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ABSTRACT: This paper introduces the problem of finding a
permutation ¢ on the vertex set V(G) of a graph G such that the

sum of the distances from each vertex to its image under ¢ is
maximized. We let G) = mavaeV(G) d(v,¢(v)), where the
maximum is taken over all permutations ¢ of V(G). Explicit formulae
for several classes of graphs as well as general bounds are presented.

1. Introduction. We assume G is a connected graph of order n with
vertex set V(G) = {vy, vy, ..., v,} and edge set E(G). As usual, the distance
between two vertices v; and vi is denoted by da(v;, vj) and equals the
minimum number of edges in a ViV path. Because G is connected, each
d(v,-, vj) is finite. The eccentricity of a vertex v; is e(v;) = max {d(vi, vj) :
1 £ j< n}, the maximum distance from v; to another vertex. The
neighborhood of a vertex v; is N(v) = {vj PV € E(G)}, and the degree of v;
is deg (v) = lN(vi) | which is the number of vertices at distance one from v
The distance of vertex v; is d(v) = E{d(vi,vj):ls j<n), the sum of the

distances from v to all of the vertices in V(G).

The radius of G is the minimum eccentricity of a vertex, {G) = min
{e(v) : v € V(G)}, and the center of G is the set of vertices of minimum
eccentricity, C(G) = {v;e V(G): e(v) = nG)}). The median of G is M(G) =
(v;e V(G):dvp< d(vj) for 1 £j < n}, the set of vertices of minimum

distance.

Here we are interested in permutations ¢:V(G) — V(G) which maximize
the sum of the distances from each vertex to its image under ¢. Let IT denote

the set of all permutations from V(G) onto V(G). We define the maximum
sum permutation distance XG) to be

(G) = max ¢EH 2?.:1 d(V",(b(Vi)) .
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We identify permutation ¢:V(G)— V(G) with the permutation ¢ : { 1, 2, ...,
n} = (1,2, ..., n} by equating having ¢(v;) = Vi with ¢(i) =j.
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Figure 1. Petersen graph P and atree T.

For example, ¢ = (1, 3, 5, 2, 4) (6, 7, 8, 9, 10) satisfies o(vy) = v,
¢(V2) = Vg ¢(V3) = Vs, ¢(V4) =V ¢(V5) = Vo ¢(V6) =V ¢(V7) = Vg,
¢(v8) = vy, ¢(v9) =vi0 and ¢(vw) =vg. For the Petersen graph P in
Figure 1, Y10, d(v;,¢(v;))=10-2=20= SP), while for tree T, of Figure
L, 210 d;¢(v) =2+2+2+3+3+1+2+2+2+1=20. Note that
for ¥=(, 6 3, 7,5 9 (2, 10, 4, 8) and tree T;, we have

2}21 dp, (Vi) =5+5+44+3+2+3+2+5+6+3 =38 Aswill be
shown, S(Tl) = 38.

2. Examples and bounds. We can precisely bound $(G) for graphs G of
order n.

Theorem 1. For every connected graph G of order n2>2, we have n < JG) <
|_n2/2_| and these bounds are sharp.

Proof. Let ¢ be any derangement of V(G), that is, p(v) #v; for 1<i<n.

Then S(G)2 Y1) d(v;,$(v;)) 2 n:1 = n. For a median vertex v € M(G) we

have d(v) < n2/4. Let ¢ be a maximum sum permutation of G. Then

S(G)= T, dwi, o) € Th| (d;,v)+d,9;) < 2d) < 2n?[4) =
2/

n“f2.

Clearly for complete graph K, we have S(K,)=n for n22. For path

P, let ¢ be the permutation with @(v;) =v for 1<i<n, and it is

n n—i+l

easily verified that 37, d(v;,¢(v;)) = l_nz/Z_I. a
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We note that for cycles Cn we have .S(Cn) = n2/2 when n is even
and S(C,) = n2/2-n/2 if n is odd. Complete graph K, is the only order
n graph G with S(G)=n.

For the eccentricity e(v,) we clearly have d(v, ) < e(v).

Theorem 2. S(G)< Y7, e(v;). Q

For example, the k-cube Qk has V(Qk) equal to the set of all binary k-

tuples with two vertices adjacent if and only if they differ in exactly one
position. Each vertex has a unique vertex farthest from it, d((el, ey, - ek),

(1-e|, 1-e,, ..., 1-¢})) = k. Hence, for Q; we have n = 2k, and Q) =
k-2,

For each edge e inatree T,let w(e) be the order of the smaller of the
two components of T -e.

Theorem 3. For any tree T, we have S(T) = ¥, o E(T) 2 wle).

Proof. Note that an edge e is on the unique path from v; to ¢(v,.) for a
permutation ¢:V(T)—> V(T) if and only if v, and ¢(v;) are in different
components of T - e. It follows that the maximum number of vi-¢(vi) paths

containing e is 2w(e). Thus S(T) = max,e Ying dvi¢(v) <
Leer(r) 2 W)

If M(T)={u,v} let T, and T, be the components of T — uv
containing # and v, respectively. We have lV(Tu) |= |V(Tv) |, and so there is
a permutation ¢:V(T)— V(T) with ¢(v) € V(T,) if and only if v;e V(T).
For such a ¢ every edge e ison 2-w(e) of the v;-¢(v;,) paths, and so XT) =
EeeE(T) 2-w(e).

If the median consists of one vertex, M(T) = {u}, then each component of
T - u has less than n/2 vertices. We can define permutation ¢:V(T) — V(T)

such that every edge is on 2-w(e) of the v-¢(v;) paths iteratively, as follows.
Let C| and C, be the two largest components of T — u. Select x € V(Cy)
and ye V(C,) such that x and y are endpoints of 7. Let ¢(x) =y and
o) =x,replace T by T —x -y and iterate this process until only one or
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two vertices remain. If it is just u, let ¢(u) = u, and if itis u and w then let
o(w)y=w and ¢(w)=u. Q

3. Distance-separating edge partitions. In this concluding section we
generalize Theorem 3. An edge set Fc E(G) is called distance-separating if
G - F has exactly two components, say with vertex sets V, and V,, and every

path from any vertex x € V| to any vertex y € V, of length d(x, y) contains

exactly one edge in F. Note that in trees edge set F is distance-separating if
and only if F consist of exactly one edge. We let w(F) be the order of the
smaller of the two components of G - F. A distance- tin iti

for G is acollection (E,, E,, ..., E,} whereeach E; is a distance-separatin
10 =2 1 i aling

edge set, U;=l E; =E(G),and 1<i<j<t implies E; NE;=0.

Theorem 4. Assume {E|, Ey, ..., E,} is adistance-separating edge partition of
graph G. Then $(G) < Ele 2-w(E;).

Proof. Let V,.l and V,2 be the vertex sets of the components of G — E; with
w(Ei) = |V;-l | < |V,~2 | For any permutation ¢@:V(G)— V(G) consider a
collection (P, P,, ..., P,} where P; is a v-¢(v) path of length
d(vi, 9(v;). For each e € E(G), let fle) be the number of paths P; that

contain e, and let fiE) = ¥ 5 f(e). We have ?=1 dvj,90v) =
Seer) f© = Tioy FE) < Ti_) 2-w(E)).
We note that S(G) = 2$=1 2-w(E;) if and only if there is a permutation

¢:V(G)—> V(G) such that for 1 £ i <t we have x € V,-l implying that
pme v2. Q

For example, consider the grid graph G, s Which is the cartesian product
P, x P, of paths P, and P_. Theorem 4 can be used to see that G s) =

EANEL

We have further results for maximum sum permutations of graphs under
study.
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