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ABSTRACT

Let a(G) and ©(G) denote the independence number and matching
number of a graph G, respectively. The tensor product of graphs G and H is
denoted by G x H. Let a (G x H) = max {a(G) . n(H), af(H) . n(G)} and
1 (G x H) = 21(G) . 1(H), where n(G) denotes the number of vertices of G. It is
easy to see that (G x H) > o (G x H) and 1(G x H) > 1(G x H). Several sufficient
conditions for a(G x H) > a(G x H) are established. Further, a characterization is
established for ©(G x H) = (G x H). We have also obtained a necessary condition
for o(G x H) = oG x H). Moreover, it is shown that neither the hamiltonicity of both
G and H nor large connectivity of both G and H can guarantee the equality of
o(G x Hyand a(G x H).

1. INTRODUCTION

By a graph we mean a finite, simple, undirected connected graph with at
least two vertices. We denote the number of vertices of a graph G by n(G). For
ScH(G), G[S] denotes the subgraph induced by S. The tensor product G x H, of
graphs G and H is the graph with (G x H) = V(G) x V(H) and E(G x H) =
{@x)(vy)} / uv € E(G) and xy € E(H)}. The cartesian product, G O H, of graphs
G and H is the graph with NG O H) = V(G) x V(H) and E(G 0 H) = {(ux)(vy)|
either # =v and xy € E(H) or x =y and uv € E(G)}. The strong product, G ® H of
graphs G and H is the graph with (G ® H) = V(G) x V(H) and E(G R H) = E(G x H)
U E(G O H). The lexicographic product, GxH, of graphs G and H is the graph with
WG*H) = V(G) x V(H) and E(G*H) = {(ux)(vy) | either uv €£(G) or u =v and
xy € E(H)}. The tensor product is also called as Kronecker product, direct product,
categorical product and graph conjunction. It is well known that tensor product is
commutative and associative.
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In general, if both G and H have some properties, then the product graphs
are ‘expected’ to have the same property. Except the tensor product of graphs, when
both G and H are connected, then the respective product graph is connected; however
this is not true with tensor product of graphs [13]. Further, if both G and H are
hamilton cycle decomposable, then the lexicographic product is hamilton cycle
decomposable [2], and in many instances the cartesian product G [ H is hamilton
cycle decomposable [12]. However G x H is not necessarily hamilton cycle
decomposable [1], when both G and H are hamilton cycle decomposable. Similarly
Gravier and Khelladi conjectured that if G and H have domination number [4] Y(G)
and y(H) respectively, then y(G x H) 2 y(G) . y(H). However, this conjecture was
disproved {7]. Hence, among the product graphs dealing with tensor product seems to
be difficult in many respects. But tensor product of graphs have many applications
[6] and [11].

The independence number, a(G), of the graph G is defined to be the
maximum number of mutually nonadjacent vertices in G. The matching number,
(G), of the graph G is defined to be the size of a maximum matching in G. Let M be
a matching in G. A vertex v of G is said to be M-saturated, if some edge of M is
incident with v, otherwise, v is M-unsaturated. A nontrivial walk # in G is called an
alternating walk if any two consecutive edges of the walk are in M and E(G)\M. An
alternating walk of G is called an M-aqugmenting walk if the end vertices of
the walk (not necessarily distinct) are M-unsaturated. A walk is said to be an odd
walk if it has odd number of edges. For a vertex v of G, the neighbour set of
v, Ng(v), is the set of vertices which are adjacent to v. For S ¢ W(G) we define

N = v Np)
veS .

A graph G is called a split graph if V(G) can be partitioned as S w K
where S is an independent set of G and G[K] is a complete subgraph of G.

A graph G is said to be H- free if G has no induced subgraph isomorphic
to H. For two graphs G and A we shall denote max {o(G) . n(H), a(H) . n(G)} by
(G x H) and 29(G).1(H) by ®(G x H). From the definition of tensor product of
graphs, it is easy to verify the following: (G x H) 2 oG x H) and (G x H) 2
(G x H).

Hedetniemi [5] conjectured that for all graphs G and H, the chromatic
number of G x H, (G x H) = min {y(G) , x(H)}, where x(G) is the chromatic
number of G. This conjecture is not yet settled. Similar to this conjecture one can
raise if (G x H) = (G x H) holds. Jha and S. Klavzar [8] established that for any
graph G and for any positive integer i, there exists a graph H such
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that a(G x H) > o(G x H) +i. Further Jha has obtained some results on ©(G x H) and
oG x H) in [9].

One may believe that if both G and H have some special properties then
it is likely that (G x H) = a(G x H). Here we present graphs G and H, both having
any one of the following properties, with a(G x H) > (G x H):

(i) triangle free

(ll) K|‘3 — free

(iii) Hamiltonian split graph.

Also, we can find a bipartite graph G and a nonbipartite graph H so that
oG x H)>a(G x H).

Herce characterizing the class of graphs for which (G x H) = o(G x H)
seems to be a difficult problem. Here we have established some sufficient conditions
for (G x H) > (G x H). These results are in Section 2.

In Section 3, we have established a characterization for (G x H)
= 1(G x H); and also, using this characterization, we have given a necessary condition
for (G x H)y=o(G x H).

Definitions that are not given here may be found in [3] .

2. INDEPENDENCE NUMBER OF TENSOR PRODUCT OF
GRAPHS

Theorem 2.1 Let G and H be two graphs such that (G x H) = a(H) . n(G).
Let L be a maximum independent set in H. If there exists a subset S of L such
that

(NS \N(L\ ) | +]SD . a(G) > | S| . n(G), then o(G x H) > a(G x H).

Proof. Let M be a largest independent set in G of cardinality a(G). Clearly,
from the definition of tensor product of graphs,

{M>x {N(S)\N(L\S)} } U {Mx L} U {{G)\ M} x {I\ S} }.

is an independent set in G x H. Consequently,
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Proof. By the definition of the tensor product of graphs, {(I{G)\ Ng(M)) xL} U
{M, x (V(H)\ L)} is an independent set of G x H. Hence.

(G x H) 2 |(G)\ Ng(M))| . |L| + (Gy) . IV(H)\ L]
> |(G) \ Ng(M))| . a(H) + o(H) . IN(M,)], by hypothesis,

= UG)|. (H)
=aGxH B
@
u :
U, Us U ;15
G H

Figure 1

Let H be a graph having the vertex set {v,, v, v3, v, V5 X, y} where the set
of vertices {v,, v, vs, v, vs} induces a clique and the pair {x, y} of vertices are
commonly adjacent to the vertices {v, s, V4, vs}. Let G and H be the two graphs of
Figure 1. By setting M = {u, us}, L ={w, x, y} and S = {u,} in Theoreom 2.3, we
conclude that o(G x H) > a(G x H). However, this conclusion cannot be obtained
using Theorem 2.1. In fact from the proof Theorem 2.3, we have a(G x H) 2 16.
But oG x H) = 16 follows from Theorem 2.2 of [9].

Theorem 2.4 Let G and H be two graphs such that a(G x H) = a(H) . n(G).
Let M be a maximum independent set in G and let G, = G[V(G) \ M]. If there
exists a subset S of V(G) with {Ne(S)) N M)\ (N(N(G1) \S)) " M)| . (WD \ o H)D >
ISi] . a(H), then oG x H) > (G x H).
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Proof. Let L be a maximum independent set in H. Clearly, from the definition
of tensor product of graphs, {(Na(S1) N M) \ (Ve(Gy \ S) N M)}<{V(H) \ L}
U{L x M} U {M(G)\S}) x L} is an independent set in G x H. Hence,

G x H) 2 |[(Na(S$1) N M\ (N(V(G) \ ) N M)| . [P(H) \ L+ L] . M) +
GO\ 1L

>8] . a(H) + a(H) . |M] + [(G))\S)| . a(H), by hypothesis
=o(H). (IS |+M] + [(G)\S||)

=o(H) . n(G)
=a(GxH) W
Uy
Us
u; u; 11'4 u'(,
G
Figure 2

For the graph G of Figure 2 and H = K, by setting M = {u ugu}
and §, = {u,}, in Theorem 2.4, we conclude that a(G x H) > o(G x H). Further,
neither Theorem 2.1 nor Theorem 2.3 can be applied to conclude that
o(G x H)>a(G x H). It is also an example for K- e free graphs G and H having
the property (G x H) > (G x H).

Here we give some classes of graphs having some special properties, with
oG x H)> oG x H).

First we construct k~connected graphs G and H such that a(G x H) >
5

(G x H). Let G be the graph described in Figure 3, where /(G) = |JV; and each
i=1

Vi have k independent vertices. A pair of lines between V; and ¥; means V; U ¥;
induces a complete bipartite graph with bipartition ( ¥, ¥;).
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V| VZ

Each Vj has k independent vertices and parallel lines between V;
and ¥ means all possible edges between them.

Figure 3

Set G= H. Then a(G x H) > a(G x H), follows from Theorem 2.1, by setting
S="Vsand L = V3 U V4 U Vs. Though the graph G has the following properties,
we still have a(G x H) > o(G x H):

1. Both G and H are bipartite graphs.
2. a(G) > n(G)/2and a(H)>n(H)/2.
3. Both G and H are k-connected graphs.

Remark 1. Infact, using Theorem 2.1, the above construction shows
k-connected graphs G and H such that oG x H) > a(G x H) + ¥, for any
k>1. 1

Remark 2. If G and H satisfy the conditions of Theorem 2.1, we can
immediately conclude that G * Km and H* Km also satisfy the conditions of

Theorem 2.1 where Kmis the complement of K, But G*Km is an

m-connected graph. Hence constructing k-connected graphs G and H such that
a(G x H) > o(G x H) is not difficult.
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We can also construct 4-connected hamiltonian split graphs G and H such
that (G x H) > a(G x H).

Up
ou, L7 hdg! V54
a e Uy OUs+y ®q; V2 V542 oh,
2o ' ) M *bs
ea, by : oby
oh
oy, oy
G H
The parallel lines represent all The parallel lines represent all
possible edges between {a,,a;} and possible edges between {b2,b354bs}
{uyus, . . . ,u;} and {as,as} and and {Vii1,Vei, - - - 5V5).
{userstisaz s . . ., U}
Figure 4

Let G be the graph having the vertex set {u, u), 4, ,..., U, ay, Gy, a3, a4}
where the set of vertices {uq, u, #, ,..., #,} induces a clique and the pair {a,, a;}
(resp. {as, as}) of vertices are commonly adjacent to the vertices {u), s, ..., s} (resp.
{use1, Usrz,..., uy}), see Figure 4. Clearly it is a split graph. Similarly we define
another split graph H as follows: Let V(H) = {v;,v, . . . ,Va5, by, ba, b3, by, bs}. Here
the set of vertices {,v,, . . . ,v,s} induces a clique. Further, the vertex b, is adjacent

to wvi,wy,. .., v, and each b;, 2< i < 5, is adjacent 10 Vyi, Vsug, . . . , Vo5 See Figure 4.
Clearly H is a split graph and a(G x H) > (G x H): this inequlity can be verfied by
setting L = {by, by, b3, by, bs} and S= {b,} in Theorem 2.1.

In the above example, if s is large enough, then both G and H are
s-connected hamiltonian graphs with o(G x H) > o(G x H). In fact, it can be shown
thata(Gx H) 2 o(Gx H)+3s. A
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v v, A U U3
V3 V4 Uy Us Ug U
G H

Figure §

In the graphs of Figure 5, G is a bipartite split graph and H is
a non bipartite graph and a(G x H) > o(G x H); this can be obtained by setting
L={u,, us, ug, u,} and S = {u,} in Theorem 2.1.

3. MATCHING NUMBER IN TENSOR PRODUCT OF
GRAPHS

Let G and H be two simple graphs. It is clear that if e = ¥v € E(G) and
J=xy € E(H) are edges in the graphs G and H respectively, then these two edges give
two independent edges, namely, (#, x Xv,y) and (v,x)(%,y) in G x H. In general, the
maximum matchings M and M; of G and H, respectively, give a matching, say, M,
of G x H with 2 [M] . |M] edges, that is |M'| = 2 ¢(G) . ©(H). In the sequel, M always

represents the matching in G x H obtained as above.
We need the following Theorem to prove our result.

Theorem A [3,p 70] A matching M in G is a maximum matching if and only if
G contains no M — augmenting path. W

Theorem 3.1 Let G and H be two graphs with maximum matchings M and M,,

respectively. Then (G x H) > 1(G x H) if and only if any one of the following
is true:
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(i) Either G has an M- augmenting walk W (not necessarily open) in which each
edge of G in W is repeated at most twice in the walk or A has an
M,- augmenting walk W, (not necessarily open) in which each edge of H in
W, is repeated at most twice in the walk.

(ii) Both G and H do not have perfect matchings.

Proof. Let M and M, be maximum matchings in G and H, respectively.
By definition, 7(G x H) = |M|. First we shall prove that if there is an augmenting
walk as defined in (i) of the theorem, then (G x H) > 1(G x H).

Without loss of generality let us assume that ¥, = xo, X, . . . , X201 be @
shortest M)- augmenting walk in A and hence W, is of odd length satisfying the
conditions of (i) of the theorem. Let e = ab be an edge of M in G. Then,
Wo= (a,x)(b,x Xa,x)b,x,)...(bx, )isan M'- augmenting path in G x H,
since M cannot saturate a vertex whose second coordinate is X, or x,.; and W, is a
path is guaranteed by the fact that each edge of G in W, is repeated atmost
twice in ,. Therefore M is not a maximum matching of G x H, by Theorem A.
Hence (G x H) > y(G x H). Similar argument also holds if G has an M-augmenting
walk of odd length satisfying the conditions of (i) of the theorem.

Next we shall prove that, if both G and H do not admit perfect
matchings, then W(G x H) > t(G x H). Let x, (resp. },) be an M- unsaturated (resp.
M- unsaturated) vertex in G (resp. H). Let xox; and yg, be edges in G and H
respectively. Then (x,, y1)(x1, yo) U Misa matching in G x H and hence
WG x H) > (G x H).

Conversely assume that ©(G x H) > 1(G x H). Let M’ be a matching in
G x H obtained by the maximum matching M of G and a maximum matching M, of
H. By hypothesis, M is not a maximum matching in G x H. Let W = (xo, y)
(%1, )% ) - - - (¥2n1, 2r1) be a shortest M -augmenting path in G x H, by Theorem A.

Case (i) Either x, and x3,., are M- unsaturated vertices in G or y, and ys,.) are
M,- unsaturated vertices in H.

Without loss of generality assume that x, and xa,, are M-unsaturated
vertices of G. W defines an M- alternating walk W = x, x| X3... X2, of odd length in
G (since (x;, y)(Xw1, Vi+1) is an edge of G x H, xxi € E(G), 0 <i < 2n-2). This
W must be an M-augmenting walk, since M arises out of M and M, of G and H,
respectively. From W we delete the edges of closed subwalk(s) of even length(s), if
any; the resulting walk, say, /), is of odd length in which no edge is repeated more
than twice, see Figure (6).
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A maximum matching M of G is {x,xz, x3x4, Xsxe, X7xg} and a maximum
matching M, of H is {yy1,y2ys}. Clearly xoxixaxsxaxixsxsxexsxsxaxixo is an alternating
walk W defined by the M -augmenting path (xoyo)(xi)1)(x2)e) (ea1) (xapo)(x192)
(x2,y3)(x5,Y2)(x6,¥3)(X7,Y2) (X8, ¥3) (X2, Y1) (X 1,30} (x0,y1) of G x H. Clearly
W) = XxoX| X2 Xs Xg X7Xg X2X1Xo is obtained from W by deleting the edges of the
closed subwalk x | x;x3x4x,.

Figure 6

A similar arugment holds if both y, and ys,.; are M~ unsaturated vertices
of H.

Case (ii) Exactly one of the two vertices {xo,xs.q} is an M- unsaturated
vertex in G.

Without out loss of generality, assume that x, is an A~ unsaturated vertex
in G. Then y», , must be an M,— unsaturated vertex in H. For otherwise (Xz.1, }2-1)
would be an M — saturated vertex, contradicting the fact that ¥’ is an M - augmenting
path. As x, is an M- unsaturated vertex in G and y»,., is an M, unsaturated vertex in
H, both G and H do not have perfect matchings. W

Corollary 3.2 Let G be a graph containing a perfect matching and let H
be a bipartite graph, then ©(G x H) = t(G x H).
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From (4) and (5),

oH).n(G) = w(GxH)

Therefore, by the definition of a(G x H),

G x H) = o(H) . n(G)<a(G x H) (6)

But it is clear that o(G x H) = o(G x H) (@)

From (6) and (7) we have a(Gx H)=a(GxH) B
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