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Abstract

This paper presents two new algorithms for generating (n,2) de Bruijn
sequences which possess certain properties. The sequences generated by the
proposed algorithms may be useful for experimenters to systematically
investigate intertrial repetition effects. Characteristics are compared with those
of randomly sampled (»,2) de Bruijn sequences.

1. Introduction

Assume n symbols which, without loss of generality, we denote by 1, 2,...,

n-1, n, with the natural order 1<2< -+ <n-1<n. A n-symbol m-tuple de Bruijn
sequence (or (n,m) de Bruijn sequence), is a string of #” symbols 5,5,...5 . Such

that each substring of length m,

SiaSivzeeSiam® M
is unique with subscripts in (1) taken modulo n". For m>2 and n>2, there are
N= [(,,_1) !]"'"' .p"'-m (n,m) de Bruijn sequences (Fredricksen [3]). For example,

there are 36 pairs (i.e., m=2) which may be formed using #»=6 symbols. The
number of (6,2) de Bruijn sequences is over 3.87x10%.

During the 70s-80s, de Bruijn sequences were well studied and several
algorithms have been proposed for generating such sequences, e.g., Fredricksen
and Kessler [4], Fredricksen and Maiorana [5], and Ralston [10]. Most of those
proposed algorithms use concepts of either finite field theory or combinatorial
theory to generate a single (n,m) de Bruijn sequence, but in addition, there is a
well-known algorithm to sample, with equal probability, “random” (n,m) de
Bruijn sequences [1]. An excellent survey has been provided by Fredricksen
[31-
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Owing to the special properties of de Bruijn sequences, there are various
recent applications of (n,m) de Bruijn sequences, such as the planning of
reaction time experiments (Emerson and Tobias [2] and Sohn et al. [11]) and 3-
D pattern recognition (Griffin et al. [6], Hsieh [7 * 9], and Yee and Griffin [12]).
Hsieh [8] describes some of these recent applications.

In the reaction time experiment problems in which » stimuli are used and
the effect of the preceding stimulus is considered, the (n,2) de Bruijn sequences
represent the order of the stimuli (Emerson and Tobias [2], Sohn et al. [11]).
The subject selects and executes a response depending upon the identity of each
stimulus and his or her reaction times (RTs) are recorded and analyzed. Such a
(n,2) de Bruijn sequence should have the properties that (i) each stimulus
appears equally often and (ii) is preceded equally often by itself and by the other
stimuli. Sohn et al. [11] presented sequences of trials that exhibit two
characteristics which are intended to balance out practice effects and/or intertrial
repetition effects in experiments.

The present paper, after reviewing the two criteria of Sohn et al., proposes
two new and efficient algorithms to generate (n,2) de Bruijn sequences which
are judged favorably by these criteria.

2. Two Criteria for (#,2) de Bruijn Sequences

Sohn et al. [11] defined two criteria for measuring the quality of various
(n,2) de Bruijn sequences, namely, balance and uniformity. The balance
criterion measures the extent to which the average positions of the stimuli differ;
balance aims to avoid the influence of practice effects during the blocks of trials.
The uniformity criterion measures the interval between appearances of each
stimulus condition in the sequence; uniformity aims to avoid intertrial repetition
effects. For a given (n,2) de Bruijn sequence s, let P(i,®) be the sum of positions
of component i and [(i/) be the interval between the /™ presentation of a symbol
i and the (j+1)" presentation of that same i (where / is not defined cyclically).

We also define the max norm as |u], = max{|ju,|.|u,],...|u,[} for ueR", and
]l =n}z}x{|uul} for ue R™".

Definition 1. The balance of a (n,2) de Bruijn sequence s is

7(s) =|P(,0) - n(n* +1)/2]_-
(Note that n(n’+1)/2 is the average of the sum of the positions for the
components in sequence s)

Definition 2. Sequence s is said to be more balanced than sequence s’ if
7(s)<7(s’), and sequence s is said to be perfectly balanced if 1(s)=0.

Remark. Perfectly balanced sequences do not always exist, e.g., the minimum
balance of the (3,2) de Bruijn sequences is 2 (Sohn et al. [11]).
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Definition 3.. The uniformity of a (n,2) de Bruijn sequence s is

ots)=li-.

Example 4. The balance and uniformity of the (3,2) de Bruijn sequence s=1-2-
3-1-3-3-2-2-1 are 7(s)=max{|1+4+9-15], |2+7+8-15|, [3+5+6-15|}=2, and &(s) =

M-;ax {| 1G, j)- "l} =Max{|3-3|,|5-3,|5-3|,|1-3],|2-3|,|1-3]|}=2, respectively.

3. New Algorithms

This paper is concerned with the generation of (n,2) de Bruijn sequences
with some balance and uniformity. We will define a sequence by constructing a
square matrix A4, where A=k substring (i) is in the K position of the

sequence s, i.e., 5, =;j and 5, = ;.

Algorithm 1.
Step 0. k&2, i«0, A=[0,]e R™", A[1,1]¢1
Step 1. While (i+1<n-1) do
begin
i+, jeit]
while (j<n) do
begin
if j=n, then
Alijlek, A[j,i+1Jek+], A[i+1,i+1])ek+2, kekt3, jej+1
else A[ijlek, Alj,ilk+]1, ke—k+2, jej+1
end (while)
end (while)
Step 2. A[n-1,n]n’-2, A[n,n]en*-1, A[n,1]n’

Example 5. For n=5, Algorithm I generates the matrix 4:

1 2 3 4 5
111 2 4 6 8
213 10 11 13 15
35 12 17 18 20
47 14 19 22 23
5125 9 16 21 24
Thus the (5,2) de Bruijn sequence is given by 1-1-2-1-3-1-4-1-5-2-2-3-2-4-2-5-

3-3-4-3-5-4-4-5-5 (i.e., the first subsequence is 1-1, and the second subsequence

is 1-2 etc.) with 7(s)=44 and o(s)=4. Matrix A4 is used to represent the order of
subsequences appearing in the (n,2) de Bruijn sequence.
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Theorem 6. For any n23, Algorithm I generates a (n,2) de Bruijn sequence s.
Moreover, the uniformity of this sequence is o(s)=n-1.

Proof. (Omitted) Algorithm I assigns 1,2,..., n’ to matrix 4 as shown in the
Appendix. By examination of the matrix, it is straightforward to prove that the
uniformity of the sequence is o(s)=n-1. a

Theorem 7. For any n23, the minimum uniformity measure ofs) for all (n,2) de
Bruijn sequences s is o*=n-1.

Proof Firstly, we prove that, for any (n,2) de Bruijn sequence s, o (s)2n-1.
There are n diagonal cells of 4, which implies that there is more than one row
with the consecutive assignments of either (A4[i,i]=k and A[i,i+j]=k+1) or
(A[i,i1=k and A[ii5]= k+1) for some j. This further implies that /(i,k)=1.
Following Definition 3, we have o(s)2n—1. However, Theorem 6 states that
Algorithm I generates a (1,2) de Bruijn sequence s with o(s)=n-1. This implies
that the minimum value of o is n—1. O

Algorithm I generates a sequence with uniformity o*(s)=n-1 for n23;
however, the balance 7(s) of the sequence is rather large. The second algorithm
is intended to generate a more balanced (n,2) de Bruijn sequence s, i.e, with
lower 1(s).

Algorithm IL
Step 0. Construct the Latin square L=[L;] as shown in Figure 1. 4=[0,]e R™".
ke1, ie1.
Step 1. While (k<’-2n) do
begin
assign k to the cell of A[i,j], where
J=argmin{L[i, j]| Ali, /1= 0, L[i, j] 0}
J

b, ke—k+1
end (while)
Step 2. A[j,nlek, jen, kek+1
While k<’ do
begin
Aljjlk, Aljj-11ek+1, ke—k+2, jej-1
end (while)

Theorem 8. Algorithm II generates a (n,2) de Bruijn sequence s for n>3.

Proof. Firstly, we prove that the last assignment is either A[3,1]=n"—2n (n is

odd) or A[4,2]=n*-2n (n is even) in Step 1. Let GW)={[ij] | L[ijl=v,

v=0,1,2,...,n-1}, thus we have |G(v)|=n.

(i) When 7 is odd, we have G(n-2)={[1,n-1],[2,1),[3,1},[4,2],...,[n-1,n-3],[n,n-
2]}. This implies that all the pairs in this set construct a circuit starting at
[1,n-1] and ending at [3,1]. Since for each row of matrix A4, the cell with
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smaller L[i,j] (except zero) has higher priority to be assigned. This further

implies that when the cells in G(n-2) are assigned, all cells A4[i,/], where

[i/1eG(), v=1,2,..., n-2, have been assigned. Since fIG(v)I = n? —2p- thus
v=}

we have A[3,1]=n’-2n.

(ii) When n is even, we have G(n-2)={[1,n-1],[2,n],[3,1],[4,2],...,[n-1,n-31,[n,n-
2]}. This implies that all the pairs in this set construct two circuits, one
starting at [1,n-1] and ending at [3,1], and another starting at [2,n] and
ending at [4,2]. Note that the second circuit travels [n, n-2]. Thus Step 1 of
Algorithm II travels the first circuit in G(n-2), follows the pair [1,n] in G(n-
1), then travels the second circuit in G(n-2). Similarly, since for each row
of matrix A, the cell with smaller L[i,j] (except zero) has higher priority to
be assigned. This further implies that when the cell [4,2] is assigned, all
cells A[ij] (except for [2,n]), where [i,jleG(v), v=1,2,..., n-2, have been

. . n-3
assigned. Since +(G(n-2)|-1) "'ZIG(V)|= -2, » thus we have
v=l
A[4,2)=n*-2n.
Therefore, in Step 2, we assign n’=2n+1 to either cell A[1,n] (when » is odd) or
cell A[2,n] (when » is even), and n’-2n +2 to n’ to the other shaded cells of

Figure 1 in the order specified by Step 2. O
iV 1 2 3 n-2 n-1 n
1 0 1 2 n-3 n-2 n-1
2 n-1 0 1 n-4 n-3 n-2
3 0

n-5 n-4 n-3

W
=10
N

n-2 3 4
n-1 2 3

$a
S
[
[oy
o
ot

Figure 1. The Latin square L.

Example 9. For n=5, Algorithm II generates matrix A:

1 2 3 4 5
125 1 6 11 16
2124 23 2 9 13

3115 22 21 3 7
4110 12 20 19 4
505 8 14 18 17
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Thus, the (5,2) de Bruijn sequence is 1-2-3-4-5-1-3-5-2-4-1-4-2-5-3-1-5-5-4-4-
3-3-2-2-1, i.e., the first subsequence is (1,2), and the second subsequence is (2,3)
etc., with balance and uniformity #(s)=6 and o(s)=5, respectively.

If we compare Example 5 with Example 9, it is clear that Algorithm II can
reduce 1(s) significantly (from 44 to 6) with a slight increase of o(s) (from 4 to
5). To further reduce the values of #(s) and ofs), we may employ a simple one-

to-one mapping of the set {1,2,...,n} onto itself in the elements of its
corresponding matrix 4.

Example 10. Consider Example 9 again. If we apply the mapping

,,zo(t)={6+t 'f 1<20 for 1<r<25
t~19 if 20<1<25
to the elements of matrix 4, then we have

) 1 2 3 4 5_

116 7 12 17 22

2|5 4 8 15 19

312t 3 2 9 13|

4116 18 1 25 10

5|11 14 20 24 23]

The new sequence has =27 and o=4.

Based on this concept, m addition to the orlgmal sequence by Algorlthm
II, we may employ the other n-1 p0551ble mappings of elements for 1,2,..., n* in
the matrix 4. More specifically, the i/ mapping, 2 <i < n?, is defined as:

7.(6) = (7 =i+1)+t ff t<i )
t—i+1 ifist<n
Among all the possible n sequences obtained by this mapping of the sequence

constructed by Algorithm II, the sequences with minimal values of o and r are
both reported in Table 1.

for 1<t<n®.

4. Numerical Results

Table 1 compares the balance and uniformity (7,0) of (»n,2) de Bruijn
sequences generated by Algorithms I and II with the “random” (n,2) de Bruijn
sequences generated by Emerson and Tobias [2] for 3<1<30. In the case of
Algorithm 11, the characteristics of the sequences obtained by the optimal
mappings with respect to both balance and uniformity criteria are shown.

In Table 1, we observe that :

1. Although Algorithm 1 generates sequences with optimal uniformity
(minimum g), the corresponding balance criterion 7 is rather large.
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2. The average values of (7,0) for the random (n,2) de Bruijn sequences
generated by the computer program of Emerson and Tobias are relatively
large for each n23. For example, when n=9, the mean values of (z,0) for
these random sequences are (122.76, 31.35). Algorithm II generates a
sequence which, by a mapping x described above, has characteristics (7,0) =
(32,11) if the balance criterion o is optimized, and (7,0) = (88,10) if the
uniformity criterion zis optimized. The approach of Sohn et al. yielded (,0)
=(21,32) and (50,8), when applying the balance and uniformity criteria,
respectively.

3. The integer linear programming approach of Sohn et al, because it
enumerates all feasible (,2) de Bruijn sequences, is very time consuming and
therefore not practical in general, e.g., for n210. Even when the Lagrangian
relaxation methodology is used for the reduction of constraints in the original
integer linear programming, the CPU time increases dramatically as the
problem size increases. However, Algorithms I and II above are simple and
efficient to implement.

4. Note that the sequences constructed by Algorithm II exhibit low values for
both 7 and o simultaneously, especially for those sequences chosen to
minimize 7. For example, when n=9, (7,0)=(32,11) is obtained by Algorithm
(I). On the other hand, the results of Sohn et al. show that (7,6)=(21,32)
with respect to balance criterion and (7,0)=(50,8) with respect to uniformity
criterion. It is clear that if both balance and uniformity are important in the
design of the experiment, then constructing a sequence using Algorithm II
and selecting the best mapping with respect to the balance criterion might be
a better alternative, since for balance 7 we have 32<50 and for uniformity o
we have 11<32,

5. Conclusions

In this paper :

1. we have presented two new algorithms for generating (n,2) de Bruijn
sequences with desirable balance and uniformity characteristics. As shown,
both algorithms can be easily implemented for large values of n.

2. we have reported numerical results for n<30 and compared the balance and
unifority of the generated sequences with randomly sampled (n,2) de Bruijn
sequences. The results show that the sequences generated by the new
algorithms possess very good characteristics for both criteria simultaneously.

The sequences generated by the proposed algorithms might be useful for
experimenters who wish to systematically investigate intertrial repetition effects.

If one wishes to construct a longer sequence by repeating stimulus conditions,

e.g., doubling or tripling the length of sequences, the strategies of Sohn et al. [11]

can be employed to extend the sequences obtained by the new approach.

Moreover, following Hsieh’s [8] approach, one can generate a class of (n,2) de

Bruijn sequences based upon the (seed) sequence generated by either one of the

new algorithms.
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Algorithm I generates a sequence with optimal value of the uniformity
criterion o. It would be interesting to find optimal values or upper and lower
bounds for the balance criterion 7. We offer the following conjecture:

Conjecture. For every n>4, there exists a perfectly balanced (n,2) de Bruijn
sequence s, i.e., a sequence s for which 7(s)=0.

Acknowledgements : This research was partially supported by National Science Council, Taiwan,
under grant No. NSC 89-2213-E-150-023 and the overseas research fellowship by National Science
Council, Taiwan, under grant No. 39190F.

REFERENCES

[1] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory,
McGraw-Hill, Singapore, 1993.

[2] P.L. Emerson and R.D. Tobias, Computer program for quasi-random
stimulus sequences with equal transition frequencies, Behavior Research
Methods, Instruments, & Computers, 27 (1995), 88-98.

[3] H. Fredricksen, A survey of full length nonlinear shift register cycle
algorithms, SIAM Review 24 (1982), 195-221.

[4] H. Fredricksen and I. Kessler, Lexicographic compositions and de Bruijn
sequences, Journal of Combinatorial Theory 2 (1981), 63-76.

[5] H. Fredricksen and J. Maiorana, Necklaces of beads in & colors and k-ary de
Bruijn sequences, Discrete Mathematics 23 (1978), 207-210.

{6] P.M. Griffin, L.S. Narasimhan, and S.R. Yee, Generation of uniquely
encoded light patterns for range data acquisition, Pattern Recognition 25
(1992), 609-616.

[7] Y.C. Hsieh, A note on the structured light patterns for three-dimensional
imaging systems, Pattern Recognition Letters, 19 (1998), 315-318.

[8] Y.C. Hsieh, De Bruijn sequences - generation, reproduction and applications,
Ars Combinatoria 63 (2002), 257-272.

[9] Y.C. Hsieh, Decoding structured light patterns for three-dimensional
imaging systems, Pattern Recognition, 34 (2001), 343-349.

[10] A. Ralston, A new memoryless algorithm for de Bruijn sequences, Journal
of Algorithms 2 (1981), 50-62.

{117 H.S. Sohn, D.L. Bricker, J.R. Simon and Y.C. Hsieh, Optimal sequences of
trials for balancing practice and repetition effects, Behavior Research
Methods, Instruments, & Computers, 29 (1997), 574-581.

[12] S.R. Yee, and P.M. Griffin, Three-dimensional imaging system, Optical
Engineering 33 (1994), 2070-2075.

284



Table 1. Comparison of results for various approaches.

Emerson and Tobias [2] Sohnetal. [11] New

n (1995) (1997) Algorithms
T o wrt r{wrto I Il it Il
(M,SD) (M,SD) (.0 | (o) (7,0) (o) | wrt. 7| wrt. o
(z.0) (r,0)

3 (4.98,2.26) (1.94,044) [(2*2%)] (4,2*) | (8,2% (2%,2%) | (2%2% | 2*.2%)
4 (11.88,4.52) 4.10,1.29) | (0*%4) | (5.3%) | (21,3%) (6,5) 6,5) | (13,3%
5 (23.04,7.32) (7.19,1.94) | (0*,9) [(20.4%)| (44,4%) (6,5) 6.5 | (244%
6 | (38.14,10.81) | (11.60,2.84) [(0*,10)(20,5*)| (80,5*) (20,8) | (12,8) | (33,5%
71 (59.01,14.80) | (16.43,3.64) | (1,13) |(44,6%)| (132,6*) | (15,8) | (15.8) | (49,6%
8 | (88.35,18.90) | (23.43,4.46) |(15,21)|(44,7%)| (203,7%) | (35,11 | (2L,11) | (67,9)
9 | (122.76,23.44) | (31.35,5.28) |(21,32){(50,8*)| (296,8*) | (40,11) | (32,11) | (88,10)
10 | (163.94,28.64) | (40.69,6.51) | NVA | N/A | (414,9%) | (64,14) | (27,14) | (110,13)
11} (209.52,33.52) | (52.96,7.34) | N/A | N/A | (560,10*) | (45,14) | (45,14) 1(123,10%)
12 | (271.53,38.49) | (65.84,8.16) | NVJA | N/A | (737,11*%) | (111,21) | (28,21) | (28,21)
13| (344.46,44.54) | (76.51,9.34) | N/A | N/A | (948,12%) | (66,17) | (66,17) [(172,12*%)
14 | (410.51,49.90) |(94.35,10.34)| N/A | N/A |(1196,13%) ] (132,20) | (50,20) | (217,17)
15 | (500.37,56.58) |(117.45,11.72)] N/A | N/A |(1484,14*)| (155,22) | (55,22) | (55,22)
16 | (579.23,62.67) |(133.65,11.87)] N/A | N/A |(1815,15*)] (175,23) | (65,23) | (65,23)
17 | (702.03,69.03) |(148.53,13.76)] N/A | N/A |(2192,16*) | (120,23) | (120,23) [(294,16*)
18 | (814.57,75.19) [(173.59,14.39)] N/A | N/A |(2618,17*)| (260,27) | (83,27) | (83,27)
19| (939.09,81.94) [(192.32,16.25)] N/A | N/A |(3096,18*) | (153,26) | (153,26) [(367,18*)
20 | (1078.62,89.15) |(224.18,17.04)] N/A | N/A |(3629,19*) | (321,37) | (90,37) | (90,37)
21 | (1241.96,95.22) |(253.75,17.74)] N/A | N/A }(4420,20*) | (310,32) | (110,32) | (110,32)
22 |(1396.91,102.54) |(276.34,18.91)|] N/A | N/A |(4872,21*) | (340,32) | (122,32) | (539,29)
23 }(1586.52,109.52) {(320.10,19.52)} N/A | N/A [(5588,22*) | (231,32) | (231,32) |(537,22%)
24 1(1781.80,117.16) {(351.72,20.85)] N/A | N/A [(6371,23*) | (505,45) | (135,45) | (135,45)
25 }(1995.04,123.47) |(381.81,22.24)] N/A | N/A |(7224,24%)] (356,37) | (244,37) | (244,37)
26 |(2189.07,123.47) [(410.06,23.83)] N/A | N/A |(8150,25*) | (480,41) | (170,41) | (170,41)
27 | (2439.65,138.25) [(482.74,23.83)] N/A | N/A |(9152,26*) | (481,43) | (221,43) | (221,43)
28 | (2684.85,147.00) |(502.71,26.34)] N/A | N/A [(10233,27*)| (635,53) | (173,53) | (173,53)
29 | (2969.65,155.80) [(583.63,26.55)] N/A | N/A |(11396,28*)| (378,41) | (378,41) |(852,28%)
30 }(3227.50,160.60) |(580.44,28.06)] N/A | N/A |(12644,29%)] (836,57) | (225,57) | (225,57)
*optimal.

N/A : not available by integer programming approach due to CPU time limit 86,400 seconds.
w.r.t. © with respect to.
7(M,SD) : mean and standard deviation of r(based upon 1000 random sequences).

o (M,SD) : mean and standard deviation of o (based upon 1600 random sequences).
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98¢

Matrix A constructed by Algorithm I.

s

Appendix

1 2 3 4 i-1 i i+1 n-2 n-1 n
1 2 4 6 2(i-2) 2(i-1) 2i 2m-3) | 2(n2) | 2(n-1)
3 2n 2n+l | 2n43 2n+2(i- 2n+ 2n+2(i- 4n-9 4n-7 4n-5
4y+1 2(i-3)+1 2)+1
5 2n+2 4n-3 4n-2 4n+2(i-6) | 4nt+2(i-5) | 4nt2(i-4) 6n-14 6n-12 6n-10
7 2n+4 4n-1 6n-8 6n-8+ 6n-8+ 6n-8+ 8n-21 8n-19 8n-17
26-5)-1 | 2G-4)»1 | 2(3-3)-1
23i-1)-1 | 2n+2(i-3) ant | 6n-8+ 262)n- | 26-2n- | 2(G-2)m- 2(-1 2(-Dn- | 2(-Dn-
2(i-6)+1 | 2(i-5) (2241 | (242 | (-2)*+4 G-1)%-5 | G-1D)-3 | @11
2i-1 | 2n+2(3i-2) 4nt | 6n-8+ 26-2n- | 20-2n- | 2(-2)m- 2in-i&-5 | 2in-#-3 | 2in-i*-1
2(i-5)+1 | 2(i-4) G-2+3 | G-+ | G-1)+2
2(i+1)-1 | 2n+2(i-1) an+ | 6n-8+ 2-2)n- | 2(6-2)n- | 2in-f+1 2+ Dn- | 2(#Dn- | 2(+D)n-
23i-4)+1 | 2(i-3) (-2°+5 | (i-1)+3 +1)%-5 | @+D%3 | @+D*1
2(n-2)-1 4n-8 6n-13 | 8n-20 2(-)n- | 2in-i*-4 | 2(+1)n- n-8 n-7 n’-5
(i-1)°-4 (i+1)°4
2(n-1)-1 4n-6 6n-11 8n-18 2(-Dn- | 2in-i*-2 | 2@+)n- n*-6 n*-4 n-2
(i-1)°-2 (i+1)*-2
n 2n-1 4n-4 6n-9 2(-2n- | 2G-Dn- | 2in-i n*-9 n’-4 n’-1
-2y’ @-1y’




