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Abstract

The dissociation number of a graph G is the number of vertices in a maxi-
mum size induced subgraph of G with vertex degrees at most 1. The problem
of finding the dissociation number was introduced by Yannakakis who proved
it is NP-hard on the class of bipartite graphs. In this paper, we analyze the
dissociation number problem restricted to the class of bipartite graphs in more
detail. We strengthen the result of Yannakakis by reducing the problem, in
polynomial time, from general bipartite graphs Lo some particular classes such
as bipartite graphs with maximum degree 3 or Cy-free bipartite graphs. Besides
the negative results, we prove that finding the dissociation number is polyno-
mially solvable for bipartite graphs containing no induced subgraph isomorphic
Lo a tree with exactly three vertices of degree 1 of distances 1, 2, and 3 from
the only vertex of degree 3.

The induced matching number of a graph G is the number of edges in
a maximum size induced subgraph of G with vertex degrees all equal to 1.
Analogous results hold for the induced matching number.
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1 Introduction

A set of vertices in a graph G is called a dissociation set if it induces a subgraph
with maximum degree at most 1. The number of vertices in a maximum cardinality
dissociation set in G is called the dissociation number of G and is denoted diss(G).

The problem of finding a maximum cardinality dissociation set generalizes two
other graph problems: maximum stable set and maximum induced matching. A
stable set is an induced subgraph with all vertex degrees equal to 0. An induced
matching can be thought of as an induced subgraph with all vertex degrees equal to
1. (Note that solving the maximum dissociation set problem does not solve either
the maximum stable set problem or the maximum induced matching problem.) Both
the maximum stable set problem and the maximum induced matching problem have
received considerable attention in the literature. Both are known to be NP-hard in
general graphs. However, in the class of bipartite graphs the complexity status of the
problems is different. It is well-known that a maximum stable set in a bipartite graph
can be found in polynomial time, while the maximum induced matching problem
remains NP-hard for bipartite graphs (1, 9]. 1t is not surprising that the problemn
of computing diss(G) (the dissociation number problem) is NP-hard on the class of
bipartite graphs as well. This was proved by Yannakakis in [10]. In this paper we
study the dissociation number problem restricted to bipartite graphs in more detail.
Specifically, we strengthen the result of Yannakakis in the following way.

A graph G is called H -free if G does not contain graph H as an induced subgraph.
We show in Section 2 that if H contains either a ¢ycle or a vertex of degree more than
3 or two vertices of degree 3 in the same connected component, then the dissociation
number problem is NP-hard in the class of H-free bipartite graphs. Moreover, it
remains NP-hard even in the intersection of finitely many such classes. In particular,
the problemn is NP-hard in the classes of K 4-free or Cs-free bipartite graphs. Note
that Kj4-[ree bipartite graphs are exactly bipartite graphs with maximum degree
at most 3. So, the problem is NP-hard in Cy-free bipartite graphs with maximum
degree at most 3. Analogous results were proved for the induced matching problemn
in [7).

These results do more than establish the NP-hardness of the dissociation prob-
lemn and the induced matching problem in a large family of graph classes. They
characterize classes of graphs for which these problems could possibly be solved in
polynomial time. Under the assumption that P $# NP2, our results imply that the
dissociation number problem can be solved in polynomial time in the class ol //-free
bipartite graphs only il every connected component of H is a graph of the forin S x
as in Figure 1, and the same holds for the induced matching number problem.

In [6], the graph S 2,3 was called a skew star. In Section 3 of this paper, we use
the structural characterization given in (6] for skew star-free bipartite graphs in order
to derive a polynomial-time algorithin to solve the dissociation number problem in
that class. In Section 4, we do the same for the induced matching problemn.

All graphs we consider are undirected and simple, that is, without loops and
multiple edges. For a graph G, we denote by V(G) and FE(C) the vertex-set and
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Figure 1: Graph S; j« (i,j,k > 0)

the edge-set of G, respectively. The neighborhood of a vertex z € V(G) is the set
of vertices adjacent to z, and is denoted N(z). The degree of z € V(G) is the
number of vertices in N(z). Given a set of vertices U C V(G), we denote by G[U]
the subgraph of G induced by U, and G — U = G|V(G) - U].

As usual, P, and C, denote, respectively, the chordless path and the chordless
cycle with n vertices. Ky, is the complete bipartite graph with parts of cardinality
n and m. The graph K; 3 = 51,11 is called 2 claw. We use Hy to denote the graph
which can be obtained from two copies of P; by joining their central vertices by a
chordless path with n edges (Figure 2).

Hy

Figure 2: Graph H,

In addition, we introduce notation for some particular classes of graphs:
Xk, the class of (Cs, Cy, ..., Ck)-free graphs,

Y,, the class of (Hy, Ha, ..., H)-free graphs,

Zs3, the class of graphs with maximum degree al most 3.

2 NP-hardness of dissociation number on certain classes
of bipartite graphs

Let G be a graph and z be a vertex in G. A wverlez stretching with respect 10 z is
defined to be the following transformation:

1) partition the neighborhood N(z) of vertex z into two sets Y and Z in an
arbitrary way;

2) delete vertex z from the graph together with incident edges;
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3) add four vertices y,a,b, z and then a chordless path P, = (y,a,b,2) to the
remaining graph;
4) connect vertex y to each vertex in Y, and connect z to each vertex in Z.

Figure 3 illustrates the vertex stretching operation.
z y a b =2

G ey

Figure 3: Vertex stretching operation

Lemma 1 Let G’ denote a graph obtained from G by the verter strelching operation.
Then
diss(G') = diss{G) + 2.

Proof. Tirst, let us consider a dissociation set D in G and show that graph
G’ contains a dissociation set D' of cardinality |D] + 2. If = does not belong to
D, then D' = DU {(a,b)} is the required sct. If IJ contains vertex z, then clearly
|[DN N(z)] < 1. Assume without loss of generality that 2N Z = @. Then D' =
(D = {z}) U {y,b, 2} is the set we are looking for. Thus diss(G') > diss(C) + 2.

Conversely, let D' be a dissociation set in G’ with at least two vertices. Qur
purpose now is 1o find in G a dissociation set 1 of cardinality | 1’| —2. The problem
is trivial if D’ contains at most two new vertices. Up Lo syminetry, the only possible
casc with more than two new vertices in D' is the following: y,a,z € D'. 1n that
case, D'NY = P and |’ N Z| < 1. Therefore, D = (D' — {y,a,2})}U {z} is the
desired set. Thus diss(G) 2> diss(G') —2. =

Lemma 2 Any graph G can be {ransformed by a sequence of vertex stretching op-
erations inlo a bipartite graph in the class X NYyN Z3 for any inlegers k > 3 and
l>1.

Proof. Assume first that graph G has a vertex z of degree at least 4. For a
vertex stretching with respect to z, let us choose as Y any two vertices adjacent 1o
2, and let Z contain all the remaining vertices in the neighborhood of 2. Under this
operation we obtain a graph with four new vertices y, a, b, z, where ¥ is of degree 3,
o and b are ol degree 2, and 2 is of degree exactly one less than that of z. If the
degree of z is still greater than 3, we can decreasc it in a similar way by application
of the vertex stretching operation with respect 1o 2. Thus, repeatedly applying the



operation we can obtain a graph in which every vertex has degree at most 3, i.e. a
graph in Z3.

Now let us consider another instance of the vertex stretching operation in which
sel Y consists of a single vertex. In this case, the operation is equivalent to a triple
subdivision of an edge in the graph. In other words, the edge is replaced by a
chordless path of length 4. Let us call the application of this operation to each edge
of the graph the total stretching of G. Under the total stretching, the lengih of
every induced cycle increases four times, and therefore, the resulting graph contains
no cycles of odd length, i.e. it is bipartite. Morcover, applying the total stretching
sufficiently many times, we get rid of induced cycles C; with i < k and induced
subgraphs of the form H; withi <!. =

It is not hard to see that the transformation described in Lemma 2 can be carried
out in time bounded by a polynomial in the size of the input graph. In conjunction
with Lemma 1 and the result in [10] this implies

Corollary 3 For any integers k > 3 and | 2> 1, the dissociation number problem is
NP-hard for bipartile graphs in the class X, NY1 N Z3.

Now we are ready to prove the main theorem of the section.

Theorem 4 Let K be a class of graphs defined by a finite sel F of forbidden induced
subgraphs. If F does nol contain a graph every connecled component of which is of
the form S;;x (Figure 1), then the dissociation number problem is NP-hard for
bipartite graphs in the class K.

Proof. Let p be an integer greater than the number of vertices in a largest graph
in F. Suppose that a bipartite graph G € X, N Y, N Z3 does not belong to K. Then
G must contain a graph A € F as an induced subgraph. Since G € Xy, the graph A
contains no induced cycles Cy of length ¢ < p. Moreover, A can not contain a cycle
C, with ¢ > p, because |V (A)| < p due 1o the choice of p. Therefore, A contains
no cycles, i.e., 4 is a forest. Analogously, since G € Yy, and |V (A)| < p, A contains
no induced subgraphs of the form Hy, i.c., every connected component of A has at
most one vertex of degree at least 3. Furthermore, since G € Zs, the graph A does
not have vertex of degree more than 3. But then every connected component of A is
of the form S, and this contradicts the hypothesis of the theorem. We thus have
proved that every bipartite graph in X, MY, N Z3 belongs to K. Now the conclusion
of the theorem follows from Corollary 3. =

As an immediate consequence of the theorem, we obtain NP-hardness of the
dissociation number problem in a large family of subclasses of bipartive graphs such
as K 4-frec bipartite graphs or Ca-free bipartite graphs. On the other hand, Theo-
rem 4 characterizes graph classes for which the dissociation problem could possibly
be solved in polynomial time. In Section 3, we prove that the dissociation number
problem can be solved in one such class in polynomial time.
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3 A polynomially solvable case of the dissociation prob-
lem

A bipartite graph G = (V), V2, E) consists of a set of vertices V) U V2 and a set of
edges E C Vj x V,. For a bipartite graph G = (Wi, V,, E), we denote by G the
bipartite complement of G, i.e., G = (W1, Va, (Vi x V1) — E). By mK> we denote the
regular graph of degree 1 with 2m vertices. Clearly, mK3 is a bipartite graph. Note
that 3K5 = Cg.

Let us call two vertices of a graph similar if their neighborhoods are the same.
Clearly, similarity is an equivalence relation, and for any two similarity classes (i.e.
equivalence classes) M; and M;, either each pair of vertices ¢ € M; and y € M;
is adjacent or none of them are. We shall say that M; and M; are adjacent or
non-adjacent, respectively. A graph every similarity class of which has size 1 will be
called prime. It is not hard to see that any bipartite graph G has a unique (up to
isomorphism) maximal prime induced subgraph that can be obtained by choosing
exactly one vertex in cach similarity class of G, and we call this the prime graph of
G and denote it by P(G). A graph G is called H-like if the prime graph of G is
II. For instance, a cycle-like graph is a graph whose prime graph is a cycle; that
is, a graph obtained [rom a cycle by duplicating some vertices (and not joining the
duplicates).

It is well known and easy to sec that for any graph G, induced matchings in
G correspond precisely to stable sets in the square of the line-graph of G, denoted
(L(®))%. (L(G))? has a vertex for each edge of G and two vertices of (L(G))? are
adjacent if the edges they correspond to in G either meet at a vertex of G or arc
joined by an edge of G. We now give a similar correspondence for dissociation sets.
Given a graph G, construct a graph W(G) as follows. W(G) consists of a copy of
G and a copy of (L(G))%. So W(G) has a vertex w; for each vertex i of G, and a
vertex w;; for each edge ij of G (that is, for each vertex of (L(G))2). Vertices w;
are called while and vertices wi; are called black. A white vertex w; is adjacent to
a black vertex wj, exactly when i is adjacent 1o either j or k in G.

Theorem 5 For any graph G, where while verlices in W(G) have weight 1 and
black vertices have weight 2, diss(G)=the mazimum weight of a stable set in W(G).

Proof. Let D be a dissociation set in graph G. Let Sp be the set consisting of
the white vertices of W(G) corresponding to isolated vertices of G{D) and the black
vertices of W(G) corresponding to edges of G[D]. It can be casily verified that S)) is
a stable set in W(G) and clearly its weight is | D|. Similarly, a stable set S in W(G)
corresponds Lo a dissociation set Dg in G, and the size of Dg is the weight of S. =

Alternatively, largest cardinality dissociation sets in G correspond to maximum
weight stable sets in W(P(G)), where P(G) is the prime graph of G, but the weights
of white vertices need to be changed. In P(G) a white vertex w; corresponds Lo a
similarity class M; of G, so the weight of white vertex w; in W(P(G)) is | M;].
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Theorem 6 For any graph G and its prime graph P(G), consider W(P(G)) with
weight |M;| for a while vertex corresponding to similarity class M; and weight 2 for
black vertices. Then diss(G)=the mazimum weight of a stable sel in W(P(G)).

Proof. Let D be a dissociation set in graph G. We denote the set of vertices
of degree 1 in G{D] by Dy, and the set of isolated vertices in G[D] by Dy. With
the set D we associate a set of vertices Sp in W(P(G)) in the following way. We
include w; in Sp if and only if M; N Dy # @. We include wy; in Sp if and only if
MinD, # 0 and M;ND, # ¢ and M; is adjacent to M; in G. 1t is not hard to verily
that Sp is a stable set in W (P(G)) and its weight is at least |D|. Hence diss(G) <
the maximum weight of a stable set in W(P(G)).

To prove the reverse inequality, let S be a stable set in the graph W(P(G)). We
associate with S a set of vertices Dg in G in the following way. For each white vertex
w; € S, Dg includes all vertices of the corresponding similarity class M;. For each
black vertex wi; € S, Dg includes a pair of adjacent vertices x € M; and y € M;.
Obviously Ds is a dissociation set in G and its cardinality is the weight of set S in
W(P(G)). Hence diss(G) > the maximum weight of a stable set in W{P”(G)). m

We note that in many classes G of graphs where the induced matching prob-
lem has been shown Lo be solvable in polynomial time, this has been proved by
showing that if G € G, then (L(G))? € H, where H is a class for which there is a
polynomial-time algorithm for finding a maximurn stable set. We expect the disso-
ciation problem can be shown (o be solvable in polynomial time for certain classes
G by showing that either W(G) € H or W(P(G)) € H, where H is a class for which
there is a polynomial-time algorithm for finding a maximum weight stable set.

Throughout this section we denote by C the class of bipartite graphs containing
no skew star (Figure 4) as an induced subgraph.

Figure 4: A skew star

We note that the class C includes several subclasses of bipartite graphs studied
recently in the literature 2, 3, 4, 5]. The struciure of graphs in C was characterized
in [6] as [ollows.

Theorem 7 Lel & = (Wi, Vo, E) be a prime bipartile graph withoul an induced
skew star. Then cither G is disconnecled, or G is the biparlile complement of a
disconnecled graph, or G can be parlitioned into a stable set and a bi-clique, or G is
a path or a cycle or the bipartite complement of e path or a cycle.

247



Now we use this characterization in order to prove polynomial-time solvability
of the dissociation number problem in the class C. To this end, let us introduce the
following notation: ax(G) is the number of vertices in a maximum size dissociation
set in G with at most k edges. With this notation, ao(G) is the stability number
of G, i.e. the number of vertices in a maximum size stable set. It is well known
that for bipartite graphs the stability number can be computed in polynomial time.
Consequently, for any fixed &, ax(G) can be found in polynomial time if G is bipar-
tite. Below we use this fact to derive a polynomial-time algorithm to compute the
dissociation number of graphs in C. Our algorithm is based on the following series
of lemmas.

Lemma 8 IfG),...,Gy are connected components of a graph G, then

k
diss(G) = Z diss(G;).

=1

For a bipartite graph G, where U,..., Uk are the vertex-sets of the connected
components of the bipartite complement of G, the induced subgraphs B; = G(U;]
are called the co-components of G.

Lemma 9 If B,,..., By are the co-cornponents of a bipartite graph G = (V1, Vo, E),
then
diss(G) = max{w2(G),diss(13),...,diss(B)}.

Proof. Let D be a maximum cardinality dissociation set in G. We will show
that if D is not contained in any co-component of G, then G[D] contains at most
two edges. To prove this, assume that z € U; = V(B;) and y € U; = V(B;) are two
vertices of D in different co-components. Without loss of generality, we suppose that
z € V) and y € Vs, since otherwise D is a stable set. This implies that xy is an edge
in G[D], and therefore D - {z,y} C (ViNU;)U(VanU;), otherwise either z or y has
degree more than 1 in G{D]. Since the subgraph of G induced by (ViNU,)U(VaNU;)
is complete bipartite, there may be only onc edge in G[D— {z,y}]. Hence the lemma.
]

In the next lemma we consider a bipartite graph G = (V}, V», E) whose vertices
can be partitioned into a bi-clique (a complete bipartite subgraph with at least one
edge) @ and astableset S. Let Q; = QNV;, S =5NV, (i=1,2), Ry = GQ1U Sy}
and Ry = G|Q2U S). With this notation we prove the following lemma.

Lemma 10 Let G be a bipartile graph whose vertices can be parlitioned imlo a bi-
cliqgue Q and a slable set' S, then

diss(G) = max{a)(G), diss(1y) + |S:1|, diss(R2) + |S2|}.
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Proof. Let D be a maximum dissociation set in G. If D is a stable set, then
diss(G) = ao(G) < an(G). If D is not a stable set, it must contain a vertex  in
Q. Assume z € Q. First suppose DN Q2 # 0, say y € DN Q2. Of course, y is a
neighbor of z in DN Q2. Then clearly  and y do not have other neighbors in D.
In other words, D — {z,y} € N(z) U N(y) C S. Consequently diss(G) = a1(G). If
DNQy = @, then obviously S; € D and diss(G) = diss(R,) + |51|. Similarly, if
DN@Q, =0 and DNQy # 0, then diss(G) = diss(Rz) +|S2|. =

Lemmas 8, 9 and 10 together with Theorem 7 allow us to reduce the problem
in question from the class C 1o path-like or cycle-like graphs or their bipartite com-
plements. Moreover, if G is the bipartite complement of a Pg-like or Cy-like graph,
then k > 7 or else G is disconnected.

Lemma 11 Let G be the bipartite complement of a Pi-like or a Ci-like graph with
k > 7. Then
diss(G) = az(G).

Proof. Obviously, any Pg-like or Cy-like graph with k£ > 7 is Ce-free. Since
the bipartite complement of Cg is 3K32, the graph G is 3K2-free. Consequently, any
dissociation set in G contains al most two edges. Hence diss(G) < aa(G). The
reverse inequality is obvious. m

We use Theorem 6 in order to reduce the dissociation number problem in path-
or cycle-like graphs to the weighted version of the stable set problem in claw-free
graphs.

Theorem 12 IfG is a path- or cycle-like graph, then W(P(G)) is a claw-free graph.

Proof. To prove the theorem, it is sufficient 1o show that the neighborhood of
each vertex in W(/?(G)) does not contain a stable set of size 3 (an antitriangle).

The neighborhood of a white vertex w; in W(2(C)) contains at most six vertices:
two white and four black. Il 2(G) = C where k > 6, or il /2((7) is a path and ¢
is not an endpoint or next-to-endpoint of the path, then the neighborhood of w;
in W(P(G)) induces the subgraph Iy in Figure 5. It is easy to see that F does
not contain an auntitriangle. It can be verified that in the remaining cases (when
P(G) = Ck, 3 < k <5, 0rif P(G) is a path and i is an endpoint or next-to-endpoint
of the path), the neighborhood of w; in W(P(G)) is also antitriangle-frec.

The neighborhood of a black vertex w;; in W(P(G)) contains at most eight
vertices: four white and four black. If P(G) = Ci where k > 7, or if 2(G) is a path
and ij is not the end edge or next-to-end edge of the path, then the neighborhood
of wi; in W(P(G)) induces the subgraph % in Figure 5. It is easy to see that J2
is antitriangle-free. Il 2(¢7) is a Cs-like graph, then the neighborhood of wy; is Fa
together with an edge joining the two white vertices of I ol degree 3, and hence
is antitriangle-free as well. 1t can be verified that in the remaining cases (when
P(C) = Ck, 3< k <5, oril ’(G) is a path and ij is an end edge or nexi-Lto-end
edge of the path), the neighborhood of wi; in W(P(G)) is also antitriangle-free. =
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(a) (b)

Figure 5: (a) subgraph Fy; (b) subgraph I,

The result of Theorem 12 in conjunction with Theorern 6 and Minty’s algorithm
to find a maximum weight stable set in a claw-[ree graph [8] lead to a polynomial-
time algorithm to compute the dissociation number of path- or cycle-like graphs.

We summarize the above arguments in the following algorithm to compute the
dissociation number of a graph G € C.

DISS(C)

Input: A bipartite graph G = (W}, V2, E) without a skew star.
Output: The dissociation number of G.

1.

If G is disconnected, decompose it into connected components G1,. .., Gk and
sel

k
DISS(G) = > DISS(Cy).

i=]

. i G is the bipartite complement of a disconnected graph, then decompose G

into co-components 3y, ..., B, and set

DISS(G) = max{a2(G), DISS(51), .. ., DISS(Bk)}.

. If G can be partitioned into a bi-clique Q and a stable set S, then set

DISS(C) = max{DISS(Ry) + |Si|, DISS(12) + |Sa], a1 (C)},

where Q; = QNV;, S; = SNV, (i = 1,2), Ry = G|Q1US2) and R = G[Q208)].

- If the bipartite complement of G is a cycle-like or path-like graph, then set

DISS(G) = a2(G).

. If G is a cycle-like or path-like graph, then construct the auxiliary weighted

graph W(P(G)), apply Minty’s algorithm 10 find the maximum weight of a
stable set in W(P(G)), and set

DISS(G) = maximum weight ol a stable set in W (12(G)).
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Concerning step (3) of DISS(G), we actually need to find the biclique @ and the
stable set S that partition G. Here is an algorithm to determine il the vertex-set of
a connected bipartite graph G = (U, V, E) can be partitioned into a biclique Q and
a stable set S where edge uv has its ends in Q. The algorithm puts a vertex in @ or
S when it is “forced” to. To start, u,v € @. U and V are called the color-classes.

When a vertex enters @, all of its non-neighbors in the other color-class enter S.
When a vertex enters S, all of its neighbors enter Q). As soon as a vertex enters @, we
check that it is adjacent to all of Q in the other color-class, and as soon as a vertex
enters S, we check that it is non-adjacent to all of S; if this does not hold, we stop:
the required partition does not exist. If at any time, QN S # @, stop: the required
partition does not exist. Qtherwise, when the procedure stops, if QUS = U UV,
we are finished - the required partition has been found; if not, every vertex not in
QU S is adjacent to all of Q in the other color class, and is non-adjacent to all of
S.Then @ = QU{U - (QUS)), S'=SU(V — (QUS)) is the required bipartition.

Taking into account the observation that ax(G), for a fixed k, can be computed

in polynomial time for a bipartite graph G, we conclude that procedure DISS has
polynomial time complexity.

Theorem 13 The dissociation number of bipartite Si23-free graphs can be com-
puled in polynomial time.

4 A polynomially solvable case of the induced matching
problem

A set M of edges in a graph G is called an induced matching if no two edges of M
meel at a vertex or are joined by an edge of G. Equivalently, an induced matching is
a matching which forms an induced subgraph. The number of cdges in a maximum
cardinality induced matching in G is called the induced matching number of G and
is denoted im(G).

An approach analogous o that used in Section 3 for the dissociation problem
can be used to give a polynomial-time algorithm [or the induced matching problem
jn bipartite graphs with no induced skew star. The proofs are similar 1o those of
Section 3, so they are omitted.

Lemma 14 If Gy,...,Gy are connecled commponenls of a graph G, then
k
im(G) = Y_ im(Gy).
i=]

Lemma 15 If By,..., By are the co-components of a bipartile graph G = (W), Vo, E),
then either im(CG) =1 or

in(G) = max{2, irn(I),....im(B3)}.
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In the next lemma we consider a bipartite graph G = (W, Vo, E) whose vertices
can be partitioned into a bi-clique @ and a stable set S. As in Section 3, let
Qi=QNV, S =5NnV; (i= 1,2), Ry = G[Q] USz] and Ry = G(Q2 US[].

Lemma 16 Let G be a bipartite graph whose vertices can be partitioned inlo a bi-
clique Q and a stable set S, then

im(G) = max{1,im(R)),im(Ra)}.
Lemmas 14, 15 and 16 together with Theorem 7 allow us to reduce the problem
in question from the class C to path-like or cycle-like graphs or their bipartite com-

plements. Moreover, if G is the bipartite complement of a Pi-like or Ci-like fraph
then k > 7 or else G is disconnected.

Lemma 17 Lel G be the bipartile complement of a Pe-like o1 a Cy-like graph with
k>7. Then
im(G) = 2.
Lemma 18 Lel G be a Py-like graph. Then
im(G) = [(k-1)/3].
Lemma 19 Let G be a Cy.-like graph. Then
wmn(G) = |k/3).
Theorem 20 The induced malching number of bipartile S12,3-frec graphs can he
computed in polynomial lime.
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