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Abstract

We show that every hamiltonian claw-free graph with a vertex z
of degree d(z) > 7 has a 2-factor consisting of exactly two cycles.

1 Introduction

All graphs considered in this paper are simple and undirected. The vertex
set of a graph is V, and E is the edge set. For notation not defined here we
refer the reader to [1). The neighborhood of a vertex v is denoted by N(v),
the degree of a vertex v is d(v) = |[N(z)|. If X C V is a set of vertices,
G[X] stands for the subgraph on X induced by G. The complete bipartite
graph K 3 is also called the claw, and a graph is said to be claw-free if it
does not contain any induced copies of K} 3.

Hamiltonicity of graphs has been studied widely, and lately a lot of
the conditions that imply a graph to be hamiltonian were shown to be
sufficient to also guarantee the existence of a wide range of 2-factors. But
what can we say when we assume hamiltonicity as one of the properties of
the graph? What kind of conditions will yield what kind of 2-factors? This
paper focuses on the existence of 2-factor consisting of exactly two cycles,
we will call such a factor a 2C-factor.

Consider the following family G of graphs: Let G(V, E) be a graph.
Then G belongs to G if

1. For some k > 5, V is the disjoint union of vertex sets V;,V3,V3,...V}
with (Iet Vk+1 = 1/1)’
(@) Vi > 1forall1<i<k,
(b) |Vi| =1 for at least five different indices,
() Vil +|Vipr| <4 forall1<i< k.
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2. E={w|u,veV;UVipa for some 1 <i < k}.

It is easy to observe that every graph in G is hamiltonian, but no graph in
G contains a 2C-factor. Further note that G contains graphs with minimum
degree §(G) = 4, maximum degree A(G) = 6 and average degree d(G) >
5 — ¢ for every € > 0. Consider for instance the graph G € G with V| =
Vsl = V| = |Vl = Vel = 1, |Val = |Val = [Val = [Va] = 3 and [Vao| =
Vil =...= Vil =2. )

No hamiltonian graphs with average degree d(G) > 5 which do not
contain a 2C-factor are known. On the other hand, the best known bound
for the minimum degree forcing the existence of a 2C-factor is the following
theorem by Gould and Jacobscn.

Theorem 1 [3] Let G be a hamiltonian graph on n > 8 vertices with min-
imum degree 6(G) > 5n/12. Then G contains a 2C-factor.

There are no nontrivial bounds for the maximum degree in this setting of
general graphs, as the graph obtained from joining an (n — 1)-cycle with
a single vertex is hamiltonian with maximum degree n — 1, but has no
2C-factor.

But, for the special class of claw-free graphs, we get the following sharp
result.

Theorem 2 Let G be a hamiltonian claw-free graph containing a verter
z with degree d(z) > 7. Then G has a 2-factor consisting of ezactly two
cycles.

2 Proof

For the remainder of the paper, let C be a fixed hamiltonian cycle in G with
some orientation. For a vertex v € V, let v, v++, v3%, etc. denote the
successors of v on C, and let v—, v™~, v%~, etc. denote the predecessors
of v. The notation uCv stands for the u — v path given by C and its
orientation, uC~v will be the u — v path following C in reversed direction.
Let U:={veV|v vt ¢ E}.

We will start with the following lemma.

Lemma 3 Let G be a claw-free graph on at least 8 vertices with hamiltonian
cycle C. Suppose that G has no 2C-factor. If u,v € U and wv € E, then
juCv| < 4 or [vCu| < 4.

Proof: For the sake of contradiction, suppose that juCv| > 5 and |vCu| > 5
(see Figure 1). Since G is claw-free and v € U, either wwv* € E or
uww~ € E. Say, wwt € E. Now vut ¢ E, otherwise a 2C-factor can
easily be constructed. By claw-freeness, vu™ € E. Next, u—vt ¢ E to
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prevent a 2C-factor, thus vtut,v"u~ € E to prevent claws in v, u, respec-
tively. Now, v++ut ¢ E, otherwise C; = vuvtv,C; = utCv—u-Covttut

verrea, EEEREE]
. . .

“

N

Figure 1: |vCu| 25

is a 2C-factor. By claw-freeness, vv*+ € E. Again, v"ut ¢ E, thus
v+ty~ € E. By a symmetric argument, u~"u,u”"ut € E. But now,
Ci = whuu—v,Cp = v+*tCu~~utrCV vt is a 2C-factor, a contradic-

tion. (m]

Lemma 4 Let G be a claw-free graph on at least 8 vertices with hamiltonian
cycle C. Suppose that G has no 2C-factor. Ifu,v € U, uwv € E, and
|uCv| < [vCul, then G[uCv] is complete.

Proof: By Lemma 3, we know that [uCv| < 4. If [uCv| < 3, there is
nothing to prove, so assume that |[uCv| = 4. If G[uCv] is not complete,
then uvt,vu~ € E to avoid claws and a 2C-factor. As u~v* € E would
yield a 2C-factor, u~v~,utvt € E to avoid claws. If one of the edges uv™
and uu—" exists, a 2C-factor is apparent. To avoid a claw centered at u™,
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u~~v~ € E is forced. But now, C; =uu~vu,Cy =u~ v utvtCu~ " isa
2C-factor, a contradiction. a

Proof of Theorem 2: Suppose again, for the sake of contradiction, that
G contains no 2C-factor. Faudree et al. [2] showed that the 2-color Ramsey
number for a triangle and a K4 — e (the graph on 4 vertices with 5 edges)
is
r(K3, Ky —e€)=1.

As d(z) > 7, we know that G[N(z)] contains either an independent set of
size 3 or a K3 —e. The independent set would yield a claw, therefore G[N(z)]
contains a K4 — e, say 1,%2,%3,%4 € N(z) and z1%2,7123,21%4,%2%3,
z2z4 € E.

Depending on the location of the five vertices z, z;, z2, Z3,z4 on C, we
will consider seven cases. Note that Gz, z1, z2, T3, 24) is either a K5 — e or
a K5.

Case 1 Suppose that the five vertices are consecutive on C, i.e. there is a
v € V, such that {z,z1,%2,23,24} = {v™",v7,v,vF, v},

If v=—vtt,v~vt € E, then ) = wwtvv,C, = vt+*Cv~"vtt is a 2C-
factor. Thus, one of the two edges is missing.

Suppose first that v-v+ € E. If v3~v~ € E, then C; = vv~"vtv,Cy =
vH+Cu3—v—vtt is a 2C-factor. Thus, v>~v~ ¢ E, and similarly v3+tvt ¢
E. But this implies that v——,v**+ € U, a contradiction with Lemma 3.

Thus, we may assume that v~—v**+ ¢ E, in fact we may assume that
23 = vtt,z4 = v~ ~. Note that zz; ¢ E, otherwise C; = a:4:z:1x2:z:4,02 =
z23Cz; z is a 2C-factor. Similarly, ziz; , T2y , T3, 2125, 2227 & E, and
therefore z3,z4 € U. As d(z) > 7, = has at least 3 neighbors other than
zy,Z9,T3, T4, SAY ¥1,¥2, Y3 € N(z) appear in this order on C. To avoid the
claw G[z,zs,Z4,y2], at least one of the edges T3y2, T4y has to exist, we
may assume that zgy, € E.

Suppose that y» € U. As G[y2Czs] is not complete, G[z3Cya] is
complete by Lemma 4 (and |z3Cy2| = 4). This yields the 2C-factor
C1 = 21222371, C2 = Ty :z:g'nga:.;a;, a contradiction. Thus, y5 y2 € E.

If zoy; € E, then C) = zz2y22,C2 = :z:la:3Cy2 Y3 Czyzyr isa 2C-factor,
thus z2y2 ¢ E. To avoid the claw Glzs,z7,22,¥2], we have z$y: € E.
This yields the 2C-factor C; = z1Z2%3%1,C2 = TY223 ¥5 y7 Czaz, the con-
tradiction finishing the case.

Case 2 Suppose four of the vertices z,z;,%2,%3,T4 appear consecutively
on C.

Let v be the vertex out of {z,z1,%2,%3,z4} which is not a predecessor or
a successor of one of the other four vertices in the K5 —e. If v € U, then
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Figure 2: Case 1

consider the cycle C' = v+Cv~v*, and extend it through v by inserting v
between two consecutive vertices in {z,z1,22,zs,z4}. We can apply Case 1
to this situation to get a contradiction. Thus, v € U.

Let v € V such that {u~—,u",u,ut} U {v} = {z,71,22,%3,24}. As
Glz, 1,22, 3, 24] is a K5 or a K5 —e, at least one of u~v and wv is an edge,
by symmetry we may assume wv € E. To avoid the claw G[v,u, v, vt],

one of uv~ and uv* is an edge.
If wv* € E, then utv ¢ E to avoid a 2C-factor. Then v~v € E and

one of u"v~ and v~ v™ is an edge. Either one of these two edges produces

a 2C-factor, a contradiction.

On the other hand, if uv~ € E, then u~v ¢ E to avoid a 2C-factor.
But this implies u~~v,u~u* € E, and C; = uu"utCv~u,Cz = vu~"Cv
is a 2C-factor, the contradiction finishing the case.

Case 3 Suppose there are two vertices u,v € V such that

{(L', z, 72,23, 2:4} = {u_1 u, u+: v, 'U+}'

In this case, a 2C-factor is easy to find. Depending on which of the 10 edges
is missing, either C; = vtCu~v*,C2 = uCuvu or C; = v*Cuvt*,C; =
utCovut will do.

Case 4 Suppose there are three vertices u,v,w € V such that
{z,21,22,%3,%4} = {u ", u,ut,v,w}.

By symmetry we may assume that u~v,uv,utv € E. If v"v* € E, we can
find a different hamiltonian cycle and apply Case 2. Thus, v € U. To avoid
the claw G[v,u,v~,v*], one of the edges uv~,uv* has to exist. But either

one produces a 2C-factor, a contradiction.
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Case 5 Suppose there are three vertices u,v,w € V such that
{(L’, z1,%2,T3, 2:4} = {u: u'*’,'v,v"',w}.

By symmetry we may assume that u,v,w appear on C in this order. If
both uvt,utv € E, a 2C-factor is immediate, so one of these two edges is
missing. This implies that all other 8 possible edges within {u,u*,v,v, w}
exist. Further, w € U, otherwise we can find a different hamiltonian cycle
and apply Case 3. If vw™* € E, a 2C-factor is immediate, thus vw™ € E to
avoid a claw centered at w. This yields the 2C-factor C; = wCuw,C; =
vtCw vC~utwt, a contradiction.

Case 6 Suppose there are four vertices u,v,w,y € V such that
{z, 21,22, 73,24} = {u,u™,v,w,y}.

By symmetry we may assume that u,v,w,y appear on C in this order.
Suppose that vy € E. By Lemma 3, at most one of v,y is in U, say
y€U. If v e U, then v~y € E or vty € E to avoid a claw. But now we
can reduce the case to Case 5. On the other hand, if v € U we can find a
different hamiltonian cycle by inserting v or y between u and u*, depending
on which of the edges is missing. Applying Case 4 to this situation gives
a contradiction. Therefore, vy € E and all other 9 possible edges inside
{u,ut,v,w,y} exist.

If any of v,w,y is not in U, then we can reduce this case to Case 4
by inserting this vertex between u and u*. Thus, we may assume that
v,w,y € U. Again by Lemma 3, u~u*,uu** € E, as |wCul, [u*Cw| > 5.
To avoid a claw at v, one of uv—,uvt is an edge. If wvt € E, then
C, = utCvut,Cy = wv*tCu is a 2C-factor. If v~ € E, then C) =
wuttCv~u,C; = utvCu~ut is a 2C-factor, the contradiction finishing
this case.

Case 7 Suppose none of the vertices
{u1,u2,u3,uq,us} = {z,1,22,%3,%4} are consecutive on C.

We may assume that u;, ug, u3, uq, us appear on C in this order. If none of
the five vertices are in U, a 2C-factor is easy to find. By symmetry, we may
assume that uz € U. At least one of the edges usus,ujus exists, we may
assume ugus € E. By Lemma 3, us ¢ U. To avoid a claw, one of the edges
ug us,u;"u5 has to exist. In either case we can pick a different hamiltonian
cycle and reduce the argument to Case 6. This finishes the proof of the
theorem. 0
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