An investigation of 2-critical sets in latin squares

Diane Donovan¹, Chin-Mei Fu² and Abdollah Khodkar¹

¹Department of Mathematics The University of Queensland Brisbane, 4072, Australia ²Department of Mathematics Tamkang University Tamsui, Taipei, Taiwan

Abstract

In this paper we focus on the existence of 2-critical sets in the latin square corresponding to the elementary abelian 2-group of order 2^n . It has been shown by Stinson and van Rees that this latin square contains a 2-critical set of volume 4^n-3^n . We provide constructions for 2-critical sets containing $4^n-3^n+1-(2^{k-1}+2^{m-1}+2^{n-(k+m+1)})$ entries, where $1 \le k \le n$ and $1 \le m \le n-k$. That is, we construct 2-critical sets for certain values less than $4^n-3^n+1-3\cdot 2^{\lfloor n/3\rfloor-1}$. The results raise the interesting question of whether, for the given latin square, it is possible to construct 2-critical sets of volume m, where $4^n-3^n+1-3\cdot 2^{\lfloor n/3\rfloor-1} < m < 4^n-3^n$.

1 Introduction

A critical set is a subset of entries of a latin square which uniquely determines the latin square and is minimal with respect to this property. Let $\mathcal C$ be the collection of all critical sets of a latin square L and define the spectrum to be $spec(L) = \{m \mid C \text{ is a critical set of } L \text{ and } |C| = m\}$. We say the spectrum contains a hole if there exist $\ell < m < p$ such that $\ell, p \in spec(L)$, but $m \notin spec(L)$. For the latin square $\mathcal B_n$ which corresponds to the addition table for the integers $mod\ n$, where n is even, we know there exist critical sets containing m entries where $m \in \{\frac{n^2}{4}, \frac{n^2}{4} + 2, \frac{n^2}{4} + 4, \dots, \frac{n^2-n}{2} - n\}$ or where $\frac{n^2-n}{2} - (n-2) \le m \le \frac{n^2-n}{2}$, [2]. Bate and van Rees [1] have conjectured that for n even there exists no critical set in $\mathcal B_n$ containing $n^2/4 + 1$ entries and hence have conjectured that the spectrum for $\mathcal B_n$ contains a

hole. In this paper we focus on the latin square corresponding to elementary abelian 2-group of order 2^n and prove the existence of general families of 2-critical sets (defined below) of various sizes. In an earlier paper [3] we have shown that for n=2 there exist 2-critical sets containing 5 and 7 entries, but no 6 element 2-critical set exists. For n=3, we exhibited examples which proved the existence of 2-critical sets containing m entries where $m \in \{37, 35, 34, \ldots, 27, 26\}$. We were not able to find a 2-critical set containing 25 or 36 entries. Note that a critical set in such a latin square has at least 25 entries, [4].

These results raise the question of whether there are holes in spec(L) where L is the latin square corresponding to the elementary abelian 2-group of order 2^n . In this paper we seek to shed some light on this question by providing constructions for 2-critical sets containing $4^n - 3^n + 1 - (2^{k-1} + 2^{m-1} + 2^{n-(k+m+1)})$ entries, where $1 \le k \le n$ and $1 \le m \le n - k$.

2 Definitions

A partial latin square P of order v is a $v \times v$ array with entries chosen from the set $V = \{0, \ldots, v-1\}$ in such a way that each element of V occurs at most once in each row and at most once in each column of the array. Thus a partial latin square may contain a number of empty cells. For ease of exposition, a partial latin square P will be represented by a set of ordered triples $P = \{(i,j;P_{ij}) \mid \text{ element } P_{ij} \text{ occurs in cell } (i,j) \text{ of the array} \}$. The volume of the partial latin square is |P|; that is, the number of non-empty cells in P. Figure 1 provides examples of partial latin squares P_1 , P_2 , P_3 , respectively, of orders 2, 4 and 8 and volumes 1, 7 and 37. If every cell of the $v \times v$ array is occupied the partial latin square is termed a latin square. That is, a latin square L of order v is a $v \times v$ array with entries chosen from the set $V = \{0, \ldots, v-1\}$ in such a way that each element of V occurs precisely once in each row and precisely once in each column of the array. Figure 1 provides examples of latin squares L_1 , L_2 of orders 2 and 4 respectively.

The rows and columns of the array will be labelled 0 to v-1. The set of cells $S_P = \{(i,j) \mid (i,j;P_{ij}) \in P, \text{ for some } P_{ij} \in V\}$ is said to determine the shape of P. Thus $(x,y) \in S_P$ implies that cell (x,y) is filled in the partial latin square P and $(x,y) \notin S_P$ implies that cell (x,y) is empty in P.

A latin trade, $\mathcal{I} = \{I, I'\}$, of volume s, is a pair of two disjoint partial latin squares, of order v, such that

1. $S_I = S_{I'}$,

2. for each $r, 0 \le r \le v-1$, $\{I_{rj} \mid I_{rj} \in V \land (r, j; I_{rj}) \in I\} = \{I'_{rj} \mid I'_{rj} \in V \land (r, j; I'_{rj}) \in I'\}$ and

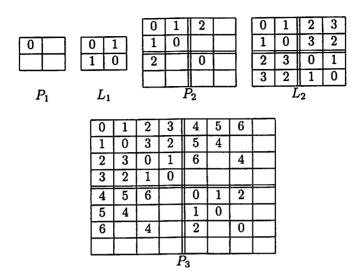


Figure 1: P_1 , P_2 and P_3 are partial latin squares of orders 2, 4 and 8 respectively, and L_1 and L_2 are latin squares of orders 2 and 4 respectively.

3. for each c, $0 \le c \le v - 1$, $\{I_{ic} \mid I_{ic} \in V \land (i, c; I_{ic}) \in I\} = \{I'_{ic} \mid I'_{ic} \in V \land (i, c; I'_{ic}) \in I'\}$.

In this paper we will be concerned with latin trades of volume 4. Such latin trades correspond to 2×2 latin subsquares, which are called *intercalates*.

A critical set C of order v is a partial latin square which has the properties:

- 1. C is contained in precisely one latin square of order v;
- 2. For all $x \in C$, $C \setminus \{x\}$ is contained in at least two latin squares of order n.

If a partial latin square has property 1 above then it is said to have a unique completion (UC) and if a uniquely completable partial latin square has property 2 above then it is said that every entry is essential for unique completion. The following lemma is a well-know consequence of the definitions of critical sets and latin trades.

LEMMA 1 Let L be a latin square of order v and $C \subset L$. The partial latin square C is a critical set if and only if

- 1. for all latin trades $\{I, I'\}$ of order v, such that $I \subset L$, $I \cap C \neq \emptyset$, and
- 2. for all $x \in C$, there exists a latin trade $\{I, I'\}$ of order v, with $I \subset L$, such that $I \cap C = \{x\}$.

Given a critical set $C \subset L$ and an element $x \in C$, if there exists an in-

tercalate $J \subset L$ such that $J \cap C = \{x\}$, then x is said to be 2-essential. A critical set C is said to be 2-critical if for all $x \in C$, x is 2-essential. The partial latin squares P_1 , P_2 and P_3 given in Figure 1 are examples of 2-critical sets.

Let P_1 and L_1 be as defined in Figure 1. For $n \geq 2$, define

$$\begin{split} L_n &= L_1 \times L_{n-1} &= & \{(x,y;z), (x,y+2^{n-1};z+2^{n-1}), \\ & (x+2^{n-1},y;z+2^{n-1}), (x+2^{n-1},y+2^{n-1};z) \mid \\ & (x,y;z) \in L_{n-1}\}, \text{ and} \\ P_n &= P_1 \otimes P_{n-1} &= & \{(x,y;z), (u,v+2^{n-1};w+2^{n-1}), \\ & (u+2^{n-1},v;w+2^{n-1}), (u+2^{n-1},v+2^{n-1};w) \mid \\ & (u,v;w) \in P_{n-1} \text{ and } (x,y;z) \in L_{n-1}\}. \end{split}$$

It should be noted that L_n corresponds to the elementary abelian 2-group of order 2^n . The $2^n \times 2^n$ arrays, L_n and P_n , may be partitioned into four quadrants as illustrated in Figure 2. Note L_{n-1}^1 and P_{n-1}^1 , respectively, are isomorphic copies of L_{n-1} and P_{n-1} , however each symbol $x \in \{0, \ldots, 2^{n-1} - 1\}$ has been replaced by $x + 2^{n-1}$.

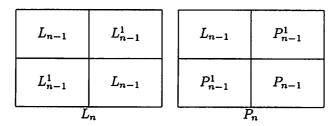


Figure 2: The partitioning of L_n and P_n .

In [5] Stinson and van Rees proved that P_n is a 2-critical set in L_n . In this paper we provide an alternative method of proof (Lemma 8). We shall then modify P_n to provide examples of families of 2-critical sets in L_n . The method of proof will be similar to that used for P_n . In doing so we will provide information about the spectrum of 2-critical sets in the latin square corresponding to the elementary abelian 2-group of order 2^n . However, before we present the proof of Lemma 8 we give two important definitions and prove four useful lemmas.

DEFINITION 2 Let $0 \le u < 2^n$ and $u_i \in \{0,1\}$ for $i=1,2,\ldots,n$. We say the vector $[u_1,u_2,\ldots,u_n]$ is the binary representation for u if $u=u_1 \cdot 2^{n-1}+u_2\cdot 2^{n-2}+\ldots+u_{n-1}\cdot 2+u_n$ and we write $u=[u_1,u_2,\ldots,u_n]$. Let $0 \le v < 2^n$ with $v=[v_1,v_2,\ldots,v_n]$. Then by the direct sum $u \oplus v$ we mean the

integer w whose binary representation is $[(u_1 \oplus v_1), (u_2 \oplus v_2), \dots, (u_n \oplus v_n)]$. We let $\bar{u} = (2^n - 1) \oplus u$. Note that $0 \oplus 0 = 0 = 1 \oplus 1$ and $0 \oplus 1 = 1 = 1 \oplus 0$.

LEMMA 3 Let $0 \le x, y < 2^n$ with $x = [x_1, ..., x_n]$ and $y = [y_1, ..., y_n]$. Then $(x, y) \in S_{P_n}$ if and only if there exists $j, 1 \le j \le n$, such that $x_j = y_j = 0$. Moreover, the cell (x, y) contains the integer $x \oplus y$ in P_n .

Proof: The result for n=1 is trivial. Table 1 can be used to verify the result for n=2. In Table 1 a headline and sideline have been added to P_2 , these contain, respectively, column numbers and row numbers in binary form. Assume that the result is true for P_{n-1} . For all cells (x,y) of P_n

	[0,0]	[0, 1]	[1,0]	[1,1]
[0,0]	[0,0]	[0, 1]	[1,0]	
[0,1]	[0,1]	[0, 0]		
[1,0]	[1, 0]		[0, 0]	
[1,1]				

Table 1: P_2 in binary representation.

where $0 \le x, y < 2^{n-1}$, we have $(x,y) \in \mathcal{S}_{P_n}$ and note that $x_1 = y_1 = 0$. For cell (x,y) where $0 \le x < 2^{n-1}$ and $2^{n-1} \le y < 2^n$, we have $x_1 \ne y_1$ and $(x,y) \in \mathcal{S}_{P_n}$ if and only if $(x,y-2^{n-1}) \in \mathcal{S}_{P_{n-1}}$. Thus by the inductive hypothesis $(x,y) \in \mathcal{S}_{P_n}$ if and only if there exists $j, 2 \le j \le n$, such that $x_j = y_j = 0$. Similarly one can verify the result for cell (x,y) where $2^{n-1} \le x < 2^n$ and $0 \le y < 2^{n-1}$. For cell (x,y) where $2^{n-1} \le x, y < 2^n$, we have $x_1 = y_1 = 1$ and $(x,y) \in \mathcal{S}_{P_n}$ if and only if $(x-2^{n-1},y-2^{n-1}) \in \mathcal{S}_{P_{n-1}}$. Hence by the inductive hypothesis $(x,y) \in \mathcal{S}_{P_n}$ if and only if there exists $j, 2 \le j \le n$, such that $x_j = y_j = 0$.

By the inductive hypothesis, for $0 \le x, y < 2^{n-1}$, the integer $w = (0 \oplus 0).2^{n-1} + (x_2 \oplus y_2).2^{n-2} + \ldots + (x_n \oplus y_n)$ occupies cell (x, y). For $0 \le x < 2^{n-1}$ and $2^{n-1} \le y < 2^n$, the integer $w = (0 \oplus 1).2^{n-1} + (x_2 \oplus y_2).2^{n-2} + \ldots + (x_n \oplus y_n)$ occupies cells (x, y) and (y, x), and for $2^{n-1} \le x, y < 2^n$, the integer $w = (1 \oplus 1).2^{n-1} + (x_2 \oplus y_2).2^{n-2} + \ldots + (x_n \oplus y_n)$ occupies cell (x, y). Thus the result holds for all $n \ge 2$.

LEMMA 4 Let $0 \le x, y, z < 2^n$, such that $(x, y) \notin S_{P_n}$ and y < z. Then $x \oplus z$ occurs in column y of P_n .

Proof: Let $x = [x_1, \ldots, x_n]$, $y = [y_1, \ldots, y_n]$, and $z = [z_1, \ldots, z_n]$. Since y < z there exists an $i \in \{1, 2, \ldots, n\}$ such that $y_i = 0$ and $z_i = 1$. On the other hand $(x, y) \notin \mathcal{S}_{P_n}$ implies that $x_i = 1$ by Lemma 3. So

if $w = x \oplus y \oplus z$ and $w = [w_1, w_2, \dots, w_n]$ then $w_i = 0$ which leads to $(w, y) \in \mathcal{S}_{P_n}$ by Lemma 3. Moreover, $w \oplus y = (x \oplus y \oplus z) \oplus y = x \oplus z$.

Since P_n is symmetric we have the following.

COROLLARY 5 Let $0 \le x, y, z < 2^n$, such that $(x, y) \notin S_{P_n}$ and x < z. Then $z \oplus y$ occurs in row x of P_n .

DEFINITION 6 Let $0 \le x, y < 2^n$ with $x = [x_1, x_2, ..., x_n]$ and $y = [y_1, y_2, ..., y_n]$. We define x * y to be the integer $z \in \{0, 1, 2, ..., 2^n - 1\}$ with binary representation $[z_1, z_2, ..., z_n]$, where for i = 1, 2, ..., n

$$z_i = \left\{ egin{array}{l} 1 \ {
m if} \ x_i = y_i = 0 \ {
m and} \ x_i \ {
m otherwise}. \end{array}
ight.$$

It is easy to see that $x \star x = 2^n - 1$, $x \star (2^n - 1) = x$ and $(2^n - 1) \star x = 2^n - 1$. The next lemma places \star in the context of P_n .

LEMMA 7 Let $0 \le u, v < 2^n$ such that $(u, v) \in S_{P_n}$. Then

- (1) $u \star v \neq u$ and $v \star u \neq v$.
- (2) $v \star u = \bar{u}$ if and only if $u \star v = \bar{v}$.
- $(3) \ u \oplus (v \star u) = (u \star v) \oplus v.$
- $(4) \ u \oplus v = (u \star v) \oplus (v \star u).$
- (5) $I = \{(u, v; u \oplus v), (u, v \star u; u \oplus (v \star u)), ((u \star v), v; (u \star v) \oplus v), (u \star v, v \star u; (u \star v) \oplus (v \star u))\}$ is an intercalate in L_n and $P_n \cap I = \{(u, v; u \oplus v)\}$.

Proof: Points 1, 2, 3 and 4 are easily verified and can be used to verify that $I \subseteq L_n$. We need to prove that $\{(u, v \star u; u \oplus (v \star u)), ((u \star v), v; (u \star v) \oplus v), (u \star v, v \star u; (u \star v) \oplus (v \star u))\} \cap P_n = \emptyset$.

Assume that $(u,w) \in \mathcal{S}_{P_n}$, where $w=v\star u$. Then there exists $j\in\{1,\ldots,n\}$ such that $u_j=0=w_j$. By the definition of \star we see that if $w_j=0$ then $v_j=0$, but this gives a contradiction as $u_j=0=v_j$ implies $w_j=1$. The other two cases can be dealt with in a similar manner.

LEMMA 8 For all $n \geq 2$, the partial latin square P_n is a 2-critical set of volume $4^n - 3^n$.

Proof: Fix $x \in \{0, \ldots, 2^n-1\}$. Let R be a latin square of order 2^n such that $P_n \subseteq R$. Row x of P_n can be completed as follows. For $z = 2^n - 1, \ldots, 0$, assume $(x, z; x \oplus z) \in L_n \setminus P_n$. Lemma 4 implies for all y < z either $(x, y) \in S_{P_n}$ or entry $x \oplus z$ occurs in column y of P_n . So $(x, y; x \oplus z) \notin R$, for all y < z. Hence $(x, z; x \oplus z) \in R$. Consequently row x of P_n is UC to row x of L_n . As x takes all values $0, \ldots, 2^n - 1$ we see that P_n is UC to L_n . Property 5 of Lemma 7 ensures that each entry of P_n is 2-essential. Thus P_n is a 2-critical set in L_n .

3 New 2-critical sets

Since P_n is UC if we add an entry, say $(x, y; x \oplus y)$, then $P_n \cup \{(x, y; x \oplus y)\}$ is still UC. In this section we construct 2-critical sets which contain the entry $(x, y; x \oplus y)$ and for which the volume is strictly less than $4^n - 3^n$. For the remainder of this section it will be assumed that x and y are fixed integers such that $0 \le x, y < 2^n$ and $(x, y) \notin S_{P_n}$. In addition we will use the notation $x = [x_1, x_2, \dots, x_n]$ for the binary expansion of an integer x, where $0 \le x \le 2^n - 1$. We shall define three important sets of columns $\mathcal{A}(x,y)$, $\mathcal{D}(x,y)$ and $\mathcal{D}'(x,y)$. The set $\mathcal{A}(x,y)$ is a set of columns which are used to identify the non-essential entries in row x of $P_n \cup \{(x,y;x \oplus y)\}$. It transpires that these entries can be identified with empty cells of the form (w,y), where $w \geq x$. Likewise, the set $\mathcal{A}(y,x)$ is a set of rows which are used to identify the non-essential entries in column y of $P_n \cup \{(x, y; x \oplus y)\}$ and corresponds to empty cells of the form (x, w), where $w \geq y$. In a similar, fashion $\mathcal{D}(x,y)$ identifies columns containing non-essential cells which contain the entry $x \oplus y$ and $\mathcal{D}'(x,y)$ identifies those which are essential.

DEFINITION 9 Let $0 \le x, y \le 2^n - 1$ such that $(x, y) \notin S_{P_n}$. If $x = 2^n - 1$ we define $A(x, y) = \emptyset$. Otherwise, let $x_i = 0$ if and only if $i \in \{i_1, i_2, \ldots, i_k\}$, where $i_k = \max\{i_1, i_2, \ldots, i_k\}$. In addition, let $E = \{i \mid x_i = y_i = 1\}$. Define A(x, y) to be the set of integers $z = [z_1, z_2, \ldots, z_n]$ such that, for $i = 1, \ldots, n$,

$$z_i = \left\{ \begin{array}{ll} 1 & \text{if} & i \in E \\ 0 & \text{if} & i \notin (\{i_1, i_2, \dots, i_{k-1}\} \cup E). \end{array} \right.$$

We note that for all $z \in \mathcal{A}(x,y)$ we have $z_{i_k} = x_{i_k} = 0$, where x and z are as in Definition 9. So $(x,z;x \oplus z) \in P_n$ by Lemma 3.

LEMMA 10 Let $z \in \mathcal{A}(x,y) \neq \emptyset$ and $(x,w) \notin \mathcal{S}_{P_n}$.

- (1) If y < w, then $(x \oplus w \oplus z, z; x \oplus w) \in P_n$.
- (2) If w < y, then $(x \oplus z \oplus w, w; x \oplus z) \in P_n$.

Proof: (1) Since y < w there exists an $i \in \{1, 2, ..., n\}$ such that $y_i = 0$ and $w_i = 1$. Now $(x, y) \notin S_{P_n}$ implies that $x_i = 1$. So $z_i = 0$ by Definition 9. Therefore, $x_i \oplus w_i \oplus z_i = z_i = 0$ and the result follows by Lemma 3.

(2) Since w < y there exists an $i \in \{1, 2, ..., n\}$ such that $w_i = 0$ and $y_i = 1$. Now $(x, w) \notin \mathcal{S}_{P_n}$ implies that $x_i = 1$. So $z_i = 1$ by Definition 9. Therefore, $x_i \oplus z_i \oplus w_i = w_i = 0$ and the result follows by Lemma 3.

Since P_n is symmetric we have the following.

COROLLARY 11 Let $z \in \mathcal{A}(y,x) \neq \emptyset$ and $(w,y) \notin \mathcal{S}_{P_n}$.

- (1) If x < w, then $(z, y \oplus w \oplus z; y \oplus w) \in P_n$.
- (2) If w < x, then $(w, y \oplus z \oplus w; y \oplus z) \in P_n$.

LEMMA 12 If $z, w \in A(x, y)$, then $(x \oplus z \oplus w, z; x \oplus w), (x \oplus z \oplus w, w; x \oplus z) \in P_n$.

Proof: Let $x_i = 0$ if and only if $i \in \{i_1, \ldots, i_k\}$ and $i_k = \max\{i_1, \ldots, i_k\}$. By Definition 9 for all $z, w \in \mathcal{A}(x, y)$ we have $z_{i_k} = w_{i_k} = 0$. Consequently, $x_{i_k} \oplus z_{i_k} \oplus w_{i_k} = 0$ and $(x \oplus z \oplus w, z), (x \oplus z \oplus w, w) \in \mathcal{S}_{P_n}$. The result now follows.

Since P_n is symmetric we have the following.

COROLLARY 13 If $z, w \in A(y, x)$, then $(z, y \oplus z \oplus w; y \oplus w)$, $(w, y \oplus z \oplus w; y \oplus z) \in P_n$.

DEFINITION 14 Let $(x,y) \notin S_{P_n}$ and $k = \max\{i \mid x_i = y_i = 1\}$. If $y = \bar{x}$, define $\mathcal{D}(x,y) = \emptyset$, otherwise define $\mathcal{D}(x,y)$ to be the set of integers $z = [z_1, \ldots, z_n]$ such that, for $i = 1, \ldots, n$,

$$z_i = \begin{cases} 1 & \text{if} \quad x_i = 0, \\ 0 & \text{if} \quad y_i = 0, \\ 0 & \text{if} \quad i = k. \end{cases}$$

We also define $\mathcal{D}'(x,y) = \emptyset$ if $y = \bar{x}$, otherwise we define $\mathcal{D}'(x,y)$ to be the set of integers $z = [z_1, \ldots, z_n]$ such that, for $i = 1, \ldots, n$,

$$z_i = \begin{cases} 1 & \text{if} \quad x_i = 0, \\ 0 & \text{if} \quad y_i = 0, \\ 1 & \text{if} \quad i = k. \end{cases}$$

LEMMA 15 Let x, y be as in Definition 14. Then $\mathcal{D}(x, y)$ is well-defined. Moreover, if $z \in \mathcal{D}(x, y)$ and $u = x \oplus y \oplus z$ then

- (1) $\bar{x} \in \mathcal{D}(x, y)$ and $\bar{x} \leq z < y$,
- (2) $(x,z),(u,y) \notin S_{P_n}$, and
- (3) $(u,z) \in \mathcal{S}_{P_n}$.

Proof: Since $(x,y) \notin S_{P_n}$ by Lemma 3 there is no $i \in \{1,2,\ldots,n\}$ such that $x_i = y_i = 0$. So $\mathcal{D}(x,y)$ is well-defined. Parts (1) and (2) are easy to see. For Part (3) note that $u_k = x_k \oplus y_k \oplus z_k = 1 \oplus 1 \oplus z_k = z_k = 0$. Now the result follows by Lemma 3.

Similar to Lemma 10 we have the following result.

LEMMA 16 Let $z \in \mathcal{D}(x,y) \neq \emptyset$, $u = x \oplus y \oplus z$ and $(u,w) \notin \mathcal{S}_{P_n}$.

- (1) If y < w then $(u \oplus w \oplus z, z; u \oplus w) \in P_n$.
- (2) If w < y then $(u \oplus z \oplus w, w; u \oplus z) \in P_n$.

Proof: (1) Since y < w there exists an $i \in \{1, 2, ..., n\}$ such that $y_i = 0$ and $w_i = 1$. So $x_i = 1$ since $(x, y) \notin \mathcal{S}_{P_n}$ and $z_i = 0$ by Definition 14. Therefore, $u_i = x_i \oplus y_i \oplus z_i = 1$. This implies $u_i \oplus w_i \oplus z_i = z_i = 0$. Now the result follows by Lemma 3.

(2) Since w < y there exists an $i \in \{1, 2, ..., n\}$ such that $w_i = 0$ and $y_i = 1$. So $u_i = 1$ since $(u, w) \notin \mathcal{S}_{P_n}$. Now $u_i = x_i \oplus y_i \oplus z_i$ implies that $x_i = z_i$. This leads to $x_i = z_i = 1$ by Definition 14. Therefore, $u_i \oplus z_i \oplus w_i = w_i = 0$. Now the result follows by Lemma 3.

We are now in a position to prove our main result.

THEOREM 17 Let $(x,y) \notin S_{P_n}$. Then

$$P_n(x,y) = (P_n \cup \{(x,y;x \oplus y)\}) \setminus (\{(x,z;x \oplus z) \mid z \in \mathcal{A}(x,y)\} \cup \{(z,y;z \oplus y) \mid z \in \mathcal{A}(y,x)\} \cup \{(x \oplus y \oplus z,z;x \oplus y) \mid z \in \mathcal{D}(x,y)\})$$

is a 2-critical set.

Proof: Let R be a latin square, of order 2^n , such that $P_n(x, y) \subseteq R$. First we prove

$$\{(x,z;x\oplus z)\mid z\in\mathcal{A}(x,y)\}\cup\{(z,y;z\oplus y)\mid z\in\mathcal{A}(y,x)\}\subseteq R.$$

For $w = 2^n - 1, \ldots, y + 1$, let $(x, w; x \oplus w) \in L_n \setminus P_n$. If $(x, v) \notin S_{P_n}$ and v < w then Lemma 4 implies that $x \oplus w$ occurs in column v of P_n . So $(x, v; x \oplus w) \notin R$. Part (1) of Lemma 10 implies that $x \oplus w$ occurs in column z of P_n for all $z \in A(x, y)$. So $(x, z; x \oplus w) \notin R$. Hence $(x, w; x \oplus w) \in R$ for $w = 2^n - 1, \ldots, y + 1$.

Now if $z \in \mathcal{A}(x,y)$ then by Lemma 12 for all $w \in \mathcal{A}(x,y) \setminus \{z\}$ we have $(x \oplus z \oplus w, w; x \oplus z) \in P_n$. So $(x,w; x \oplus z) \notin R$. In addition, Part (2) of Lemma 10 implies that for all w < y such that $(x,w) \notin \mathcal{S}_{P_n}$ we have $(x \oplus z \oplus w, w; x \oplus z) \in P_n$. So $(x,w; x \oplus z) \notin R$. Hence $(x,z; x \oplus z) \in R$ for $z \in \mathcal{A}(x,y)$.

Similarly one can prove that $(z, y; z \oplus y) \in R$ for $z \in A(y, x)$. Hence

$$(P_n(x,y) \cup \{(x,z;x \oplus z) \mid z \in \mathcal{A}(x,y)\} \cup \{(z,y;z \oplus y) \mid z \in \mathcal{A}(y,x)\}) \subseteq R.$$

Secondly, we prove $\{(x \oplus y \oplus z, z; x \oplus y) \mid z \in \mathcal{D}(x,y)\} \subseteq R$. For $w = 2^n - 1, \dots, y + 1$, let $(x \oplus y \oplus z, w; x \oplus y \oplus z \oplus w) \in L_n \setminus P_n$, where $z \in \mathcal{D}(x,y)$. If

 $(x \oplus y \oplus z, v) \notin S_{P_n}$ and v < w then Lemma 4 implies that $x \oplus y \oplus z \oplus w$ occurs in column v of P_n . So $(x \oplus y \oplus z, v; x \oplus y \oplus z \oplus w) \notin R$. Part (1) of Lemma 16 implies that $x \oplus y \oplus z \oplus w$ occurs in column z of P_n for all $z \in \mathcal{D}(x, y)$. So $(x \oplus y \oplus z, z; x \oplus y \oplus z \oplus w) \notin R$. Hence $(x \oplus y \oplus z, w; x \oplus y \oplus z \oplus w) \in R$ for $w = 2^n - 1, \ldots, y + 1$.

Now Part (2) of Lemma 16 implies that if $z \in \mathcal{D}(x,y)$ then $x \oplus y$ occurs in column w for all w < y such that $(x \oplus y \oplus z, w) \notin \mathcal{S}_{P_n}$. So $(x \oplus y \oplus z, w; x \oplus y) \notin R$. Hence $(x \oplus y \oplus z, z; x \oplus y) \in R$. Therefore $P_n \subseteq R$. Now by Lemma 8 we must have $R = L_n$.

To prove every entry is 2-essential we divide the elements of $P_n(x, y)$ into five groups:

Group G1, the entry $(x, y; x \oplus y)$;

Group G2, $(u, v; u \oplus v) \in P_n(x, y)$ such that $u \oplus v = x \oplus y$ and $v \in \mathcal{D}'(x, y)$.

Group G3, $(x, v; x \oplus v) \in P_n(x, y)$ such that $v \neq y$ and $v \star x = y$.

Group G4, $(u, y; u \oplus y) \in P_n(x, y)$ such that $u \neq x$ and $u \star y = x$.

Group G5, all other entries.

For the entry $(x,y;x\oplus y)$ we proceed as follows. If $y\neq \bar{x}$ we take $z\in \mathcal{D}(x,y)$ and define

$$I = \{(x, y; x \oplus y), (x \oplus y \oplus z, z; x \oplus y), (x \oplus y \oplus z, y; x \oplus z), (x, z; x \oplus z)\}.$$

Then I is the required intercalate by Lemma 15. If $y = \bar{x}$ and $x \neq 2^n - 1$ then we take $z \in \mathcal{A}(x, y)$ and define

$$I = \{(x, y; x \oplus y), (x \oplus y \oplus z, z; x \oplus y), (x \oplus y \oplus z, y; x \oplus z), (x, z; x \oplus z)\}.$$

If $y = \bar{x}$ and $x = 2^n - 1$ then we take $z \in \mathcal{A}(y, x)$ and define

$$I = \{(x, y; x \oplus y), (z, x \oplus y \oplus z; x \oplus y), (x, x \oplus y \oplus z; y \oplus z), (z, y; z \oplus y)\}.$$

Consider an entry $(u, v; u \oplus v)$ of Group G2. Since $v \in \mathcal{D}'(x, y)$ it follows that $\bar{u} \in \mathcal{D}(x, y)$. In addition, $u \oplus v = x \oplus y$ implies $\bar{v} = x \oplus y \oplus \bar{u}$. Define

$$I = \{(u, v; x \oplus y), (\bar{v}, \bar{u}; x \oplus y), (u, \bar{u}; 2^{n} - 1), (\bar{v}, v; 2^{n} - 1)\}.$$

Then I is the required intercalate.

Consider an entry $(x, v; x \oplus v)$ of Group G3. Let $x = [x_1, x_2, \ldots, x_n]$, $x_i = 0$ if and only if $i \in \{i_1, i_2, \ldots, i_k\}$ and let $i_k = \max\{i_1, i_2, \ldots, i_k\}$. Since $v \star x = y$ and $(x, y) \notin \mathcal{S}_{P_n}$ it follows that $v_i = y_i$ for $i \notin \{i_1, i_2, \ldots, i_k\}$ and if for some i we have $x_i = y_i = 1$ then $v_i = 1$. This information and the fact $v \notin \mathcal{A}(x, y)$ imply $v_{i_k} = 1$. Let $z = \bar{x} \oplus v$. Then it is straightforward to see that $z \in \mathcal{A}(x, y)$. Moreover, $x \oplus z \oplus v = x \oplus \bar{x} \oplus v \oplus v = 2^n - 1$. Define

$$I = \{(x, v; x \oplus v), (x \oplus z \oplus v, z; x \oplus v), (x, z; x \oplus z), (x \oplus z \oplus v, v; x \oplus z)\}.$$

Then I is the required intercalate.

One can prove that the entries of Group G4 are also 2-essential in a similar manner.

The intercalates given in Part 5 of Lemma 7 prove that each of the entries in Group G5 are 2-essential.

Therefore $P_n(x, y)$ is a 2-critical set.

COROLLARY 18 Let $0 \le x \le y \le 2^n - 1$ and $(x,y) \notin S_{P_n}$. Suppose that $x = [x_1, x_2, \ldots, x_n]$ and $y = [y_1, y_2, \ldots, y_n]$, where $x_i = 0$ if and only if $i \in \{i_1, i_2, \ldots, i_k\}$ and $y_j = 0$ if and only if $j \in \{j_1, j_2, \ldots, j_m\}$. Then there exists a 2-critical set of volume $\phi(x, y)$ and order 2^n , where

$$\phi(x,y) = \begin{cases} 4^n - 3^n + 1 - (2^{k-1} + 2^{m-1} + 2^{n-(k+m+1)}) \\ \text{if } x \neq \bar{y} \text{ and } y \neq 2^n - 1; \\ 4^n - 3^n + 1 - (2^{k-1} + 2^{n-(k+1)}) \\ \text{if } x \neq 0 \text{ and } y = 2^n - 1; \\ 4^n - 3^n + 1 - 2^{n-1} \\ \text{if } x = 0 \text{ or } 2^n - 1, \text{ and } y = 2^n - 1. \end{cases}$$

Proof: First note that if $x = 2^n - 1$ then $|\mathcal{A}(x,y)| = 0$ otherwise $|\mathcal{A}(x,y)| = 2^{k-1}$ by Definition 9 and if $x = \bar{y}$ then $|\mathcal{D}(x,y)| = 0$ otherwise $|\mathcal{D}(x,y)| = 2^{n-(k+m+1)}$ by Definition 14. Now the result follows by Theorem 17.

REMARK 19 Let $0 \le a, b \le 2^n - 1$.

1. Let $n \equiv 0 \pmod{3}$, $a_i = 0$ if and only if $i \in \{1, 2, ..., n/3\}$ and $b_j = 0$ if and only if $j \in \{n/3 + 1, ..., 2n/3\}$. Then for all $x, y \in \{0, 1, ..., 2^n - 1\}$ we have

$$\phi(x,y) \le \phi(a,b) = 4^n - 3^n + 1 - 3 \cdot 2^{n/3 - 1}.$$

2. Let $n \equiv 1 \pmod{3}$, $a_i = 0$ if and only if $i \in \{1, 2, ..., \lfloor n/3 \rfloor\}$ and $b_j = 0$ if and only if $j \in \{\lfloor n/3 \rfloor + 1, ..., 2 \cdot \lfloor n/3 \rfloor\}$. Then for all $x, y \in \{0, 1, ..., 2^n - 1\}$ we have

$$\phi(x,y) < \phi(a,b) = 4^n - 3^n + 1 - 4 \cdot 2^{(n-1)/3-1}.$$

3. Let $n \equiv 2 \pmod{3}$, $a_i = 0$ if and only if $i \in \{1, 2, ..., \lfloor n/3 \rfloor + 1\}$ and $b_j = 0$ if and only if $j \in \{\lfloor n/3 \rfloor + 2, ..., 2 \cdot \lfloor n/3 \rfloor + 2\}$. Then for all $x, y \in \{0, 1, ..., 2^n - 1\}$ we have

$$\phi(x,y) \le \phi(a,b) = 4^n - 3^n + 1 - 5 \cdot 2^{(n-2)/3 - 1}.$$

In summary, if we use the above techniques to construct 2-critical sets in the latin square corresponding to the elementary abelian 2-group of order 2^n , then the volume of the 2-critical set is less than or equal to $4^n-3^n+1-3\cdot 2^{\lfloor n/3\rfloor-1}$. Essentially, we took the 2-critical set of order 2^n and volume 4^n-3^n , constructed by Stinson and van Rees [5], added an entry and obtained a new 2-critical set by deleting at least $2^{\lfloor n/3\rfloor}+2^{\lfloor n/3\rfloor-1}-1$ entries. These results raise the interesting question of whether, in the latin square corresponding to the elementary abelian 2-group of order 2^n , there exists a 2-critical set of volume m where $4^n-3^n+1-3\cdot 2^{\lfloor n/3\rfloor-1}< m<4^n-3^n$.

References

- [1] J.A. Bate and G.H.J. van Rees, Minimal and near-minimal critical sets in back-circulant latin squares, Australasian Journal of Combinatorics 27 (2003), 47-61.
- [2] N. Cavenagh, D. Donovan and A. Khodkar, On the spectrum of critical sets in back circulant latin squares, (submitted).
- [3] D. Donovan, C.M. Fu and A. Khodkar, A discussion of 2-critical sets in Abelian 2-groups, Proceedings of the Twelfth Austalasian Workshop on Combinatorial Algorithms (AWOCA2001), Ed. Edy Tri Baskoro, Institut Teknologi, Bandung Indonesia, 2001, 88-97.
- [4] A. Khodkar, On smallest critical sets for the elementary abelian 2-group, Utilitas Mathematica 54 (1998), 45-50.
- [5] D.R. Stinson and G.H.J. van Rees, Some large critical sets, Congressus Numerantium 34 (1982), 441–456.