor
of v on C and let v; denote the predecessor of v on C. If no confusion arises,
vt and v~ will be used to denote vg and vg, respectively. Let X be a cycle or
a path of T and let u and v be two vertices on X (u, v are in that order along X
if X is a path). We define X [u,v] as the subpath(or the consecutive segment) of
X from u to v. For any u ¢ V(C), if u is dominated by a vertex v € V(C) and u
dominates =¥, then uz+Clz*, z]zu is a cycle longer than C. In this case, we say
that u can be inserted into C. Let S be a vertex subset of T and SNV(C) = 0.
If < SUV(C) > is a strong subtournament, i.e., < SUV(C) > contains a
directed hamiltonian cycle, we call S can be inserted into C. If u ¢ V(C) and
u & V(C), then u can be inserted into C. Moreover, if C; and C, are two
vertex-disjoint cycles of a tournament T and V(C,) & V(C3), it is clearly that
< V(C1) UV(C,) > is a strong subtournament, i.e., C; and C; can be united
into a cycle which contains all vertices of them. So if u cannot be inserted into
a cycle C, then u = V(C) or V(C) = u. If C; and C, can not be united into
a cycle, then V(Cy) = V(C;) or V(C2) = V(C)).

Other notation and terminology not defined here can be found in (1].

2 Proofs of Main Results

Proof of Theorem 6. Asd* +6~ <n-—1and§* +6~ > £2n+3k -1,
n > 3k(k - 1).
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If k=2, then 6* +6~ > 5 and n > 6. So max{d*,6-} > 3. By T 2 Ty and
Corollary 4, T can be partitioned into two cycles.

Now, we assume k£ > 3. Then n > 9(k — 1).

Suppose, to the contrary, k is the smallest integer such that Theorem 6 fails.
Then, & > 3 and T can be partitioned into k~1 cycles, say as, C,Ca,...,Cr_;.
So C; can not be partitioned into two cycles forevery 1<i<k-—1. .

We choose a partition of T' such that C; is the longest cycle and any vertex
subset S C V(C;) cannot be inserted into C} if < V(C;)~S > is strong whenever
2<i<k-1

Thus, |[V(C1)| > 27 > 9. By Theorem 3, C; can be partitioned into a
transitive subtournament @, and a quasi-transitive subtournament L;. Let u
and v are the first vertex and the last vertex of @, respectively. Moreover, we
have dg’; (v) <2 and dg, (u) < 2. So

k-1 k-1
dr(v) =) dz(u) <2+ dg,(u)

i=1 i=2
and
k—-1 k-1

di(w) = d&(v) <2+ dE (v)

i=1 i=2

We will show that d7.(u) + df-(v) < £=2n + 3k — 2, which produces a con-
tradiction.

It is evident that we can obtain Proposition A.

Proposition A. Let wyws...w,w, be a directed hamiltonian cycle of C;
where 2 < i < k—1. If V(C1) = wa, wp = V(C1) and w] = wi where
1<a<b<t w =w, wf=uw. Then the segment Cifw,, wy] can be
inserted into Cy and the other vertices of C; form a cycle

w Cifwn, wy Jwz wy C.[w,, , Welwewy .

In the proof, we will often use Proposition A to produce a contradiction of
the choice of C).

Let
F={Ci||V(C:)| 26 and <V(C;) ># T, where 2<i<k-1}
and

H={Ci|IV(C:i)| £5 or <V(Ci) >=T, where 2<i<k—1}.
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So
FUH = {Cz,Cs,...,Cg_l} and FNH =40.

We distinguish two cases.
Case 1. C; € F.

By Theorem 3, C; can be partitioned into a transitive subtournament Q; and
a quasi-transitive subtournament L;. All vertices of Q; are the non-cut vertices
of Ci. Let |V(C¢)| = N, lV(L,‘)I = lg and IV(Q,)I =q; Z 3. So n = li + g;.

CLAIM 1. Ifw is an arbitrary vertez of Q;, thenw = V(C,) or V(C,) =

Proof of Claim 1. As w is a non-cut vertex of C;, C; — w is a strong. If
w & V(C}), then w can be inserted into Cy. < CyU{w} > is a new cycle longer
than C). It contradicts the choice of Cy. So w = V(Cy) or V(C1) = w.

By Claim 1, we have dg, () + d§,(v) = [V(Q:)| = ¢;. We assume Q; =<
V1, V2,..., Vg >, Li =< ug,ug,. .., uy; > and vy .. v uiug ..y ds a di-
rected hamiltonian cycle of < C; >.

CLAIM 2. One of the following cases holds.
(1) V(Qi) = V(C)) for1<i<g;
(2) V(C1) = V(Qi) for1<i < gi;
(3) There is a integer m such that
v; =>V(C,) forevery 1<j<m
and
V(C1) = v; forevery m+1<j<gq,

wherel<m<¢-1;
(4) V(C1) = v and Q; — v = V(C1);
(5) V(C1) = Qi — vy, and vy, = V(Cy).

Proof of Claim 2. 1If all these cases do not occur, we must have v; and v,
such that vj4 = V(C1), V(C1) = vj and 2 < 5,7+ 1 < ¢; — 1. It is evident
that v; and vj41 can be inserted into C; and < C; — {v;,vj41} > is strong. It
is a contradiction.

Now, we consider df, (u) + df (v).
CLAIM 3. Letv=>uj andu,=>u. Ifj>5 thenr >j-3.
Proof of Claim 3. To the contrary, » < j — 4. Then

u; Lifuj, vy Jur, v1Qi[v1, vg, Jvg ua Li[ua, urjur

can be inserted into Cy and < up41,Ur42,...,Uuj—; > is strong. It is a contra-
diction.

208



Let jo = max{j | v = uj,u; € V(L;)}.
CLAIM 4. dp (u)+df (v) <l;i+4.

Proof of Claim 4. If jo > 5, clearly, df (v) < jo. By Claim 3, up,ug,...,
Ujo—4.can not dominate u. So dp (v) < li— (jo —4) = L — jo +4. Thus
dr, (u) + di,(v) <L +4.

z It;jo < 4, clearly, df (v) < jo < 4and dz, (u) < ;. Wehave d, (u)+df, (v) <
i+4

CLAIM 5. df, (u) +df (v) SLi+3.

Proof of Claim 5. By Claim 4, we have df, (u) + df (v) < l; +4. When the
equality holds, we obtain jo > 4,

v=>u; forevery 1<j<jo

and
u; = u forevery jo—3<j <l

(1) I V(Q:) = u, then V(Q;) = V(C1). So ujouujos1 ... U v1v2... g can
be inserted into C; and the other vertices of C; contains a cycle ujuz ... %j,—1u1.
It is a contradiction.

(2) If v = V(Qq), then V(C;) = V(Q;). Similarly, vyvz ... vguiuz ... uj—3
can be inserted into C; and the other vertices of C; contains a cycle uj,—2uj,—1
... U uj,—2. It is a contradiction.

(3) By Claim 2, if there is a integer m such that

v; = V(Cy) forevery 1<j<m
and
V(C1) = v; forevery m+1<j<q,

where 1 < m < ¢; — 1. We have v; = V(C,) and V(C)) = vy,. As g > 3,
m > 2 or ¢; —m > 2. Without loss of generality, we assume m > 2.
If v = ujo—1, then vmujo—1uj, - . - U, V1V2 ... Uy iS & cycle and

Ym41Um42 - - - Vg YU U2 . . . Ujp 2

can be inserted into C;. It is a contradiction.
If ujp—1 = vm, then vRVM41 .. . Vi WIU2 ... Uj,—1Um S a cycle and

UjoUjo+1 - - - UL VIV2 ... Un—1

can be inserted into C;. It is a contradiction.

(4) ¥ V(C1) = v and Q; — vy = V(C1). Then ujotjosr.. Uy v1vs... 0
can be inserted into Cy, ujua...uj,—1u1 is a cycle. It is a contradiction.

(6) IfFV(C1) = Qi—v,, and g; = V(C)). Similarly, we have uj ujo+1 ... ur,v1
v2 ..., can beinserted into C), v uz . . . uj,~1u; is a cycle. It is a contradiction.
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By these contradictions, we have d (u) + d},'i W <LE+3.

From dg, (u) + d§, (v) = |V(Qi)| = ¢i and df, (u) + df, (v) < I; +3, we have
dg, (u) + d§, (v) < n; + 3 whenever C; € F.

Case 2. C; € H.
Define R; = {w € V(C;) | w = u and v = w}. Cleatly |Ry| < |V(C))| = n;.

We will prove dg, (u) + d§, (v) < n; + 3 whenever C; € H. Clearly, dg, (u) +
dg, (v) < n; + | Ry, so we will only prove |R;| < 3.

(1) If n; = 3. It is evident that |R;] < 3 since |R;| < ny < 3.

(2) If n; = 4. As C; contains a directed triangle. Let vg be a vertex of C; and
not belong to the triangle. So v is a non-cut vertex of C;. Clearly, if vy € R;,
then v9 = u,v = vy, vy can be inserted into C;. It is a contradiction. Thus

IR <3.

(3) If n; = 5. Let wywwswawsw; be a directed hamiltonian cycle of C;. If
|Ri| > 4, without loss of generality, we can assume {w), w2, w3, ws} C R;.

If wy = ws, then wywowsw, is a cycle of C;. Clearly, the segment C[ws, w4]
can be inserted into C,. It is a contradiction.

If ws = ws, then wowszwywsw, is a cycle of C;. Clearly, w,; can be inserted
into C,. It is a contradiction.

Thus |R;] < 3.

(4) If < V(Ci) >=¢ Typ. Clearly, Tp is 2-connected. All vertices of Ty are
non-cut vertex and R; = @. So [R;| < 3.

By Case 1 and Case 2, we have
dg, (u) + d&, (v) < ny + 3 whenever 2 <i < k— 1. Thus

§~ +6% < dp(u)+df(v)
k—1
=3 (45, + &&,0)
=1 k-1
<4+ (dg, (u) + dg, (v)
=2
k-1

<4+ (ni+3)

=2
=4+ (n—m)+3k-2)
<3k-2+n-F
=:%fn+3k—2.

These contradict the hypothesis of Theorem 6 and complete the proof.
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Proof of Theorem 8. T can be partitioned into k cycles, say so C1, Cs,
..., Ci, where k > 2. We need only to prove that T can be partitioned into
k — 1 cycles, i.e., C;, Ca, ..., Ci can be combined into k — 1 vertex-disjoint
cycles.

To the contrary, for two arbitrary vertex-disjoint cycles C; and Cj, as C; and
Cj can not be combined into one cycle, we have V(C;) = V(C;) or V(Cj) =

V(Cy).
Define .
S = {Ci | V(Ci) = V(C1)}
and
Y = {0 | V(1) = V(C))})-
So

(U ve)U( U ve)Ure =va

C'.'G%&n C;e%?“t
CLAIM -6. For an arbitrary cycle C; € 8‘{" and an arbitrary cycle
C; € SPU | then V(Ci) = V(C;).

Proof of Claim 6. To the contrary, thus V(C;) = V(Ci) = V(C;) =
V(C;i). We assume z € V(C;), y € V(C1) and z € V(C}). So zyzz and

ztCilz*, x|~y Cilyt,y Iy 2T Cjfzt, 27z

are two vertex-disjoint cycles. Thus we can combine Cj, C; and Cj into two
vertex-disjoint cycles. With the other k£ — 3 unused cycles, T can be partitioned
into k — 1 cycles, a contradiction. o

Without loss of generality, we may assume C; € ‘Jiln . We define
il = {Ci | V(Ci) = V(C2),Ci € S }

and .
U = {C; | V(Ca) = V(Cy),C5 € 8 }.
Similarly, we know V(C;) = V(C2) = V(C;) and V(C;) = V(C}) for an
arbitrary cycle C; € 93" and an arbitrary cycle C; € 99Ut .
Repeating this course, we can order all of cycles as

V(Cg,) = V(C,‘z) =...= V(Ci,,)

and V(Cy;) = V(C;,) whenever 1 < j <! < k. So T has k strong components.
It contradicts that T is strong. This completes the proof.
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