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ABSTRACT

In this paper, we find an explicit formulas, or recurrences, in terms of gener-
ating functions for the cardinalities of the sets S, (T; 7) of all permutations
in S, that contain 7 € Sy exactly once and avoid a subset T C S3 where
IT| > 2.

1. INTRODUCTION

Let [p] = {1,...,p} denote a totally ordered alphabet on p letters, and
let & = (a1,...,am) € [1]™, B = (B1,--.,Bm) € [p2]™. We say that
a is order-isomorphic to B if for all 1 < i < j < m one has o5 < o
if and only if 8; < B;. For two permutations 7 € S, and 7 € Sk, an
occurrence of 7 in 7 is a subsequence 1 < i; < i3 < --- < i < n such
that (mi,,...,m;, ) is order-isomorphic to 7; in such a context 7 is usually
called the pattern. We say that 7 avoids (respectively, contains 7 ezactly
once), if there is no occurrence of T in = (respectively, if there is exactly
one occurrence of 7 in #). If m avoids 7 then we shall often say that = is
T-avoiding. Pattern avoidance proved to be a useful language in a variety
of seemingly unrelated problems, from stack sorting [Knu, Chapter 2.2.1]
to singularities of Schubert varieties [LS]. A natural generalization of single
pattern avoidance is subset avoidance; that is, we say that = € S, avoids a
subset T C S if w avoids any 7 € T. We denote The set of all permutations
in Sy, that avoid a set of patterns T by S,(T), and we denote the set of all
permutations in S, (T) which contain T exactly once by S,(T'; 7).

Two sets, T}, Ty, are said to be Wilf equivalent (or to belong to the same
Wilf class) if and only if |S,(T1)| = |Sn(T2)| for any n > 0. Furthermore,
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two pairs (Ty;7!) and (T3;72) are said to belong to the same almost Wilf
class if and only if |Sn(T1;7!)| = |Sn(T2; 72)| for any n > 0.

While the case of permutations avoiding a single pattern has attracted
much attention, the case of multiple pattern avoidance remains less inves-
tigated. In particular, it is natural, as the next step, to consider permuta-
tions avoiding pairs of patterns 11, 72. This problem was solved completely
for 1,72 € S3 (see [SS]), for 7, € S3 and 7» € S4 (see [W]), and for
1,72 € Sy (see [B, Kre] and references therein). Several recent papers
[CW, MV1, Kra, MV2, MV3, MV3] deal with the case , € S3, 72 € Sk
for various pairs 71, 72. Another natural question is to study permutations
avoiding 7; and containing 72 exactly ¢ times. Such a problem for certain
71,72 € S3 and t = 1 was investigated in [R], and for certain 1, € Ss,
T2 € S in [RWZ, MV1, Kra, MV2, MV3, MV3]. The tools involved in
these papers include continued fractions, Chebyshev polynomials, and Dyck
paths.

In the present paper, we find explicit formulas, or recurrences, for gener-
ating functions for the cardinalities of the sets S,(T';7) where 7 € S; and
T C S5 together with |T| > 2. In particularly, we give a complete answer
for the almost Wilf classes of (T';7) where 7 € S; and T C S; together
with |T| > 2. Throughout the paper, we often make use of the following
remark.

Remark 1.1. In [W] observed that if @ € Sk contains 7 € T, then
Sn(T,w) = Sp(T). Besides, |Sn(T;m)| = 0 for alln < k; On the other
hand, by [ES] we obtain that |S,(T;7)| = 0 for alln > 5 where {123,321} C
T.

Because of Remark 1.1, from now on suppose that # is T-avoiding, and
{123,321} Z T.

The main body of the paper is divided into three sections corresponding to
the cases |T'| = 2,3 and |T| > 4.

2. A PAIR

In this section we present, by explicit formulas or recurrences for generating
functions, the cardinalities of the sets S, ({8,v}; 7) where 8,y € S3, T € Sk,
k > 3. By the three natural operations, the complement, the reversal, the
inverse (see Simion and Schmidt [SS, Lemma 1]), and Remark 1.1 we have
to consider the following four possibilities:

1) Sn({132,123};7), where 7 € S§({132,123}),

2) S.({132,321};7), where 7 € Si({132,321}),

3) S.({132,213};7), where T € Si({132,213}),

4) S5,({132,231};7), where 7 € Sx({132,231}).
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The main body of this section is divided into four subsections corresponding
to the above four cases.

2.1. T = {132,123}. We say that m € S, is 123-type permutation if it

avoids 132 and avoids 123. Let 7 be a 123-type permutation in S,; so

(see [M, Theorem 3(i)]) 7 can be presented as
r=mn-1,n-2,...,n—1+1,n,7),

where r > 1 maximal and ' € S,

Let a,(n) denote the number of 123-type permutations in S, contain 7 ex-

actly once; that is, a- (n) = |Sn({132,123};7)|. Let A,(z) = 3, 5o ar(n)z"

be the corresponding ordinary generating function.

Theorem 2.1. Let k > 2.

(i) Let = (k—1,k—2,...,k— 7+ 1,k,7') be a 123-type pattern in S;

such that r > 2; then

(1l -z
e O
A(k-1,k—2,....k-r+1,k.r')(f") = r(l-z
—F () ;7 =0,
1-2z4 2"

where F;(z) is the generating function for the number of T-avoiding 123-
type permutations in S,.

(i) Let 7 = (k,k—1,...,k—m+1,7") such that m > 1 mazimal; then

Agk- -m+1,7/ 5" I A ; —-m+1,7' m>2
A(z) = SAG-1kom, y () +J_§2 (kmrook=ma1,7)(Z) M 2>
(-2 -2~ - —zF" A () iym=1
together with Ag)(z) = .
Proof. Let 7 be a 123-type pattern in Si; so there exists r maximal such

that 7 = (k—1,k-2,...,k—r+1,k,7'). Let a be a 123-type permutation
in Sy; so there exists ¢ maximal such that a = (n-1,...,n—t+1,n,a’).

(1) Let » > 2 and 7' # 0; so for any n > k,
ar(n) = fz—l ar(n—t)+ar(n—r).
(2) Let r >2and 7' = Q)t;_slo for any n > k,
() = 3t~ 1)+, (n =),
t=1
where fr(n—r) is the number of r-avoiding 123-type permutations

in S,.
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(3) For r =1, by use of [M, Theorem 3(i)] there exist m maximal such
that 7= (k,k—1,...,k—=m +1,7'). Thus,
ar(n) = a’(k—l,k—'2’;...,k—m+l.r’)(n - 1)+

+ 22a’(k—j.k—j—l---,k—rn+l.r')("- -1-3),
J'—'

for all m > 2, and
k-1

ar(n) = ar’(n - 1) - zar’(n —j)!

j=2

where m = 1.

Besides, in the above cases we have a,(n) = 0 for all n < k — 1 and
ar(k) = 1. Hence, if we convert the above recurrences into equations for
generating functions, we obtain the claimed results. O

Corollary 2.2. Let r; > 2 such that vy + -+« + 1y = k, and let T =
(P1,P2,--.,Pm) € S where p; = (t; — 1,¢; — 2,...,t; — r; + 1,t;) together
witht;=k—(r1+---+ri—) foralli=1,2,...,m. Then

A(z) = 1-=z ﬁ z"(l-2z)
T —1-2x+x"m'_=11—2x+:c"'

Proof. By induction and Theorem 2.1(i) we have that

A,(3) = Py (o )H e

where F(z) is the generating function for the 7-avoiding 123-type permu-
tations in S,. The rest is easy to see by use of [M, Theorem 3(ii)). O

Example 2.3. For k = 3, Theorem 2.1 and [M, Theorem 3(ii)] yield

3

A23(z) = gi=gmyr, A2a1(2) = Asiz(z) = £, and Asy(z) = z° + 3z,

2.2. T = {132,321}. We say that = € S, is 321-type permutation if it
avoids 132 and avoids 321. Let 7 be a 321-type permutation in S,; so
(see [M, Theorem 6(i)]) 7 can be presented as

1=(d+1,d+2,....m-1,1,2,....dmm+1,...,n),
where2<m<n+land1<d<m-2.

Let b,(n) denote the number of 321-type permutations in S, which con-
tain 7 exactly once; that is, b,(n) = |S,({132,321}; 7)|. Let B,(z) =
ano b;(n)z" be the corresponding ordinary generating function.
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Theorem 2.4. Let k > 1. Then

2k—1 _
(i) Bue,.ple)=xz+2 ¥ (2k-j)zi;
j=k+1
(i) Ba+1.d+2,..k1,2,..,4)(Z) = z, foralll<d<k-1;

(iii) B(d+1,d+2,....m—1,1,2,...,d,m.m+1,...,k)(-’B) =2k foralll<d<m-2<

Proof. Let T be a 321-type pattern in S; so there exist m,2 <m < k+1,
and d, 1 < d < m — 2 such that

T=d+1,d+2,....m-1,1,2,....dmm+1,...,k).

Let a be a 321-type permutation in S,; so there exist 7, 2 < r < n +1,
and ¢, 1 <t < r—2such that

a=({t+1L,t+2,...,r—1,1,2,..,t,r,7+1,...,n).
Hence, the theorem holds by checking over all the possibilities of a contains

T exactly once. (]

Example 2.5. Theorem 2. 4 yields Bi23(z) = 2 +4z% +22°, By13(z) = 78,
and Ba3i(z) = Bsi2(z) =

2.3. T = {132,213}. We say that m € S, is 213-type permutation if it
avoids 132 and avoids 213. Let 7 be a 213-type permutation in S,; so
(see [M, Theorem 8(i)]) 7 can be presented as

m=(r,n+1.. . kre,re+ 1, ri =1 T, T+ 1, P — 1);
wheren+l=rg>r > - >rp =1

Let c.(n) denote the number of 213-type permutations in S, which con-
tain 7 exactly once; that is, c,(n) = |S,({132,213};7)|. Let Cr(z) =
ano cr(n)z" be the corresponding ordinary generating function.

Theorem 2.6. Let 7 be a 213-type pattern in S;. Then, for all 0 < r <
k-1,

"1l-z
Clrtt,... ke (T) = '1—;—23(+—xk%;0 (z),

where 7' # @, and

z*(1 - z)?
Caz,..k)(@) = T-2z+2°)2"

217



Proof. Let 7= (r+1,r+2,...,k,7'), and let & be a 213-type permutation
in S, which contain 7 exactly once. So thereexist n +1 =ty > ¢ > - >
tm > 1 such that

a=(tl,tl+1,...,to—1,t2,t2+1,...,t1—1,...,tm,tm+1,...,tm_1—1),

therefore for any 7/ # @ we get
n
cr(n) = Z (-1 +er(n—k+r —-1).

j=n—k+r1+1

If 7' = @, which means that 7 = (1,2,...,k), then we get
n
e(m)= Y i —1)+c(n),
j=n—k+2

where ¢} (n) is the number of T-avoiding 213-type permutations in S,,. Be-
sides, ¢, (k) = 1 and ¢, (n) = 0 for all n < k — 1. Hence, if we convert the

above recurrences into equations for generating functions together with use
of [M, Theorem 8(ii)], we obtain the claimed results. (m]

Corollary 2.7. Let k > 1; then Cy x—1,..1)(z) = zk.

3

Example 2.8. Theorem 2.6 yields Ci23(z) = o=y Can (z) = =5,
and Cyz1 (z) = Carz(z) = £=-

2.4. T = {132,231}. We say that 7 € S, is 231-type permutation if it
avoids 132 and avoids 231. Using [M, Theorem 11] we get that = is a
231-type permutation in S, if and only if every element of 7 is either
a right maximum or a right minimum; namely 7 can be presented either
7 =(n,n-1,...,n—r+1,7',n—r)orw = (n—r,7',n—r+1,n—r+2,...,n),
where 1 <r<n-1.

Let d,(n) denote the number of 231-type permutations in S, which con-
tain 7 exactly once; that is d,(n) = |S,({132,231};7)|. Let D,(z) =
ano d.(n)z" be the corresponding ordinary generating function.
Theorem 2.9. Let T be a 231-type pattern in S;.. Then

k

T
D1,2,...1)(x) = Dix,... 2,1)(x) = A=
and
xr+l
D.(z) = WDr'(x),

where either 7 = (k,k—1,...,k—r+ 1,7 k=r)orr=(k-r,7,k—T+
Lk—7r+2,...,k) together with1 <r<k-—1and 7 #40.
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Proof. Let o be a 231-type permutation in Sy; so there exists a’ such that
eithera = (n,...,n—t+1,a/,n-t)ora = (n—t,a’,n—t+1,n—-t+2,...,n),
where 1 <t <n - 1. Therefore,for0<m <r -1,

d(k—m,...,k—r+l.r’.k—r)(n) = d(k—m....,lc—r+l,r‘,k—r) (n - 1)
+d(k—l—m,...,k—r+1,r’,k—r) (n - l)s

and

d(k-r,'r’,k-r+l,...,k—m) (n) = d(k—r,f’,k—r+1,...,k—m) (n - 1)
+d(k—r,r’,k—-r+1,...,k—1—m)(n - 1)'
Besides d-(n) = 0 for all n < k — 1 and d,(k) = 1. Hence, by convert the
above recurrences into equations for generating functions we get

7+1

z
D.(z) = '(‘1__1;—),.D1" (z).
The rest is obtain immediately by the above recurrence. a

Let us denote the sequence k...(r + 2)(r + 1) by (k,r).
Corollary 2.10. Let k£ > 1, and let

T={k,),{r1 = L,r2), .., {tm-1—1,7"m), "m—1,Tm—=2,--.,T1)

be any 231-type pattern in Si. Then

zk

D.(z) = A==

Proof. By Theorem 2.9 we get
m-—1 .
ghi-17T 41
D.(z) =[] mD(r,ﬂ,...,u)(z),
i=1

equivalently,
gt z™

D,—(.’I:) = H (1 _ x)r.-_,—r; ) (1 — m)rm—l :

i=1

O

Example 2.11. Theorem 2.9 yields, Di33(z) = D3n(z) = Tl_f—zﬁ'” and
D313(z) = D3y2(z) = 3’_—:
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3. A TRIPLET

In this section we present, by explicit formulas or recurrences for generating
functions, the cardinalities of the sets S,(T’;7) where T C S3, |T'| = 3, and
T € Si(T) for k > 3. By the three natural operations the complement,
the reversal, the inverse (see Simion and Schmidt [SS, Lemma 1]), and
Remark 1.1 we have to consider the following four possibilities:

1) S.({123,132,213};7), where 7 € Sp({123,132,213}),
2) Sn({123,132,231};7), where 7 € Si({123,132,231}),
3) Sa({123,231,312};7), where 7 € Sk({123,231,312}),
4) S,({132,213,231};7), where 7 € Sx({132,213,231}).

The main body of this section is divided into four subsections corresponding
to the above four cases.

3.1. T = {123,132,213}. Let e.(n) = |Sn({123,132,213};7)|, and let
E.(z)= ano e-(n)z™ be the corresponding ordinary generating function.

Let m € S,({123,132,213}); by {M, Lemma 14] we can present 7 as either
7 = (n— 1,n,7') where 7' € S,_2({123,132,213}), or 7 = (n, ') where
7' € Sp-1({123,132,213}. Using this fact we get

Theorem 3.1. Let k > 4, 7 € Sk({123,132,213}). Then

z2

Eg_1k,)(z) = E.(z) and Eg,y(z) = zEq(z).

l-z
Besides, E.(z) is given by 21, ii—::z" T%’ z3, 72, (%Z)-;, z, where T = 4231,
231, 312, 321, 21, 12, 1; respectively.

Proof. Let a € 5,({123,132,213};7); so m can be presented as either o =
(n-1,n,0') or a = (n,a').

Ifr=(k-1,k7'), thene;(n) =e;,(n— 1)+ e (n—2) for all n > k. If
T = (k,7') # 4231, then e;(n) = ex~(n — 1) for qll n > [. Hence, if we
convert the above recurrences into equations for generating functions we
obtain the claimed recurrences. The rest is easy to check. O

Example 3.2. Theorem 3.1 yields for all k > 4,
E,...21)(x) = Bk, a,231)(x) =2~
Another example, for k > 2, is
k

z k=246,...
E 3 - _ ) = (l_z) 241 y 29 Yy .
(k=1,k,k=3,k—2,...,1,2) () { o k=3.5.7,...

(l—x) -1)/2)»
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3.2. T = {123,132,231}. Let f,(n) = |S.({123,132,231};7)|, and let
F:(z) = 3,50 fr(n)z" be the corresponding ordinary generating function.

Let # € Sn({123,132,231}); by [M, Theorem 17] we can present 7 as
m=mmn-1,...,n—-r+1,n—r—-1,...,1,n—r), where 1 <7 < n. Using
this fact we get
Theorem 3.3. Letk >3, andlet k—2>r > 1; then

F,..20)(x) = zF + (k - 1)z*+;

k
Fiy,. 210 = &5
Fig,.... kmrt1,k=r=1,...1,k—r) () = zF.

3.3. T = {123,231,312}. Let g,(n) = |Sn({123,231,312};7)|, and let
Gr(z) = 2,50 9-(n)z" be the corresponding ordinary generating function.

Let 7 € S,({123,231,312}); by [M, Theorem 21] we can present 7 as
*=(rr-1,...,1,n,n—1,...,7 + 1), where 1 < r < n. Using this fact
we get

Theorem 3.4. Letk >3, and let k — 1> r > 1; then

k
G(k,...,z,l)(f’f) = £ 142),

1-z
_ ok
G(rr-1,..00 b k~1,..,r+1)(T) = ZF.

3.4. T = {132,213,231}. Let h.(n) = |Sn({132,213,231};7)|, and let
H:(z) = 32,50 hr(n)z" be the ordinary generating function.

Let m € Sx({132,213,231}); by [M, Theorem 23] we can present m as
r=(n,n-1,...,74+1,1,2,...,r), where 1 < r < n. Using this fact we get
Theorem 3.5. Letk >3, and let k— 12> r > 1; then

xk

Hyo,..0)(T) = 553
Hg g-1,...r+1,1,2,....0) (T) = 5.

4. A QUARTET AND A QUINTET

By Simion and Schmidt [SS, Proposition 17] we have that |S,(T)| = 0 for
all T C Ss such that {123,321} C T, and |S,(T)| = 2,1 for all {123,321} ¢
T C S3 such that |T'| = 4,5. These facts yield the following theorem.
Theorem 4.1. Let T € S.. Then
1, n=k r=(k...,3,2,1),(k...,3,1,2)
0, otherwise
1, n=kk+1, r=(k...,2,1)
(i) |Sa({123,132,231,312};7)| =< 1, n=k, r=(k—-1,...,2,1,k) ;
0, otherwise

(i) |Sn({123,132,213,231};7)| = {
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n=k rv=k....21),1,2,...,k)

1,
(iii) |Sn({132,213,231,312}; 7)| = { 0. otherwise

(iv) |1Sn(S3\{123}; )| = 6nk0r,1,2,....K)
(v) [Sn(S3;7)| = 0.
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