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Abstract

The local-edge-connectivity A(u,v) of two vertices v and v in a
graph or digraph D is the maximum number of edge-disjoint u-v
paths in D, and the edge-connectivity of D is defined as A(D) =
min{A(u,v)|u,v € V(D)}. Clearly, A(u,v) < min{d*(u),d”(v)} for
all pairs u and v of vertices in D. We call a graph or digraph D
mazimally local-edge-connected when

Ay, v) = min{d* (u),d” (v)}

for all pairs u and v of vertices in D.

Recently, Fricke, Oellermann, and Swart have shown that some
known sufficient conditions that guarantee equality of A(G) and min-
imum degree 6(G) for a graph G are also guarantee that G is maxi-
mally local-edge-connected.

In this paper we extend some results of Fricke, Oellermann, and
Swart to digraphs and we present further sufficient conditions for
graphs and digraphs to be maximally local-edge-connected.
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1. Terminology and introduction

We consider finite graphs and digraphs without loops and multiple
edges. If v is a vertex of a digraph D, then we denote the sets of out-
neighbors and in-neighbors of v by N*(v) and N~ (v), respectively. Fur-
thermore, the degree d(v) of v is defined as the minimum value of its out-
degree d*(v) = |[N*(v)| and its in-degree d~(v) = |N~(v)|. The local-edge-
connectivity A(u,v) of two vertices u and v in a digraph or graph D is the
maximum number of edge-disjoint u-v paths in D, and the edge-connectivity
of D, denoted by A(D), is defined as A(D) = min{A(u,v)|u,v € V(D)}.
Clearly, A(u,v) < min{d*(u),d™(v)} for all pairs u and v of vertices in D.
We call a graph or digraph D mazimally local-edge-connected when

A(u,v) = min{d*(u),d” (v)}

for all pairs u and v of vertices in D. For two vertex sets X,Y of a digraph
or graph let (X,Y) be the set of arcs or edges from X to Y. If D is a di-
graph (graph) and X C V/(D), then let D[X] be the subdigraph (subgraph)
induced by X, and let X = V(D) — X. For other graph theory terminology
we follow Chartrand and Lesniak [3].

Sufficient conditions for equality of edge-connectivity A(D) and min-
imum degree 6(D) for a graph and a digraph D were given by several
authors, for example: Chartrand [2], Lesniak [13], Plesnik [14], Gold-
smith and White [11], Bollobas [1], Goldsmith and Entringer [10], Soneoka,
Nakada, Imase, and Peyrat [16], Plesnik and Znam (15], Volkmann [18],
[19], Fabrega and Fiol (7], [8], Xu [21], Dankelmann and Volkmann [4], [5],
[6], and Hellwig and Volkmann [12].

Recently, Fricke, Oellerman, and Swart [9] have shown that some known
sufficient conditions that guarantee A(G) = §(G) for a graph G also guaran-
tee that G is maximally local-edge-connected. The next observation shows
that the results of Fricke, Oellermann, and Swart [9] generalize the corre-
sponding known one.

Oservation 1.1 If a digraph or graph D is maximally local-edge-connected,
then A(D) = §(D).

Proof. Since D is maximally local-edge-connected, we have A(u,v) =
min{d+(u),d~ (v)} for all pairs u and v of vertices in D. Thus,

A(D) = u’vfg}zm{)\(u,v)} = o D){min{cf” (u),d™(v)}} = 6(D). D
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In this paper we extend some results of Fricke, Oellermann, and Swart
[9] to digraphs, and we present further sufficient conditions for graphs and
digraphs to be maximally local-edge-connected.

Our proofs are based on the following simple and well-known lemma.

Lemma 1.2 Let u and v be a pair of vertices in the digraph or graph
D. Then A(u,v) > ¢ if and only if |(S,S)| > ¢ for all subsets S C V(D)
such that u € S and v € S.

2. Main results

Theorem 2.1 If D is a digraph with diameter at most two, then
A(u,v) = min{d* (u),d" (v)}

for all pairs u and v of vertices in D.

Proof. Let u and v be any two vertices of D. As noted above, A(u,v) <
min{d*(u),d” (v)}. Next we will show that |(S,5)] > min{d*(u),d~(v)}
for all S C V(D) such that u € S and v € S. Let S be such a set.

Case 1. [N*(z) N S| > 1 for all z € S. This implies

min{d* (u),d" ()} < |N*(w)|=|N*t@)n§|+|Nt(w)ns|
< INY@nS§l+ Y INt@)N§|
zeN+(u)NS

S INFT@)N S| =](S,5)I.

z€S

IA

Case 2. There exists a vertex z € S with |N*(z) N §] = 0. Since the
diameter of D is at most two, it follows that [N~ (y)NS| >1forally € S.
This leads to

min{d*(u),d"(v)} < IN~(@)|=IN"(v)NS|+|N~(v)n S|
< IN“W)nS|+ > IN“@NS|

yeEN-(v)N§

< S IN-@)NnS|=1(S,3)l.

yeS

Now it follows from Lemma 1.2 that A(u,v) > min{d*(u),d™(v)}, and the
proof of Theorem 2.1 is complete. D.
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Corollary 2.2 (Fricke, Oellermann, Swart [9] 2000) If G is a graph
with diameter at most two, then A(u,v) = min{d(u),d(v)} for all pairs u
and v of vertices in G.

Proof. Define the digraph D on the vertex set V(G) by replacing each
edge of G by two arcs in opposite directions and apply Theorem 2.1. O

According to Observation 1.1, Theorem 2.1 also leads immediately to
the following sufficient condition for equality of edge-connectivity and min-
imum degree.

Corollary 2.3 If D is a digraph of diameter at most two, then A(D) =
(D).

Corollary 2.4 (Plesnik [14] 1875) If G is a graph of diameter at most
two, then A(G) = §(G).

Corollary 2.5 Let D be a digraph of order n. If d*(z) +d~(y) > n -1
for all pairs of nonadjacent vertices z and y, then A(D) = (D).

Corollary 2.6 (Lesniak [13] 1974) Let G be a graph of order n. If

d(z) +d(y) > n — 1 for all pairs of nonadjacent vertices z and y, then
A(G) =4(G).

Corollary 2.7 Let D be a digraph of order n. If n < 2§(D) + 1, then
A(D) = é(D).

Corollary 2.8 (Chartrand [2] 1966) Let G be a graph of order n. If
n < 20(G) + 1, then XG) = §(G).

Recently, Fricke, Oellermann, and Swart [9] presented the following gen-
eralization of a 1989 result of Volkmann [19].

Theorem 2.9 (Fricke, Oellermann, Swart [9] 2000) Let G be a p-
partite graph of order n and minimum degree § with p > 2. If

pd
Sk PR

then A(u,v) = min{d(u),d(v)} for all pairs u and v of vertices in G.

The next two theorems are improvements of Theorem 2.9, and their
proofs are a little bit shorter than that of Fricke, Oellermann, and Swart

[9].
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Theorem 2.10 Let D be a p-partite digraph of order n and minimum
degree & with p > 2. If
n < 2[ » J -1,

-1

then A(u,v) = min{d*(u),d " (v)} for all pairs u and v of vertices in D.

Proof. Let u and v be any two vertices of D. As observed earlier,
A(u,v) < min{d*(z),d"(v)}. In view of Lemma 1.2, it is enough to show
that |(S,S)| > min{d*(u),d™(v)} for all S C V(D) such that u € S and
vES.

Case 1. Let |S| < n/2. Then, the hypothesis implies

IS'S'SL%J”S%‘L M

Since D is p-partite, the well known Theorem of Turdn [17] (see also [20],
p. 212) yields |E(D[S])| < |S|*(p — 1)/p, and hence we have

5,.9)1 2 Y- d* () - == ISI2 PUCHOE 5)+|SI5———ISI2 (2)

yES yeS

If we define g(z) = —z*(p — 1)/p + dz, then, because of (1), we have to
determine the minimum of g in the interval I : 1<z <pd/(p—1)—1. It
is easy to see that

min{o(e)} = o0 = 95250 -1) =5 - 222,

This leads together with (2) to

15,8) > 3" (d* ) - 6)+6——>d+(u) 6+5———d+( )--—1

yeS
which yields the desired inequality |(S,S)| > d*(u) > min{d* (u),d~(v)}.
Case 2. Let |S] < n/2. Analogously to Case 1, we then obtain

1(5,8)] > d~(v) > mm{d"’ ),d~(v)}, and the proof of Theorem 2.10
is complete. O

Corollary 2.11 (Volkmann [19] 1989) Let D be a p-partite digraph

of order n and minimum degree § with p > 2. If n < 2|pd/(p—1}] - 1,
then A(D) =
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Analogously to Theorem 2.10, one can prove the following common gen-
eralization of a result by Dankelmann and Volkmann [4] and Theorem 2.9.

Theorem 2.12 Let G be a graph of order n and minimum degree § without
a complete subgraph of order p + 1. If

p—1

then A(u,v) = min{d(u),d(v)} for all pairs » and v of vertices in G.

Theorem 2.13 Let D be a bipartite digraph of order n and minimum
degree § > 2 with the bipartition V' U V", If d(z) + d(y) > (n + 1)/2 for
each pair of vertices z,y € V' and each pair of vertices z,y € V", then
A(u,v) = min{d* (u),d~(v)} for all pairs u and v of vertices in D.

Proof. If u and v are two vertices of D, then A(u,v) < min{d*(u),d~(v)}.
Next we will show that |(S, S)| > min{d* (u),d~(v)} for all S C V(D) such
that w € S and v € §. Let S be such a set.

Now let S; C S and S; C S be the set of vertices incident with an
arc of (S,5) and define S = § — S) and S=5-5.In _addition, let
Sp=5nV, Sl =5 NV, S =SnV" 8 =85nV" S’ SoenV’,

S$I =8NV, S =8nV" and Sy = §; N V" (see the ﬁgure)
s N
Sy | Si St | S
<
R <K
s§ | sy 5| sy

Clearly, |S1],]51] < |(S,S5)|. We assume, without loss of generality, that
V] <|V"] and so [V'| < n/2.

It seems likely that there is a symmetry between S and S; indeed, this is
easily observed later. Consequently we may proceed under the assumption
that |S| < n/2.

Firstly, we show that min{|S}|,|S¥|} < 1 and min{|S}],|SF|} < 1.

Suppose that S|, |Sg| = 2. Then it follows from the hypothems that

n+1

+1 /
and |Spl+1St12 IN*(S)| 2 °5

IS1+18Y] 2 IN*(Se) > &
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This leads to the contradiction n/2 > |S| = |Sy| + |S1] + |S5| + |S7| >
(n+1)/2.

Next suppose that |S7],|S¥| > 2. Then it follows from the hypothesis
that

D and IS+ 151 2 INHEI 2 T

1Sol + 1511 2 INT(Sg)] >

This leads to the contradiction n/2 > |V'| = |S§| + |Si] + |Sh| + |S!| >
(n+1)/2.
Thus, it remains to investigate the three cases |Sj| = 0, |Sy| = 1, and
|Sg] > 2 but | S| < 1 and S} < 1.
Case 1. Let |S§| =
Subcase 1.1. Let u 6 Sp.
Then N*(u) C SV, and so |(S,5)| > dt(u) > min{d*(u),d (v)}.
Subcase 1.2. Let u € 5.
Then N*(u) C S}/ USY, and so |(S,8)] > dt (u) > min{d*(u),d~(v)}.
Subcase 1.3. Let u € SY.
If IN*(u)nShl =0, or [Nt (u)NSy] = 1 and |S]] > 2, 0r 2 <
IN*(u) N S§| < |SY| — 1, then it is a simple matter to verify that
1(S,8)| > d*(u) > min{d* (u),d~(v)}.
If [Nt (u) N S§| = 1 and |SY| < 1, we contradict 6 > 2.
In the remaining case, |[N*(u) N S§| > 2 and |[N*(u) N Sp| > |SY],
it follows from the hypothesis that |Sy| > (n + 1)/4 and therefore
|So| = (n + 1)/4, a contradiction to |S| < n/2.
Case 2. Let |Sg| =
Subcase 2.1. Let u € Sp.
If [Nt (u)NS§] = 0, or [INT(u)NSG| = 1and |S}| > 1, or [N (u)NSy| =
1,|811=0, and there exists a vertex w € S7 such that [N+ (w) ﬁS’I >
2,or [INT(u)NnS§| =1, |51 =0, IN"'(:z:)r‘lS’ =1for all z € 57,
there exists a vertex y € S such that y & N*(u), then it isa sunple
matter to verify that |(S, S)| > d*(u) > min{d*(u),d™(v)}.
There remains the case that IN"'(u)ﬂS"l 1|8 =0, |N*(=)nS}| =
1for all z € S}, and S — N*(u) = 0.
Because of § > 2, we deduce that [Sy| > 2, and hence the hypothesis
implies |S}| > (n +1)/4 — 1. The same argument for a € Sy and
b € SV together with [N+ ()N S| = 1 leads to |Sh| > (n+1)/4—1/2.
The assumption |S| < n/2 yields
n+41 n+1l 1

S == -1 and |Sp|= "= -3,

however, since |S}'| and |S}| are integers, this is impossible.
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Subcase 2.2. Let u € Sy.
If [N*(u) N Sg| < |SY), then |(S,8)| > d*(u) > min{d*(u),d~(v)}.
In the remaining case, [N*(u) N Sh| > [S}| + 1 > 2, it follows by the
hypothesis that |S}'| > (n +1)/4 — 1 and so |S§| > |[N*+(u) N S| >
(n +1)/4. This contradicts the assumption |S| < n/2.

Subcase 2.3. Let u € Sj.
If|N*(u)NSy| =0, 0r [IN*(u)NSY| = 1and |S}| > 2, 0r IN*(u)NSg| =
1, S]] = 1, and there exists a vertex w € S}’ such that |N+(w)NS!| >
2,0r IN*)NSF| =1, (8] =1, IN*(z)n S| = 1 for all z € S¥,
and there exists a vertex y € S7’ such that y ¢ N+ (u), then |(S, S)| >
d* (u) > min{d*(u),d" (v)}. i
There remains the case that [Nt (u)NSg| = 1,|S}| = 1, [Nt (z)nS}| =
1for allz € S{, and S} — N*(u) = 0.
Because of § > 2 and |S]| = 1, we observe that S} # @. For a €
So and b € S} the hypothesis and [N*(b) N S| = 1 lead to |S}| >
(n+1)/4-3/2.

If |Sg| > 2, then the hypothesis yields |SY| > (n+1)/4—1. Combin-

ing this with the assumption |S| < n/2, we obtain the contradiction

n+1
4

n+l1l 3

4 2

1571 = -1 and |Sp| =

In the remaining case, |Sg| = 1, the inequality 1= |S}| > (n+1)/4—
3/2 yields n < 9. In addition, it follows from |S| < n/2 and |S| > 4
that |S| =4 and n = 8 or n = 9, and thus |S!’| = 1. Consequently, the
vertices in §j and S§ are of degree two. Since by the hypothesis there
are no further vertices of degree two, we conclude that d+(u) > 3, and
so |SY| > 1. From |SY| = 1 and |[N*(z) N S|| = 1for all z € S, we
deduce that |S]| = 1. Since there are no further vertices of degree two,
we see that S) # 0 and hence |SV U S¥/| > 3. This is a contradiction
when n = 8. In the case n = 9, we obtain |S)| =1, Si = 0, |S¥| = 3,
and thus |(S,5)| = 4 > d~(v) > min{d*(u),d" (v)}.

Subcase 2.4. Let u € SY.
If [N+ (u)N S| < |SY] -1, then |(S, 5)] > d* (u) > min{d* (u), d-(v)}.
In the remaining case, [N*(u) N S| > | S|, we discuss the two cases
1So| =1 and |Sp| > 2.

If |Sp| = 1, then the assumption |S§| = 1, leads to |S}] > 1 and
thus |S| > 4 and n > 8. Furthermore, 1 = |S§| > |[N*(u) N Sy| > |SY],
shows that |S}'| = 1. If there is a vertex z € S] such that z & N*(u)
or |[N*+(z) N 87| > 2, then |(S, 5)| > d* () > min{d* (u),d™ (v)}.

In the remaining case, the hypothesis yields for z € S} and y € S}, the
inequality 5 > d(z) + d(y) > (n + 1)/2, and so n < 9. As above, we
obtain the desired result.

302



If | Sg| > 2, then |SY| 2 (n+1)/4 -1, and s0 |Sp| > |[N*(u) N Sp| >
ISY| > (n +1)/4 — 1. The assumption |S| < n/2 implies S} = 0.
Furthermore, |SY| = 2, because otherwise the vertices of S}, are of
degree at most two, a contradiction to the hypothesis and n > 8.
Consequently, |S| > 5 and n > 10.

If there exists a vertex z € S} — {u} with only one positive neighbor
in S!, then for a € Sy, it follows from the hypothesis that 2|S§| + 1 >
d(z) +d(a) > (n +1)/2, and so |Sp| > (n +1)/4 - 1/2. As |S| < n/2,
we obtain the contradiction

n+1
T4

n+1 1
and ISOI————.

Hy __
151] = :

There remains the case that each vertex z € S} — {u} has at least
two positive neighbors in S}. If 2|S}| - 2 > | S|, then

I(5,8)] > INT(w)nSi|+2(5)|-1)
> [N*(u)nSj|+1Sp
> d*(u) > min{d*(u),d”(v)}.

If 2|S7| — 2 < |Sh] - 1, then |S§| > 2|S)|—1 > (n+1)/2—3, and hence

n n+1 n+1
1> - .
2> IS = |Spl IS¢ +12 "= —34 22
However, this leads to the contradiction n < 9.
Case 3. Let |SY| > 2, |S] < 1, and |S}] < 1.
Because of |Sy] < 1, this case is analogous to the Cases 1. and 2.

The assumption |S| > n/2 leads to |S| < n/2. If we consider d~(v) in-
stead of d*(u), then the case |S| > n/2 can be proved in a similar manner
as the case |S| <n/2. 0

Corollary 2.14 Let G be a bipartite graph with the bipartition V' U V"
of order n and minimum degree § > 2. If d(z) + d(y) > (n + 1)/2 for
each pair of vertices z,y € V' and each pair of vertices 2,y € V", then
A(u,v) = min{d(u),d(v)} for all pairs u and v of vertices in G.

Corollary 2.15 (Dankelmann, Volkmann [4] 1995) Let G be a bi-
partite graph of order n. If d(z) + d(y) > (n + 1)/2 for all nonadjacent
vertices x and y in G, then A(G) = §(G).

Corollary 2.16 (Volkmann [18] 1988) Let G be a bipartite graph of
order . If n < 46(G) — 1, then A(G) = 4(G).
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Example 2.17 Let p > 2 be an integer and let H; and Hy be two copies
of the complete bipartite graph K, with the bipartitions

V(H) = {z1,22,..., 2} U {2}, 23, ...,2,}
and
V(Hz) = {y1,¥2:- -, ¥p} U {1, %2, -, Up}-

We define the bipartite graph G as the union of H, and H, together with
the new edges 131, Zaya2, . . ., ZpYp. Then, G is of order n = 4p, §(G) = p,
and

d(z) +d(y) >22p=[4p+1)/2] -1 =[(n+1)/2] -1

for all pairs z and y of vertices in G. However,
A(zi,yi) = p < min{d(z;),d(y;)} =p+1
fori=1,2,...,p. Consequently, G is not maximally local-edge-connected.

This example shows that the condition d(z) +d(y) > (n+1)/2 in Corol-
lary 2.14 as well as in Theorem 2.13 is best possible. The family of graphs
in the next example will demonstrate that the condition § > 2 in Theorem
2.13 and Corollary 2.14 are necessary.

Example 2.18 Let p > 2 be an integer and let H be the complete
bipartite graph K, with the bipartition V(H) = {z1,22,...,2p} U
{¥1,¥2,...,yp—1} and let w be a further vertex. We define the bipartite
graph G as the union of H and w together with the new edge wz;. Then,
G is of order n = 2p, §(G) =1, and

d(z) +d(y) 2p+12 (n+1)/2

for all pairs = and y of vertices which are contained in the same partite set
of G. However,

A(z1,9:) = p— 1 < min{d(z1),d(y:)} = p

for i = 1,2,...,p — 1. Consequently, G is not maximally local-edge-
connected.
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