Maximally local-edge-connected graphs and digraphs

Angelika Hellwig and Lutz Volkmann 1

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

The local-edge-connectivity $\lambda(u,v)$ of two vertices u and v in a graph or digraph D is the maximum number of edge-disjoint u-v paths in D, and the edge-connectivity of D is defined as $\lambda(D) = \min\{\lambda(u,v)|u,v\in V(D)\}$. Clearly, $\lambda(u,v) \leq \min\{d^+(u),d^-(v)\}$ for all pairs u and v of vertices in D. We call a graph or digraph D maximally local-edge-connected when

$$\lambda(u,v) = \min\{d^+(u), d^-(v)\}$$

for all pairs u and v of vertices in D.

Recently, Fricke, Oellermann, and Swart have shown that some known sufficient conditions that guarantee equality of $\lambda(G)$ and minimum degree $\delta(G)$ for a graph G are also guarantee that G is maximally local-edge-connected.

In this paper we extend some results of Fricke, Oellermann, and Swart to digraphs and we present further sufficient conditions for graphs and digraphs to be maximally local-edge-connected.

Keywords: Local-edge-connectivity; Edge-connectivity; Minimum degree

¹Corresponding author

1. Terminology and introduction

We consider finite graphs and digraphs without loops and multiple edges. If v is a vertex of a digraph D, then we denote the sets of outneighbors and in-neighbors of v by $N^+(v)$ and $N^-(v)$, respectively. Furthermore, the degree d(v) of v is defined as the minimum value of its outdegree $d^+(v) = |N^+(v)|$ and its in-degree $d^-(v) = |N^-(v)|$. The local-edge-connectivity $\lambda(u,v)$ of two vertices u and v in a digraph or graph D is the maximum number of edge-disjoint u-v paths in D, and the edge-connectivity of D, denoted by $\lambda(D)$, is defined as $\lambda(D) = \min\{\lambda(u,v)|u,v \in V(D)\}$. Clearly, $\lambda(u,v) \leq \min\{d^+(u),d^-(v)\}$ for all pairs u and v of vertices in D. We call a graph or digraph D maximally local-edge-connected when

$$\lambda(u,v) = \min\{d^+(u), d^-(v)\}$$

for all pairs u and v of vertices in D. For two vertex sets X, Y of a digraph or graph let (X,Y) be the set of arcs or edges from X to Y. If D is a digraph (graph) and $X \subseteq V(D)$, then let D[X] be the subdigraph (subgraph) induced by X, and let $\bar{X} = V(D) - X$. For other graph theory terminology we follow Chartrand and Lesniak [3].

Sufficient conditions for equality of edge-connectivity $\lambda(D)$ and minimum degree $\delta(D)$ for a graph and a digraph D were given by several authors, for example: Chartrand [2], Lesniak [13], Plesnik [14], Goldsmith and White [11], Bollobás [1], Goldsmith and Entringer [10], Soneoka, Nakada, Imase, and Peyrat [16], Plesnik and Znám [15], Volkmann [18], [19], Fàbrega and Fiol [7], [8], Xu [21], Dankelmann and Volkmann [4], [5], [6], and Hellwig and Volkmann [12].

Recently, Fricke, Oellerman, and Swart [9] have shown that some known sufficient conditions that guarantee $\lambda(G) = \delta(G)$ for a graph G also guarantee that G is maximally local-edge-connected. The next observation shows that the results of Fricke, Oellermann, and Swart [9] generalize the corresponding known one.

Oservation 1.1 If a digraph or graph D is maximally local-edge-connected, then $\lambda(D) = \delta(D)$.

Proof. Since D is maximally local-edge-connected, we have $\lambda(u, v) = \min\{d^+(u), d^-(v)\}$ for all pairs u and v of vertices in D. Thus,

$$\lambda(D) = \min_{u,v \in V(D)} \{\lambda(u,v)\} = \min_{u,v \in V(D)} \{\min\{d^+(u),d^-(v)\}\} = \delta(D). \ \ \Box$$

In this paper we extend some results of Fricke, Oellermann, and Swart [9] to digraphs, and we present further sufficient conditions for graphs and digraphs to be maximally local-edge-connected.

Our proofs are based on the following simple and well-known lemma.

Lemma 1.2 Let u and v be a pair of vertices in the digraph or graph D. Then $\lambda(u,v) \geq q$ if and only if $|(S,\bar{S})| \geq q$ for all subsets $S \subset V(D)$ such that $u \in S$ and $v \in \bar{S}$.

2. Main results

Theorem 2.1 If D is a digraph with diameter at most two, then

$$\lambda(u,v) = \min\{d^+(u), d^-(v)\}$$

for all pairs u and v of vertices in D.

Proof. Let u and v be any two vertices of D. As noted above, $\lambda(u,v) \leq \min\{d^+(u),d^-(v)\}$. Next we will show that $|(S,\bar{S})| \geq \min\{d^+(u),d^-(v)\}$ for all $S \subset V(D)$ such that $u \in S$ and $v \in \bar{S}$. Let S be such a set.

Case 1. $|N^+(x) \cap \bar{S}| \ge 1$ for all $x \in S$. This implies

$$\min\{d^{+}(u), d^{-}(v)\} \leq |N^{+}(u)| = |N^{+}(u) \cap \bar{S}| + |N^{+}(u) \cap S|$$

$$\leq |N^{+}(u) \cap \bar{S}| + \sum_{x \in N^{+}(u) \cap S} |N^{+}(x) \cap \bar{S}|$$

$$\leq \sum_{x \in S} |N^{+}(x) \cap \bar{S}| = |(S, \bar{S})|.$$

Case 2. There exists a vertex $x \in S$ with $|N^+(x) \cap \bar{S}| = 0$. Since the diameter of D is at most two, it follows that $|N^-(y) \cap S| \ge 1$ for all $y \in \bar{S}$. This leads to

$$\min\{d^{+}(u), d^{-}(v)\} \leq |N^{-}(v)| = |N^{-}(v) \cap S| + |N^{-}(v) \cap \bar{S}|$$

$$\leq |N^{-}(v) \cap S| + \sum_{y \in N^{-}(v) \cap \bar{S}} |N^{-}(y) \cap S|$$

$$\leq \sum_{y \in \bar{S}} |N^{-}(y) \cap S| = |(S, \bar{S})|.$$

Now it follows from Lemma 1.2 that $\lambda(u,v) \ge \min\{d^+(u),d^-(v)\}$, and the proof of Theorem 2.1 is complete. \square .

Corollary 2.2 (Fricke, Oellermann, Swart [9] 2000) If G is a graph with diameter at most two, then $\lambda(u, v) = \min\{d(u), d(v)\}\$ for all pairs u and v of vertices in G.

Proof. Define the digraph D on the vertex set V(G) by replacing each edge of G by two arcs in opposite directions and apply Theorem 2.1. \square

According to Observation 1.1, Theorem 2.1 also leads immediately to the following sufficient condition for equality of edge-connectivity and minimum degree.

Corollary 2.3 If D is a digraph of diameter at most two, then $\lambda(D) = \delta(D)$.

Corollary 2.4 (Plesnik [14] 1975) If G is a graph of diameter at most two, then $\lambda(G) = \delta(G)$.

Corollary 2.5 Let D be a digraph of order n. If $d^+(x) + d^-(y) \ge n - 1$ for all pairs of nonadjacent vertices x and y, then $\lambda(D) = \delta(D)$.

Corollary 2.6 (Lesniak [13] 1974) Let G be a graph of order n. If $d(x) + d(y) \ge n - 1$ for all pairs of nonadjacent vertices x and y, then $\lambda(G) = \delta(G)$.

Corollary 2.7 Let *D* be a digraph of order *n*. If $n \leq 2\delta(D) + 1$, then $\lambda(D) = \delta(D)$.

Corollary 2.8 (Chartrand [2] 1966) Let G be a graph of order n. If $n \leq 2\delta(G) + 1$, then $\lambda(G) = \delta(G)$.

Recently, Fricke, Oellermann, and Swart [9] presented the following generalization of a 1989 result of Volkmann [19].

Theorem 2.9 (Fricke, Oellermann, Swart [9] 2000) Let G be a p-partite graph of order n and minimum degree δ with p > 2. If

$$n \leq 2 \left| \frac{p\delta}{p-1} \right| - 1,$$

then $\lambda(u,v) = \min\{d(u),d(v)\}\$ for all pairs u and v of vertices in G.

The next two theorems are improvements of Theorem 2.9, and their proofs are a little bit shorter than that of Fricke, Oellermann, and Swart [9].

Theorem 2.10 Let D be a p-partite digraph of order n and minimum degree δ with $p \geq 2$. If

$$n \leq 2 \left\lfloor \frac{p\delta}{p-1} \right\rfloor - 1,$$

then $\lambda(u,v) = \min\{d^+(u), d^-(v)\}\$ for all pairs u and v of vertices in D.

Proof. Let u and v be any two vertices of D. As observed earlier, $\lambda(u,v) \leq \min\{d^+(u),d^-(v)\}$. In view of Lemma 1.2, it is enough to show that $|(S,\bar{S})| \geq \min\{d^+(u),d^-(v)\}$ for all $S \subset V(D)$ such that $u \in S$ and $v \in \bar{S}$.

Case 1. Let $|S| \leq n/2$. Then, the hypothesis implies

$$1 \le |S| \le \left| \frac{p\delta}{p-1} \right| - 1 \le \frac{p\delta}{p-1} - 1. \tag{1}$$

Since D is p-partite, the well known Theorem of Turán [17] (see also [20], p. 212) yields $|E(D[S])| \leq |S|^2(p-1)/p$, and hence we have

$$|(S,\bar{S})| \ge \sum_{y \in S} d^+(y) - \frac{p-1}{p} |S|^2 = \sum_{y \in S} (d^+(y) - \delta) + |S|\delta - \frac{p-1}{p} |S|^2.$$
 (2)

If we define $g(x) = -x^2(p-1)/p + \delta x$, then, because of (1), we have to determine the minimum of g in the interval $I: 1 \le x \le p\delta/(p-1) - 1$. It is easy to see that

$$\min_{x\in I}\{g(x)\}=g(1)=g\left(\frac{p}{p-1}\delta-1\right)=\delta-\frac{p-1}{p}.$$

This leads together with (2) to

$$|(S,\bar{S})| \geq \sum_{y \in S} (d^+(y) - \delta) + \delta - \frac{p-1}{p} \geq d^+(u) - \delta + \delta - \frac{p-1}{p} = d^+(u) - \frac{p-1}{p},$$

which yields the desired inequality $|(S, \bar{S})| \ge d^+(u) \ge \min\{d^+(u), d^-(v)\}$.

Case 2. Let $|\bar{S}| \leq n/2$. Analogously to Case 1, we then obtain $|(S,\bar{S})| \geq d^-(v) \geq \min\{d^+(u),d^-(v)\}$, and the proof of Theorem 2.10 is complete. \square

Corollary 2.11 (Volkmann [19] 1989) Let D be a p-partite digraph of order n and minimum degree δ with $p \geq 2$. If $n \leq 2\lfloor p\delta/(p-1)\rfloor - 1$, then $\lambda(D) = \delta$.

Analogously to Theorem 2.10, one can prove the following common generalization of a result by Dankelmann and Volkmann [4] and Theorem 2.9.

Theorem 2.12 Let G be a graph of order n and minimum degree δ without a complete subgraph of order p+1. If

$$n \leq 2 \left| \frac{p\delta}{p-1} \right| - 1,$$

then $\lambda(u,v) = \min\{d(u),d(v)\}\$ for all pairs u and v of vertices in G.

Theorem 2.13 Let D be a bipartite digraph of order n and minimum degree $\delta \geq 2$ with the bipartition $V' \cup V''$. If $d(x) + d(y) \geq (n+1)/2$ for each pair of vertices $x, y \in V'$ and each pair of vertices $x, y \in V''$, then $\lambda(u, v) = \min\{d^+(u), d^-(v)\}$ for all pairs u and v of vertices in D.

Proof. If u and v are two vertices of D, then $\lambda(u,v) \leq \min\{d^+(u),d^-(v)\}$. Next we will show that $|(S,\bar{S})| \geq \min\{d^+(u),d^-(v)\}$ for all $S \subset V(D)$ such that $u \in S$ and $v \in \bar{S}$. Let S be such a set.

Now let $S_1\subseteq S$ and $\bar{S_1}\subseteq \bar{S}$ be the set of vertices incident with an arc of (S,\bar{S}) and define $S_0=S-S_1$ and $\bar{S_0}=\bar{S}-\bar{S_1}$. In addition, let $S_0'=S_0\cap V',\,S_1'=S_1\cap V',\,S_0''=S_0\cap V'',\,S_1''=S_1\cap V'',\,\bar{S_0'}=\bar{S_0}\cap V'',\,\bar{S_1''}=\bar{S_1}\cap V'',\,\bar{S_0''}=\bar{S_0}\cap V''$, and $\bar{S_1''}=\bar{S_1}\cap V''$ (see the figure).

Clearly, $|S_1|, |\bar{S_1}| \leq |(S, \bar{S})|$. We assume, without loss of generality, that $|V'| \leq |V''|$ and so $|V'| \leq n/2$.

It seems likely that there is a symmetry between S and \bar{S} ; indeed, this is easily observed later. Consequently we may proceed under the assumption that $|S| \leq n/2$.

Firstly, we show that $\min\{|S_0'|, |S_0''|\} \le 1$ and $\min\{|S_0''|, |\bar{S}_0''|\} \le 1$. Suppose that $|S_0'|, |S_0''| \ge 2$. Then it follows from the hypothesis that

$$|S_0''| + |S_1''| \ge |N^+(S_0')| \ge \frac{n+1}{4}$$
 and $|S_0'| + |S_1'| \ge |N^+(S_0'')| \ge \frac{n+1}{4}$.

This leads to the contradiction $n/2 \ge |S| = |S_0'| + |S_1''| + |S_0''| + |S_1''| \ge (n+1)/2$.

Next suppose that $|S_0''|, |\bar{S}_0''| \ge 2$. Then it follows from the hypothesis that

$$|S_0'|+|S_1'|\geq |N^+(S_0'')|\geq \frac{n+1}{4} \ \text{ and } \ |\bar{S_0'}|+|\bar{S_1'}|\geq |N^+(\bar{S_0''})|\geq \frac{n+1}{4}.$$

This leads to the contradiction $n/2 \ge |V'| = |S'_0| + |S'_1| + |\bar{S}'_0| + |\bar{S}'_1| \ge (n+1)/2$.

Thus, it remains to investigate the three cases $|S_0''| = 0$, $|S_0''| = 1$, and $|S_0''| \ge 2$ but $|S_0''| \le 1$ and $|S_0''| \le 1$.

Case 1. Let $|S_0''| = 0$.

Subcase 1.1. Let $u \in S'_0$.

Then $N^+(u) \subseteq S_1''$, and so $|(S, \bar{S})| \ge d^+(u) \ge \min\{d^+(u), d^-(v)\}$.

Subcase 1.2. Let $u \in S'_1$.

Then $N^+(u) \subseteq S_1'' \cup \bar{S}_1''$, and so $|(S, \bar{S})| \ge d^+(u) \ge \min\{d^+(u), d^-(v)\}$. Subcase 1.3. Let $u \in S_1''$.

If $|N^+(u) \cap S_0'| = 0$, or $|N^+(u) \cap S_0'| = 1$ and $|S_1''| \ge 2$, or $2 \le |N^+(u) \cap S_0'| \le |S_1''| - 1$, then it is a simple matter to verify that $|(S,\bar{S})| \ge d^+(u) \ge \min\{d^+(u),d^-(v)\}$.

If $|N^+(u) \cap S_0'| = 1$ and $|S_1''| \le 1$, we contradict $\delta \ge 2$.

In the remaining case, $|N^+(u) \cap S_0'| \geq 2$ and $|N^+(u) \cap S_0'| \geq |S_1''|$, it follows from the hypothesis that $|S_1''| \geq (n+1)/4$ and therefore $|S_0'| \geq (n+1)/4$, a contradiction to $|S| \leq n/2$.

Case 2. Let $|S_0''| = 1$.

Subcase 2.1. Let $u \in S'_0$.

If $|N^+(u) \cap S_0''| = 0$, or $|N^+(u) \cap S_0''| = 1$ and $|S_1'| \ge 1$, or $|N^+(u) \cap S_0''| = 1$, $|S_1'| = 0$, and there exists a vertex $w \in S_1''$ such that $|N^+(w) \cap S_1''| \ge 2$, or $|N^+(u) \cap S_0''| = 1$, $|S_1'| = 0$, $|N^+(x) \cap \bar{S}_1'| = 1$ for all $x \in S_1''$, and there exists a vertex $y \in S_1''$ such that $y \notin N^+(u)$, then it is a simple matter to verify that $|(S, \bar{S})| \ge d^+(u) \ge \min\{d^+(u), d^-(v)\}$.

There remains the case that $|N^+(u) \cap S_0''| = 1$, $|S_1'| = 0$, $|N^+(x) \cap \tilde{S}_1'| = 1$ for all $x \in S_1''$, and $S_1'' - N^+(u) = \emptyset$.

Because of $\delta \geq 2$, we deduce that $|S_0'| \geq 2$, and hence the hypothesis implies $|S_1''| \geq (n+1)/4 - 1$. The same argument for $a \in S_0''$ and $b \in S_1''$ together with $|N^+(b) \cap \bar{S}_1'| = 1$ leads to $|S_0'| \geq (n+1)/4 - 1/2$. The assumption $|S| \leq n/2$ yields

$$|S_1''| = \frac{n+1}{4} - 1$$
 and $|S_0'| = \frac{n+1}{4} - \frac{1}{2}$,

however, since $|S_1''|$ and $|S_0'|$ are integers, this is impossible.

Subcase 2.2. Let $u \in S_0''$.

If $|N^+(u) \cap S_0'| \leq |S_1''|$, then $|(S,\bar{S})| \geq d^+(u) \geq \min\{d^+(u), d^-(v)\}$. In the remaining case, $|N^+(u) \cap S_0'| \geq |S_1''| + 1 \geq 2$, it follows by the hypothesis that $|S_1''| \geq (n+1)/4 - 1$ and so $|S_0'| \geq |N^+(u) \cap S_0'| \geq (n+1)/4$. This contradicts the assumption $|S| \leq n/2$.

Subcase 2.3. Let $u \in S'_1$.

If $|N^+(u) \cap S_0''| = 0$, or $|N^+(u) \cap S_0''| = 1$ and $|S_1'| \ge 2$, or $|N^+(u) \cap S_0''| = 1$, $|S_1'| = 1$, and there exists a vertex $w \in S_1''$ such that $|N^+(w) \cap S_1''| \ge 2$, or $|N^+(u) \cap S_0''| = 1$, $|S_1'| = 1$, $|N^+(x) \cap \bar{S}_1'| = 1$ for all $x \in S_1''$, and there exists a vertex $y \in S_1''$ such that $y \notin N^+(u)$, then $|(S, \bar{S})| \ge d^+(u) \ge \min\{d^+(u), d^-(v)\}$.

There remains the case that $|N^+(u) \cap S_0''| = 1$, $|S_1'| = 1$, $|N^+(x) \cap \bar{S}_1'| = 1$ for all $x \in S_1''$, and $S_1'' - N^+(u) = \emptyset$.

Because of $\delta \geq 2$ and $|S_1'| = 1$, we observe that $S_1'' \neq \emptyset$. For $a \in S_0''$ and $b \in S_1''$ the hypothesis and $|N^+(b) \cap \bar{S}_1'| = 1$ lead to $|S_0'| \geq (n+1)/4 - 3/2$.

If $|S_0'| \ge 2$, then the hypothesis yields $|S_1''| \ge (n+1)/4 - 1$. Combining this with the assumption $|S| \le n/2$, we obtain the contradiction

$$|S_1''| = \frac{n+1}{4} - 1$$
 and $|S_0'| = \frac{n+1}{4} - \frac{3}{2}$.

In the remaining case, $|S_0'|=1$, the inequality $1=|S_0'|\geq (n+1)/4-3/2$ yields $n\leq 9$. In addition, it follows from $|S|\leq n/2$ and $|S|\geq 4$ that |S|=4 and n=8 or n=9, and thus $|S_1''|=1$. Consequently, the vertices in S_0' and S_0'' are of degree two. Since by the hypothesis there are no further vertices of degree two, we conclude that $d^+(u)\geq 3$, and so $|\bar{S}_1''|\geq 1$. From $|S_1''|=1$ and $|N^+(x)\cap \bar{S}_1'|=1$ for all $x\in S_1''$, we deduce that $|\bar{S}_1'|=1$. Since there are no further vertices of degree two, we see that $|\bar{S}_0'|\neq 0$ and hence $|\bar{S}_1''\cup \bar{S}_0''|\geq 3$. This is a contradiction when n=8. In the case n=9, we obtain $|\bar{S}_0'|=1$, $|\bar{S}_0''|=0$, $|\bar{S}_1''|=3$, and thus $|(S,\bar{S})|=4\geq d^-(v)\geq \min\{d^+(u),d^-(v)\}$.

Subcase 2.4. Let $u \in S_1''$.

If $|N^+(u) \cap S_0'| \le |S_1''| - 1$, then $|(S, \bar{S})| \ge d^+(u) \ge \min\{d^+(u), d^-(v)\}$. In the remaining case, $|N^+(u) \cap S_0'| \ge |S_1''|$, we discuss the two cases $|S_0'| = 1$ and $|S_0'| \ge 2$.

If $|S_0'| = 1$, then the assumption $|S_0''| = 1$, leads to $|S_1'| \ge 1$ and thus $|S| \ge 4$ and $n \ge 8$. Furthermore, $1 = |S_0'| \ge |N^+(u) \cap S_0'| \ge |S_1''|$, shows that $|S_1''| = 1$. If there is a vertex $x \in S_1'$ such that $x \notin N^+(u)$ or $|N^+(x) \cap S_1''| \ge 2$, then $|(S, \bar{S})| \ge d^+(u) \ge \min\{d^+(u), d^-(v)\}$.

In the remaining case, the hypothesis yields for $x \in S_1'$ and $y \in S_0'$ the inequality $5 \ge d(x) + d(y) \ge (n+1)/2$, and so $n \le 9$. As above, we obtain the desired result.

If $|S_0'| \ge 2$, then $|S_1''| \ge (n+1)/4 - 1$, and so $|S_0'| \ge |N^+(u) \cap S_0'| \ge |S_1''| \ge (n+1)/4 - 1$. The assumption $|S| \le n/2$ implies $S_1' = \emptyset$. Furthermore, $|S_1''| \ge 2$, because otherwise the vertices of S_0' are of degree at most two, a contradiction to the hypothesis and $n \ge 8$. Consequently, $|S| \ge 5$ and $n \ge 10$.

If there exists a vertex $x \in S_1'' - \{u\}$ with only one positive neighbor in \bar{S}_1' , then for $a \in S_0''$, it follows from the hypothesis that $2|S_0'| + 1 \ge d(x) + d(a) \ge (n+1)/2$, and so $|S_0'| \ge (n+1)/4 - 1/2$. As $|S| \le n/2$, we obtain the contradiction

$$|S_1''| = \frac{n+1}{4} - 1$$
 and $|S_0'| = \frac{n+1}{4} - \frac{1}{2}$.

There remains the case that each vertex $x \in S_1'' - \{u\}$ has at least two positive neighbors in \bar{S}_1' . If $2|S_1''| - 2 \ge |S_0'|$, then

$$|(S,\bar{S})| \geq |N^{+}(u) \cap \bar{S}'_{1}| + 2(|S''_{1}| - 1)$$

$$\geq |N^{+}(u) \cap \bar{S}'_{1}| + |S'_{0}|$$

$$\geq d^{+}(u) \geq \min\{d^{+}(u), d^{-}(v)\}.$$

If $2|S_1''|-2 \le |S_0'|-1$, then $|S_0'| \ge 2|S_1''|-1 \ge (n+1)/2-3$, and hence

$$\frac{n}{2} \ge |S| = |S_0'| + |S_1''| + 1 \ge \frac{n+1}{2} - 3 + \frac{n+1}{4}.$$

However, this leads to the contradiction $n \leq 9$.

Case 3. Let $|S_0''| \ge 2$, $|S_0'| \le 1$, and $|\bar{S}_0''| \le 1$.

Because of $|S_0'| \le 1$, this case is analogous to the Cases 1. and 2.

The assumption |S| > n/2 leads to $|\bar{S}| \le n/2$. If we consider $d^-(v)$ instead of $d^+(u)$, then the case |S| > n/2 can be proved in a similar manner as the case $|S| \le n/2$. \square

Corollary 2.14 Let G be a bipartite graph with the bipartition $V' \cup V''$ of order n and minimum degree $\delta \geq 2$. If $d(x) + d(y) \geq (n+1)/2$ for each pair of vertices $x, y \in V'$ and each pair of vertices $x, y \in V''$, then $\lambda(u, v) = \min\{d(u), d(v)\}$ for all pairs u and v of vertices in G.

Corollary 2.15 (Dankelmann, Volkmann [4] 1995) Let G be a bipartite graph of order n. If $d(x) + d(y) \ge (n+1)/2$ for all nonadjacent vertices x and y in G, then $\lambda(G) = \delta(G)$.

Corollary 2.16 (Volkmann [18] 1988) Let G be a bipartite graph of order n. If $n \leq 4\delta(G) - 1$, then $\lambda(G) = \delta(G)$.

Example 2.17 Let $p \geq 2$ be an integer and let H_1 and H_2 be two copies of the complete bipartite graph $K_{p,p}$ with the bipartitions

$$V(H_1) = \{x_1, x_2, \ldots, x_p\} \cup \{x_1', x_2', \ldots, x_p'\}$$

and

$$V(H_2) = \{y_1, y_2, \dots, y_p\} \cup \{y'_1, y'_2, \dots, y'_p\}.$$

We define the bipartite graph G as the union of H_1 and H_2 together with the new edges $x_1y_1, x_2y_2, \ldots, x_py_p$. Then, G is of order n = 4p, $\delta(G) = p$, and

$$d(x) + d(y) \ge 2p = \lceil (4p+1)/2 \rceil - 1 = \lceil (n+1)/2 \rceil - 1$$

for all pairs x and y of vertices in G. However,

$$\lambda(x_i, y_i) = p < \min\{d(x_i), d(y_i)\} = p + 1$$

for i = 1, 2, ..., p. Consequently, G is not maximally local-edge-connected.

This example shows that the condition $d(x)+d(y) \ge (n+1)/2$ in Corollary 2.14 as well as in Theorem 2.13 is best possible. The family of graphs in the next example will demonstrate that the condition $\delta \ge 2$ in Theorem 2.13 and Corollary 2.14 are necessary.

Example 2.18 Let $p \geq 2$ be an integer and let H be the complete bipartite graph $K_{p,p-1}$ with the bipartition $V(H) = \{x_1, x_2, \ldots, x_p\} \cup \{y_1, y_2, \ldots, y_{p-1}\}$ and let w be a further vertex. We define the bipartite graph G as the union of H and w together with the new edge wx_1 . Then, G is of order n = 2p, $\delta(G) = 1$, and

$$d(x)+d(y)\geq p+1\geq (n+1)/2$$

for all pairs x and y of vertices which are contained in the same partite set of G. However,

$$\lambda(x_1, y_i) = p - 1 < \min\{d(x_1), d(y_i)\} = p$$

for i = 1, 2, ..., p - 1. Consequently, G is not maximally local-edge-connected.

References

[1] B. Bollobás, On graphs with equal edge-connectivity and minimum degree, *Discrete Math.* 28 (1979), 321-323.

- [2] G. Chartrand, A graph-theoretic approach to a communication problem, SIAM J. Appl. Math. 14 (1966), 778-781.
- [3] G. Chartrand and L. Lesniak, *Graphs and Digraphs*, 3rd Edition, Wadsworth, Belmont, CA, 1996.
- [4] P. Dankelmann and L. Volkmann, New sufficient conditions for equality of minimum degree and edge-connectivity, Ars Combin. 40 (1995), 270-278.
- [5] P. Dankelmann and L. Volkmann, Degree sequence conditions for maximally edge-connected graphs and digraphs, J. Graph Theory 26 (1997), 27-34.
- [6] P. Dankelmann and L. Volkmann, Degree sequence conditions for maximally edge-connected graphs depending on the clique number, Discrete Math. 211 (2000), 217-223.
- [7] J. Fàbrega and M.A. Fiol, Maximally connected digraphs, J. Graph Theory 13 (1989), 657-668.
- [8] J. Fàbrega and M.A. Fiol, Bipartite graphs and digraphs with maximum connectivity. *Discrete Appl. Math.* **69** (1996), 271-279.
- [9] G. Fricke, O.R. Oellermann, and H.C. Swart, The edge-connectivity, average edge-connectivity and degree conditions, manuscript (2000).
- [10] D.L. Goldsmith and R.C. Entringer, A sufficient condition for equality of edge-connectivity and minimum degree of a graph, J. Graph Theory 3 (1979), 251-255.
- [11] D.L. Goldsmith and A.T. White, On graphs with equal edge-connectivity and minimum degree, *Discrete Math.* 23 (1978), 31-36.
- [12] A. Hellwig and L. Volkmann, Maximally edge-connected digraphs, Austral. J. Combin., to appear.
- [13] L. Lesniak, Results on the edge-connectivity of graphs, *Discrete Math.* 8 (1974), 351-354.
- [14] J. Plesník, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Comenian Math. 30 (1975), 71-93.
- [15] J. Plesník and S. Znám, On equality of edge-connectivity and minimum degree of a graph, Arch. Math. (Brno) 25 (1989), 19-25.
- [16] T. Soneoka, H. Nakada, M. Imase, and C. Peyrat, Sufficient conditions for maximally connected dense graphs, *Discrete Math.* 63 (1978), 53-66.

- [17] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452.
- [18] L. Volkmann, Bemerkungen zum p-fachen Kantenzusammenhang in Graphen, An. Univ. Buccuresti Mat. 37 (1988), 75-79.
- [19] L. Volkmann, Edge-connectivity in p-partite graphs, J. Graph Theory 13 (1989), 1-6.
- [20] L. Volkmann, Fundamente der Graphentheorie, Springer-Verlag, Wien New York 1996.
- [21] J.-M. Xu, A sufficient condition for equality of arc-connectivity and minimum degree of a digraph, *Discrete Math.* 133 (1994), 315-318.