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Abstract

A vertex k-coloring of a graph G is acyclic if no cycle is bichromatic. The
minimum integer k such that G admits an acyclic k-coloring is called the
acyclic chromatic number of G, denoted by x.(G). In this paper, we discuss
some properties of maximal acyclic k-colorable graphs, prove a sharp lower
bound of the x,(G) and get some results about the relation between x(G)
and xo(G). Furthermore, a conjecture of B. Griinbaum that x.(G) < A+1
is proved for maximal acyclic k-colorable graphs.

1 Introduction

In this paper, we consider only finite undirccted simple graphs. Let G be
a graph. We denote by V(G) and E(G) the set of vertices and the sct of
edges of G, respectively. We use §(G) for the minimum degree of G and
A(G) for the maximum degree. We denote the connectivity of G by «(G).
As usual, we use x(G) for the chromatic number of G. The concept of
acyclic coloring of graphs, introduced by Griinbaum[6], is a generalization
of vertex-arboricity. An acyclic coloring of G is a proper coloring of its
vertices such that there is no two-colored cycle. The acyclic chromatic
number of G, denoted by x,(G), is the minimum number of colors for an
acyclic coloring of G.

A graph G is called maximal acyclic k-colorable if x4(G) = k and for any
e € G, xa(G U {e}) > k, where G is the complement of G. For all notation
and terminology not defined here, see Bondy & Murty [2].

Griinbaum [6] conjectured x.(G) < A(G) +1 for any graph G and proved
the conjecture for A(G) = 3. Burstein [5] proved the conjecture for arbi-
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trary graphs of degree 4. There are many other results on acyclic coloring
especially for planar graphs, see Alon ct al. (1], Borodin et al. 3], [4].

2 Maximal acyclic colorable graphs

Theorem 1. Every maximal acyclic k-colorable graph with n vertices has
exactly (k—1)n — (g) edges.

Proof. Let G be a maximal acyclic k-colorable graph with n vertices. Then
V(G) has a partition into coloring classes Vi,---,Vi. By the maximality
of E(G), we have that G; j = G[V; U V] is connected for any 1 <i < j <
k. Since the coloring is acyclic, the induced subgraph G; ; is acyclic and
thercfore G; ; is a trec. Thus, |E(Gi ;)| = |Vi| +|V;| — 1. So, |[E(G)| =

Yicici<k [E(Gigl = Xicicicr Vil + V5] = 1) = (k= 1)|V(G)| - (I;

Theorem 2. Every maximal acyclic k-colorable graph is (k—1)-connected.

Proof. Let Vp,---,V; be an acyclic k-coloring of G. For any S C V(G)
with |S| < k& — 2, there exist at least two of V4, --, Vi, say V; and Vj, such
that [SNVi} = |SNV;| = 0. Since G is a maximal acyclic k-colorable
graph, the induced subgraph G; ; = G[V; UVj] is a trec and hence G; j is
a connccted subgraph. So, for any v € V(G)\S, if v ¢ V; UV}, then v € V;
for some t # 1, j. Because G is a maximal k-acyclic colorable graph, then v
is adjacent to some vertex of V;. Therefore G\S is a connccted graph. By
the choice of S we know that G is (k — 1)-connected.

Note. The lower bound of k(G) > k—1 is sharp, since one can construct as
follows a maximal acyclic k-colorable graph G such that §(G) = k—1 which
means k{(G) = k—1. Let V7, Va,---, Vi be pairwise disjoint vertex scts with
[Vi} 2 2. For v € V;, we can construct a maximal acyclic k-colorable graph
G with V1, V,,---, V. an acyclic coloring and dg, ;(v) = 1 for2 < j < k
where G; ; = G[V;UVj] for 1 <4< j <k. Then §(G) =k - 1.

By Theorem 1, we can easily get the following result.

Corollary 1. Let G be a graph. For any positive integer k, if there exists
a subgraph G* of G such that |E(G*)} > (k — D)|V(G*)| — (g), then
Xa(G) > k.

Using the property of maximal acyclic k-colorable graph, we can get the
following result.
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Theorem 3. Griinbaum’s Conjecture is true for maximal acyclic k-colorable
graphs.

Proof. Let G be a maximal acyclic k-colorable graph. We usc dqyc(G) for
the average degree of G. By Theorem 1 we have

dave(Gn =Y dg(v) =2|E(G)| = 2(k=1)n—k(k~1) = (k—1)(2n—k).
veV(G)

S0 daye(G) = (k —1)(2 — £) > k — 1 since k < n, with equality holds iff G
is complete. Thercfore we have k < daye(G) +1 < A(G) + 1.

3 Lower bound for x,(G) and relation with
x(G)-

In general, large 6(G) docs not imply large x(G) since a bipartite graph
can have large minimum degree and its chromatic number is at most 2, but
for acyclic coloring, it’s different. We have the following result.

Theorem 4. For any connccted graph G with [V(G)| 2 2, xa(G) =
f(6(G)), where

fy=152).

Proof. Supposc xq(G) = k. If G is a maximal acyclic k-colorable graph,
then by Theorem 1, [E(G)| = (k - DIV(G)| - (’;) Thus

SG)IV(G) < D de(v)=2E(G)| =2(k - DIV(G)| - k(k - 1)
veV(G)

which implies k£ > ﬂzg)- + 2£|(\l/c_(:c%))T + 1. Since G is a connected graph with

|[V(G)| = 2, then k > 2. Therefore Theorem 4 follows casily for this case.
If G is not a maximal acyclic k-colorable graph, then there is a maximal
acyclic k-colorable graph G* with V(G*) = V(G) such that G is a subgraph
of G*. Similarly to the above discussion, we can get k > ﬂgz—l+ﬁ%+l.
Since §(G*) = 6(G), we have k > ﬁz,gl + ;’fé,k(—z,.—l))-l- + 1 and Theorem 4 is
true.

Note. The lower bound in Theorem 4 is sharp since equality holds for any
graph which is a cycle. But we can get a better lower bound for x,(G) as
follows:
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Corralary 2. Let G be a graph. We define 6*(G) = Max{6(G')|G’ is
a connected subgraph of G with |V(G’)| > 2}. Then x.(G) > f(6*(G)),
where f(t) is defined as in Theorem 4.

Clearly, for any graph G, x(G) < xa(G), so it seems interesting to find
when the equality holds. The following theorem gives a sufficient condition
for equality.

A graph G is called uniquely k-colorable if G has only one vertex k-coloring
up to isomorphism.

Theorem 5. Let G be a uniquely k-colorable graph with at most (k —
k
DIVIG) - () edges, then xa(6) = X(6).

Proof. Let Vi, -+, Vi be a normal coloring of G. We claim that the induced
subgraph G;; = G[V; UV;] is connected for 1 < ¢ < j < k. Assume that
there exist Vi, V; such that G ; is not connected, since |E(G; ;)| > 1, then
Gi,; has a component C with |V/(C)| > 2, switch colors i and j in C, we get
another k-coloring of G, a contradiction. So |E(Gi ;)| > |V;|+|V;|-1 for any
1 €4 < j £ k with equality holds only when G; ; is a tree. Then |E(G)| =

Yacici<k [B(Gij)| 2 (k—1)n— (g), with cquality holds only when each

Gi; is a tree. But by the condition, |E(G)| < (k - 1)|V(G)| - (k) So

|E(G)| = (k-1)|V(G)| - J—Z and cach G; ; is a trce. So G is a maximal
acyclic k-colorable graph and Xa(G) = k = x(G).

In gencral, x(G) and x4(G) can be very different, there exists graph G
with small x(G) but x,(G) is arbitrary large. In fact we have the following
theorem.

Theorem 6. There’s no function f(z) : Z+ — Z* such that for any
graph G, xo(G) £ f(x(G)).

Proof. We prove this by constructing a graph G with the following prop-
erty:

For any 3 < k < ¢, there exist a graph G with x(G) < k and xa(G) =t.

Let Ay, - -+, A be the pairwisc disjoint vertex sets with A; = {a},a?,..,a¥}.
We first construct a graph G*. Let V(G*) = U,~1A and E(G‘) =
{aa“|1<z<y<t1<1r:n<kandnz;én} Then let B;

Ui<ice {a} for 1 < j < k, we can casily see that By,---, By is a nor-
mal coloring of G*, so x(G*) < k. Since [4;] > 3, so G} ; = G*[A; U Aj]
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is connected. Then G} ; contains a spanning trce G;,j for 1 < i< j <t
Let G = UU;<;c;<t Gij- Then G is a subgraph of G* and G is a maximal
acyclic t-colorable graph. So x(G) < x(G*) < k and x,(G) = ¢.

Acknowledgment. Special thanks go to Dr. C.-Q. Zhang for helpful
discussion.
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