On Graphs Whose Acyclic Graphoidal Covering Number Is One Less than Its Cyclomatic Number*

S. Arumugam ^{1,†}, Indra Rajasingh², P. Roushini Leely Pushpam³

Abstract. A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every vertex of G is an internal vertex of atmost one path in ψ and every edge of G is an exactly one path in ψ . If further no member of ψ is a cycle, then ψ is called an acyclic graphoidal cover of G. The minimum cardinality of an acyclic graphoidal cover is called the acyclic graphoidal covering number of G is denoted by η_a . In this paper we characterize the class of graphs for which $\eta_a = q - p$ where p and q denote respectively the order and size of G.

1. Introduction

By a graph G = (V, E) we mean a finite, undirected, connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Harary [4].

If $P = (v_0, v_1, \ldots, v_n)$ is a path or a cycle in G, v_1, \ldots, v_{n-1} are called *internal vertices* of P. The concept of graphoidal cover was introduced by Acharya and Sampathkumar [1] and that of acyclic graphoidal cover was introduced by Suresh Suseela [3].

¹ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012. India

² Department of Mathematics, Loyola College, Chennai 600 034, and

³ Department of Mathematics, D.B. Jain College, Chennai 600 096

^{*}Research supported by DST Project DST/MS/064/96.

[†]Corresponding author.

E-mail address: msunet@md2.vsnl.net.in (S. Arumugam)

Definition 1.1 A graphoidal cover of a graph G is a set ψ of (not necessarily open) paths in G satisfying the following conditions.

- (i) Every path in ψ has at least two vertices.
- (ii) Every vertex of G is an internal vertex of atmost one path in ψ .
- (iii) Every edge of G is in exactly one path in ψ .

 ψ is called an acyclic graphoidal cover of G if no member of ψ is a cycle in G. The minimum cardinality of (an acyclic) a graphoidal cover of G is called the (acyclic) graphoidal covering member of G and is denoted by $(\eta_a)\eta$. The values of η and η_a for several families of graphs have been determined by Pakkiam and Arumugam [5, 6] and Suresh Suseela [3]. A comprehensive review of the progress made on graphoidal covers is given in Arumugam et. al. [2].

Definition 1.2 Let ψ be a collection of internally disjoint paths in G. A vertex of G is said to be an *interior vertex* of ψ if it is an internal vertex of some path in ψ . Any vertex which is not an interior vertex of ψ is said to be an *exterior vertex* of ψ .

Theorem 1.3 [3] For any acyclic graphoidal cover ψ of G, let t_{ψ} denote the number of exterior vertices of ψ . Let $t = \min t_{\psi}$ where the minimum is taken over all acyclic graphoidal covers of G. Then $\eta_a = q - p + t$ where p and q denote the order and size respectively of G.

Corollary 1.4 For any graph G, $\eta_a \ge q - p$. Moreover the following are equivalent.

- (i) $\eta_a = q p$.
- (ii) There exists an acyclic graphoidal cover without exterior vertices.
- (iii) There exists a set of internally disjoint and edge disjoint paths without exterior vertices.

In this paper we characterize the class of graphs G for which $\eta_a = q - p$, which is one less than the cyclomatic number of G. It follows from Corollary 1.4 that for such graphs $\delta \geq 2$. Moreover we have

Theorem 1.5 [3] For any graph with $\delta \geq 3$, $\eta_a = q - p$.

Hence we confine ourselves to graphs with $\delta = 2$. We need the following definition and theorem.

Definition 1.6 [4] A *theta graph* is a block with two non-adjacent vertices of degree 3 and all other vertices of degree 2.

Theorem 1.7 [4] Every non-hamiltonian 2-connected graph contains a theta graph.

2. Main Results

Let \mathcal{F}_a denote the class of all connected graphs with $\eta_a = q - p$. The following is an immediate consequence of Corollary 1.4.

Lemma 2.1 If there exists a spanning subgraph H of G such that $H \in \mathcal{F}_a$, then $G \in \mathcal{F}_a$.

Theorem 2.2 Let $G_1 \in \mathcal{F}_a$. Let C be a cycle such that $|V(C) \cap V(G_1)| \ge 2$. Then $G_1 \cup C \in \mathcal{F}_a$.

Proof Let $C = (v_1, v_2, \dots, v_n, v_1)$ and $G = G_1 \cup C$. Let ψ_1 be a minimum acyclic graphoidal cover of G_1 so that every vertex of G_1 is interior to ψ_1 . Let $V(G_1) \cap V(C) = \{v_1, v_{i_1}, \dots, v_{i_k}\}$ with $k \ge 1$ and $1 < i_1 < i_2 < \dots < i_k \le n$.

Case i
$$E(G_1) \cap E(C) = \emptyset$$
.

Let
$$P_1 = (v_1, v_2, \dots, v_{i_1}),$$

 $P_2 = (v_{i_1}, \dots, v_{i_2}),$
 \vdots \vdots
 $P_k = (v_{i_{k-1}}, \dots, v_{i_k})$
and $P_{k+1} = (v_{i_1}, \dots, v_n, v_1).$

Then $\psi = \psi_1 \cup \{P_1, P_2, \dots, P_{k+1}\}$ is an acyclic graphoidal cover of G and every vertex of G is interior to ψ .

Case ii $E(G_1) \cap E(C) \neq \emptyset$.

Let $E(G_1) \cap E(C) = \{e_1, e_2, \dots, e_m\}$. Then each nontrivial component of $C - \{e_1, e_2, \dots, e_m\}$ is a path. Let $P = (w_1, w_2, \dots, w_k)$ be a nontrivial component of $C - \{e_1, e_2, \dots, e_m\}$. If an internal vertex w_i of P belongs to $V(G_1)$, we replace P by $P_1 = (w_1, w_2, \dots, w_i)$ and $P_2 = (w_i, w_{i+1}, \dots, w_k)$. By repeating this process we obtain a collection \mathcal{P} of edge-disjoint and internally disjoint paths covering all the edges of $C - \{e_1, e_2, \dots, e_m\}$ and $\psi = \psi_1 \cup \mathcal{P}$ is a graphoidal cover of G with no exterior vertices. Thus $G \in \mathcal{F}_a$.

Corollary 2.3 Let G be a block with $p \ge 3$. If there exists a connected subgraph H of G such that $H \in \mathcal{F}_a$, then $G \in \mathcal{F}_a$.

Proof Let $e \in E(H)$ and $v \in V(G) \setminus V(H)$. Since G is a block, e and v lie on a common cycle in G. By Theorem 2.2, $H \cup C \in \mathcal{F}_a$. Repeating this process we obtain a spanning subgraph H_1 of G such that $H_1 \in \mathcal{F}_a$ and by Lemma 2.1, $G \in \mathcal{F}_a$.

Theorem 2.4 Let $G_1, G_2 \in \mathcal{F}_a$ and $V(G_1) \cap V(G_2) \neq \emptyset$. Then $G_1 \cup G_2 \in \mathcal{F}_a$.

Proof Let $V(G_1) \cap V(G_2) = \{v_1, v_2, \dots v_n\}$. Let ψ_1 and ψ_2 be minimum acyclic graphoidal covers of G_1 and G_2 respectively so that all the vertices of G_1 are interior to ψ_1 and all the vertices of G_2 are interior to ψ_2 . Case i $E(G_1) \cap E(G_2) = \emptyset$.

Let P be the u-v path in ψ_2 having v_1 as an internal vertex. Let P_1 and P_2 denote respectively the u- v_1 section and v_1 -v section of P and replace ψ_2 by $(\psi_2 - \{P\}) \cup \{P_1, P_2\}$. Repeating this process for each vertex v_i we obtain an acyclic graphoidal cover ψ_3 of G_2 . Now $\psi_1 \cup \psi_3$ is an acyclic graphoidal cover of $G_1 \cup G_2$ with no exterior vertices.

Case ii $E(G_1) \cap E(G_2) \neq \emptyset$.

Let $E(G_1) \cap E(G_2) = \{e_1, e_2, \dots, e_m\}$. For each e_i , we replace the path in ψ_2 which contains e_i by the non trivial components of $P - e_i$. If a vertex of $V(G_1)$ is an internal vertex of some path in ψ_2 we proceed as in Case i to obtain a collection ψ_3 of paths such that $\psi_1 \cup \psi_3$ is an acyclic graphoidal cover of $G_1 \cup G_2$ with no exterior vertices. Also since G_1 and G_2 are connected and $V(G_1) \cap V(G_2) \neq \emptyset$, $G_1 \cup G_2$ is also connected and hence $G_1 \cup G_2 \in \mathcal{F}_a$.

We now proceed to characterize graphs with $\eta_a = q - p$. We first introduce a family of graphs.

Let $\mathfrak{G}(f)$ denote the collection of all blocks whose edge set can be decomposed into a cycle C and a collection \mathfrak{P} of internally dispoint paths such that each path P in \mathfrak{P} has $f \in V(C)$ as its origin and $|V(P) \cap V(C)| \leq 2$ (The collection \mathfrak{P} may be empty in which case the corresponding member of $\mathfrak{G}(f)$ is a cycle)

We observe that if $G \in \mathcal{G}(f)$ and G is not a cycle, then deg $f = |\mathcal{P}| + 2 = \Delta$. A member of $\mathcal{G}(f)$ is given in Figure 1.

Figure 1.

Theorem 2.5 Let G be a 2-connected graph with $p \ge 3$. Then $\eta_a = q - p$ if and only if $G \notin \mathcal{G}(f)$.

Proof If $G \in \mathcal{G}(f)$ then $\eta_a = d - 1$ and q - p = d - 2 where d is the degree of f and hence $\eta_a \neq q - p$.

Conversely suppose $\eta_a \neq q - p$.

Case i G is hamiltonian.

Since any graph consisting of a cycle with two non-adjacent chords is a member of \mathcal{F}_a it follows from Lemma 2.1 that $G \in \mathcal{G}(f)$.

Case ii G is non-hamiltonian.

By Theorem 1.7, G has a theta graph H.

Let
$$P_1 = (u, u_1, ..., u_n = v),$$

 $P_2 = (u, v_1, ..., v_m = v)$
and $P_3 = (u, w_1, ..., w_s = v)$

be the three paths of H. If there exists a path $P=(x_1,x_2,\ldots x_r)$ in G such that $x_1,x_r\notin\{u,v\}$ and $x_1,x_r\in V(H)$ then $H\cup P\in\mathcal{F}_a$ and hence by Corollary 2.3 $G\in\mathcal{F}_a$ which is contradiction. Suppose Q_1 is a u- y_1 path and Q_2 is a v- y_2 path. If $y_1\neq v$ and $y_2\neq u$ then $H\cup Q_1\cup Q_2\in\mathcal{F}_a$ and hence by

corollary 2.3 $G \in \mathcal{F}_a$ which is a contradiction. On the other hand if $y_1 = v$ then $H \cup Q_1 \cup Q_2 \in \mathcal{G}(u)$ or $H \cup Q_1 \cup Q_2 \in \mathcal{G}(v)$. Thus we see that $G \in \mathcal{G}(u)$ or $G \in \mathcal{G}(v)$.

Theorem 2.6 Let G be a graph with $\delta > 1$ and $\kappa(G) = 1$. Then $G \notin \mathcal{F}_a$ if and only if at least one end block of G is a member of $\mathfrak{G}(f)$ with f as a cut-vertex of G.

Proof Suppose there exists an end block B in G such that $B \in \mathcal{G}(f)$ and f is a cut-vertex of G. Then for any acyclic graphoidal cover ψ of G at least one vertex of $V(B) - \{f\}$ is exterior to ψ and hence $G \notin \mathcal{F}_a$.

Conversely suppose $G \notin \mathcal{F}_a$. Let m denote the number of blocks in G. We prove by induction on m that at least one end block of G is a member of $\mathcal{G}(f)$ with f as a cut-vertex of G.

Suppose m=2. Let B_1 and B_2 be the blocks of G. Since $G \notin \mathcal{F}_a$ it follows from Theorem 2.4 that at least one of B_1 , B_2 is not in \mathcal{F}_a .

Case i $B_1 \notin \mathcal{F}_a$, $B_2 \in \mathcal{F}_a$.

It follows from Theorem 2.5 that $B_1 \in \mathcal{G}(f)$ and since $G = B_1 \cup B_2 \notin \mathcal{F}_a$, f is a cut-vertex of G.

Case ii $B_1 \notin \mathcal{F}_a$, $B_2 \notin \mathcal{F}_a$.

Then $B_1 \in \mathcal{G}(f_1)$ and $B_2 \in \mathcal{G}(f_2)$ and since $B_1 \cup B_2 \notin \mathcal{F}_a$, either f_1 or f_2 is a cut-vertex of $B_1 \cup B_2$. Hence the result is true for m = 2.

We now assume that the result is true for any graph with m-1 blocks. Let G be a graph with m blocks, m>2 and $G\notin \mathcal{F}_a$. Let B be an end block of G. If $B\in \mathcal{G}(f)$ where f is a cut-vertex of G, then the proof is complete. Otherwise $B\in \mathcal{G}(f)$ where f is not a cut-vertex of G, or $B\in \mathcal{F}a$. Let $f_1\in V(B)$ be a cut-vertex of G. Let G_1 be the subgraph of G, obtained by removing all the vertices of $B-f_1$ then $G_1\notin \mathcal{F}a$. By induction hypothesis there exists an end block B_1 of G_1 such that $B_1\in \mathcal{G}(f_2)$ and f_2 is a cut-vertex of G_1 . If B_1 is an end block of G, the proof is complete. Otherwise the blocks G and G and G as the common vertex. Let G be the graph obtained by deleting all the vertices of G as the common vertex. Let G be the graph obtained by deleting all the vertices of G or G and G are G and G and G and G are G and G and G are G and G and G are G and G are continuing this process, we obtain an end block of G of the required type.

Acknowledgement

The authors are thankful to the referee for his helpful suggestions.

References

- [1] B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, *Indian J. pure appl. Math.* 18 (10) (1987), 882-890.
- [2] S. Arumugam B. D. Acharya and E. Sampathkumar, Graphoidal covers of a graph: a creative review, Graph Theory and Its Applications, Proceedings of the National Workshop, Manonmaniam Sundaranar University, Tirunelveli, Ed. S. Arumugam, B. D. Acharya and E. Sampathkumar, Tata-McGraw Hill (1997), 1-28.
- [3] S. Arumugam, J. Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, Discrete Math. 190 (1998) 67-77.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. (1969).
- [5] C. Pakkiam and S. Arumugam, On the graphoidal covering number of a graph, *Indian J. pure appl. Math.* 20 (4) (1989), 330-333.
- [6] C. Pakkiam and S. Arumugam, The graphoidal covering number of unicyclic graphs, *Indian J. pure appl. Math.* 23 (2) (1992), 141-143.