ON DENSE SETS RELATED TO PLANE ALGEBRAIC
CURVES
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ABSTRACT. We show that certain subsets of Fg-rational points of
the curve XZ"~! = Y™ are dense sets in P2(Fy).

1. INTRODUCTION

A point-set K of P2(F,), the projective plane over a finite field Fy of ¢
elements, is called dense provided that any point of the projective plane
belongs to a line joining two different points of K. A dense set is called
minimal if it is so with respect to the set-theoretical inclusion.

Dense sets were introduced by Bartocci [1] as a generalization of the so-
called complete arcs, namely maximal (with respect to the set-theoretical
inclusion) subsets of points of P?(F;) such that no three of which are
collinear. Dense sets are also related to blocking sets, cf. [9, p. 28], as
well as to linear codes with covering radius two, cf. [3] and the references
therein.

An interesting and difficult problem in finite geometry is to determine the
spectrum of the sizes k of minimal dense sets in P2(F,). It is known that

) =N = ’

where the lower bound was noticed by Lunelli and Sce [7] and the upper
bound by Bartocci [1]. The union of a line and a point outside the line
shows that the upper bound is sharp. If ¢ is not a square, the lower bound
is far away from the size of the examples constructed so far; indeed, the
smallest dense sets that are currently known have size |6+/3¢logg| and their
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existence was proved by Kovidcs [5] by means of probabilistic methods.
On the other hand, for ¢ square Szényi [8] and Ughi [11] independently
provided with a nice example of a minimal dense set of size 3,/g, namely
the union of three non-concurrent lines of a subplane of P2(F,) of order
/3. This example was generalized by Davydov and Ostergard [3, Thm. 3]
who showed the existence of minimal dense sets of size at most 2¢q/p + p,
where p is the characteristic of F.

Let h be a proper divisor of g— 1. Bartocci [1] constructed dense sets of size
at most 2(¢g—1)/h+3 for ¢ > C, where C is a constant depending just on h.
Similarly, Szényi [9, Thm. 4.4] constructed dense sets of size (¢g—1)/h+h+2
for ¢ > [(h—1)% + vVh* — 4h3 + 8h2 + 1]%. Both constructions are based on
a result of Korchmaros [4, p. 330] concerning the completeness property
of the arc K(4_y)/n,2 defined below. More precisely, Bartocci’s example
consists of two projectively equivalent copies of K(,_1)/4,2 and three extra
points, whereas Sz6nyi’s adds h + 2 collinear points to K;—1)/a,2-

In this paper we investigate the density in P?(F,) of the set

b =KanU{(1:0:0)}, where Kgn:={(n™:9':1):i=1,...,d},
d and n are positive integers such that d divides ¢ — 1, and 7 is a d-th
primitive root of the unity in F,. Notice that Kj . is a subset of F-

rational points of the curve C,, : X2 ! = Y". Our main result is the
following.

Theorem 1.1. K}, , is a dense set in P?(Fy) of size d + 1 provided that
the following conditions hold:

1) n>3;

(2) the characteristic p of F, does not divide n;
(3) (n—1) divides d;

(4) ged(d,n) > 1;

5) ¢ > [(An—1)(An—2)+4/(hn—1 )=(hn —2)2+4(h?n+3hn))?

, where h = (¢—1)/d.
The size of Szényi's examples is approximately v/2¢%/4 and ours is
(2n/V/17)g*/*. For q large enough, we also mention the existence of com-
plete arcs (hence of dense sets) of size at most 5¢%/* contained in a non-
singular cubic; however this construction is not explicit (see [9, Thm. 3.7]).

Although the size of our examples is slightly larger than Bartocci and
Szényi’s, we provide with explicit construction of dense sets which are sub-
sets of Fg-rational points of a single irreducible algebraic curve, namely
Ca.

The method of the proof of Theorem 1.1 (see Proposition 2.1) follows
Segre’s and the Lombardo-Radice method as described in (10, p. 208].
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2. THE SET K4, AND CERTAIN PLANE CURVES

In this section we show that the density of K, , in P?(F,) is naturally
related to the existence of certain Fg-rational points in the projective plane
curves Cp defined below as well as to arithmetical conditions between d and
n. To begin with, we notice that

Kan={(t":t":1) |t € F}},

with h = (¢ — 1)/d. In fact, for a € F, we have that a = © a? =1 &
a =t for some t € F}.

If (X : Y : Z) are homogeneous coordinates of P2(F), where F is the
algebraic closure of Fy, we set  := X/Z and y := Y/Z. We let p be the
characteristic of F,.

For P € P%(F,) different from the fundamental points (1:0:0), (0:1:0),
and (0:0: 1), let Cp be the projective plane curve defined by the affine
equation fp(z,y) = 0, where

fr(z.) u— v—;.—%.—’:":yh" + zhyh zh("-;)'_'yh("-l) , fP=(u:v:1),
P b := n n
y 1- il ifP=(1:v:0).

The motivation to consider these curves comes from the next result.

Proposition 2.1. For a non-fundamental point P = (v : v : w), there
ezists a line through P meeting the set Kgq,, in at least two distinct points
if and only if the curve Cp has an ¥ -rational point (zo : yo : 1) such that

To #0, yo #0, and =t # yh.

Proof. For zg,y0 € F; such that x(’,‘ # y{,‘, we have that

i b 1
det | vt 42 1 | =0 ifandonlyif  fp(zo,%) =0,
v v ow

and the result follows. O

On the other hand, for the remaining fundamental points in P2(F,) \ K ns
the following holds.

Proposition 2.2. (1) There ezists a line through the point (0 : 1 : 0)
meeting Kq . in two different points if and only if gcd(d,n) > 1;
(2) there ezists a line through the point (0 : 0 : 1) meeting Kq,, in two
different points if and only if ged(d,n — 1) > 1.
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Proof. (1) We look for two different integers ¢ and j between 1 and d such
that the points (0 : 1 : 0), (5™ : ' : 1), and (5" : 77 : 1) are collinear;
equivalently, we must have that " = 7/"; i.e., d must divide (i — j)n and
the result follows.

(2) Similar to (1). O

Now, since we will use the lower bound of the generalized Hasse-Weil theo-
rem for plane curves in order to analize the existence of F4-rational points
as required by Proposition 2.1, the next step is to investigate the abso-
lute irreducibility of the curves Cp. We use the following criterion due to
Bartocci and Segre:

Lemma 2.3. ([2, Lemma 8]) Let C be a projective plane curve of degree k
defined over an arbitrary field K. Then the curve is absolutely irreducible;
i.e. it is irreducible over the algebraic closure of K, provided that there
exists a point P € C and a tangent line £ of C at P such that the following
three conditions hold:

(1) £ has multiplicity one;
(2) the intersection multiplicity of C and ¢ at P is k;
(3) the tangent lines of C at P are not components of C.

Lemma 2.4. If P= (u:v:1), withu # v" and v # 0, then the curve Cp
is absolutely irreducible.

Proof. The homogenization of fp(z,y) is given by
(2.1)

n n—1
Fp(X,Y,Z) =uZ" — vy _(XMn-i(yh)=tzh 4 3 (XP)ni (Y.
i=1 i=1
Then the point (0 : 1 : 0) is an h-fold singular point for Cp, and the tangent
lines at this point have equations X = aZ with o = v. These tangents
are distinct since p does not divide &; in addition, by Bézout’s theorem, the
intersection multiplicity of any tangent of Cp at (0 : 1 : 0) is equal to nh
(the degree of Cp) since the set-intersection of each tangent with (2.1) give
rises to (u — v™)Z"" = 0; i.e., it is just the point (0 : 1 : 0) itself. These
properties imply the result via Lemma 2.3. O

Lemma 2.5. If P = (u:0:1), withu # 0, then the curve Cp is absolutely
irreducible provided that the following conditions hold:

1)n23;
(2) p does not divide n — 1.
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Proof. The hypothesis on p implies the existence in F of a h(n — 1)-th
root of unity, say a; we notice that a® # 1 asn > 3. Set F = Fp. Now
from (2.1), F(X,Y,0) = Xhyhr(Xan=1) _ yh(n=1)y /(X" — Y*) so that
Q:=(1:a:0) € Cp. We claim that @ is in fact a non-singular point of the
curve. Indeed, here we have Fz(Q) = 0, as hn > 2, Fx(Q) = —aFy(Q),
and Fx (Q) = h(n—1)a"/(1—a") which is different from zero by hypothesis.
In particular, Y = aX is the tangent line at P whose intersection with (2.1)
implies ©uZ?® = 0, i.e., it is just the point @ itself. Therefore the results
follows from Lemma 2.3. O

Now let P = (v™ : v : 1), with v # 0. From (2.1) it follows that each line
defined by either X = aZ or Y = aZ, where a” = v, is a component of Cp.
More precisely, Fp(X,Y, Z) = (X* —vZ?)(Y? —vZ?)Gp(X,Y, Z), where
n—1
Gp(X,Y,2):= Y ) (X" ()i (wz") !
i=1 j=1
We let Cp be the projective plane curve defined by Gp(X,Y, Z) = 0. Here,
although we do not have a criterion to decide whether or not this curve
is absolutely irreducible, based on the following remark we can give a nu-
merical sufficient condition under which Cp will have at least an absolutely
irreducible component defined over F,.

Remark 2.6. Let C be a plane curve over F; and P a non-singular F,-
rational point of C. Then any absolutely irreducible component of C passing
through P is also defined over F,. Indeed, this follows as P belongs to the
component and its image under the corresponding Frobenius morphism.

Lemma 2.7. If P = (v™ : v : 1), with v # 0, then the curve Cp has an
absolutely irreducible component defined over F, provided that:

1) nx3
(2) h(n —1) divides g — 1.

Proof. As in the proof of Lemma 2.5, there exists a € F such that
a""=1) =1 but a* # 1. In addition such e € F, by hypothesis (2). Set
F = Fp and G = Gp. Since G(X,Y,0) = (XMn-1) —yh(n=-1))/(Xh — Yh)
and n > 3, the point @ := (1 : a: 0) € Cp. The proof then follows from
the previous remark once we show that @ is non-singular. To see this we
use F = (X* —vZ")(Y"* — vZ")G to conclude that Fx(Q) = a"Gx(Q).
From (2.1) we easily see that Fx(Q) = h(n — 1)a”/(1 — a”*) and the result
follows as p does not divide n — 1. O

Remark 2.8. Condition (2) in the previous lemma is not necessary in
general for the existence of absolutely irreducible components of C}, defined
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over F,;. As for an example, let p # 3, n = 4, ¢ a power p such that h = 2
(so that p # 2). For P = (v!: v : 1), v € F};, we are going to show that the
curve C := Cp given by

G(X,Y,Z2)=Gp(X,Y,Z2) =X + X2V  + Y  + (X2 + Y wZ +%22%2 =0

is absolutely irreducible or splits into two absolutely irreducible conics de-
fined both over F,. To begin with, we notice that in the line Z = 0 the curve
has four non-singular points, namely @; := (1: w : 0), @2 := (1 : w? : 1),
Qs :=(1:-w:1),and Qq := (1: —w? : 0) where w is a 3-th primitive root
of unity. We also notice that the linear maps (X : Y : Z) = (Y : X : 2)
and S(X :Y : Z) = (X : =Y : Z) induce involutions on the curve.

Claim. The curve C has no linear components.

As a way of contradiction, suppose that L, is a linear component of C.
Thus C splits into four different lines: Ly, Ly := T'(L;), L3 := S(L,), and
L4 := S(L,), as the following properties hold: (i) T and S permutate the
points Q;’s, (ii) two different points Q; and Q; cannot belong both to the
same line L (otherwise Z would divide G(X,Y, Z)), and (iii) for each i
T(Q:) # S(Q:). Reorder the lines in such a way that Q; € L;, and let
AX + BY + CZ = 0 be the equation of L;. Then Ls, L3, and L4 are
defined respectively by BX + AY +¢Z = 0, AX — BY +¢Z = 0, and
BX — AY + CZ = 0. In addition, Ly = T'(L3); i.e., L,y is also defined
by —BX + AY + CZ = 0 and from the last two equations we get C = 0
meaning that G(X,Y, Z) is independent of Z, a contradiction.

Therefore if the curve is not absolutely irreducible, it splits into two ir-
reducible conics (over F), say C, and C,, such that Q, € C;. We will
show now that C; is defined over F; (a posteriori C, will do too); oth-
erwise, Co = ®(C;). Now, as Q2 = ®(Q.), then Q2 & C; since Q, is a
non-singular point; therefore one and only one of the following two possi-
bilities can occur (i) Q3 € C; or (ii) Q4 € C;. In case (i) G(X,Y,0) has
(1,w) and (1, —w) as zeroes so that C; is defined by an equation of type
(Y —wX)(Y +wX)+7Z+ DZ? = 0 where r is linear form in X and Y and
D € F*. Then C; is defined by (Y — w?X)(Y + w?X)+ ®(r)Z+ DIZ = 0.
We get a contradiction by comparing G(X,Y, Z) with the product of the
two above quadrics. Case (ii) is handled in the same way.

Finally, for points on Z = 0 we have:

Lemma 2.9. If P=(1:v:0), withv # 0, then the curve Cp is absolutely
irreducible provided that:

(1) A(n=1)>2andn > 2
(2) p does not divide n.
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Proof. The proof is similar to that of Lemma 2.5. Here the homogenization
of fp is given by
F(X,Y,Z) = Fp(X,Y,2) = Z"*~1D —y(Xhn — yhny/(XP - YH).

There exists a € F such that a*® = 1 but a®* # 1 (as n > 2) so that
Q:=(1:a:0)€Cp. Now Fz(Q) =0 as h(n — 1) > 2, Fy(Q) = aFx(Q),
and Fx(Q) = —hnv/(1 — a*). Thus Q is non-singular and the tangent line
at Q is Y = aX. Moreover, this line intersects the curve just in Q. Now
the result follows from Lemma 2.3. O

3. PrROOF OF THEOREM 1.1

We are going to apply Propositions 2.1 and 2.2; the hypotheses (4), (3),
and (1) reduce the proof to that of

(*) #Cp(Fy) > #(Cp(F) N(XYZ =0o0r X" =Y?h),

for any P € P?(F,), P different from a fundamental point. Now the
hypotheses (1), (2) and (3) (the latter being equivalent to h(n — 1) divides
g — 1) implies the existence of an absolutely irreducible component of Cp
defined over Fy by Lemmas 2.4, 2.5, 2.7, and 2.9. Hence we can use the the
generalized Hasse-Weil lower bound for the number of F¢-rational points of
(possible singular) plane curves (see [6]) which for an absolutely irreducible
projective plane algebraic curve C of degree k defined over F,; says that

#C(F,) 2 g+ 1~ v/a(k—1)(k - 2).
Since the absolutely irreducible curves arising from Cp have degree at most
hn, by using the inequality above and Bézout’s theorem we have that (x)
is fulfilled once
(3.1) g+1-y/q(hn —1)(hn -2) > h®n + 3hn.
This condition is equivalent to hypothesis (5) and Theorem 1.1 follows.
Remark 3.1. If in the hypothesis of Theorem 1.1 either (2) or (4) do not
hold, then K" := Ky , U {(0:1:0)} is a dense set in P?(F,) of size d + 2.
Indeed, we do not need to use either Proposition 2.2(1) or Lemma 2.9, as
the line Z = 0 pass through two different points of K"

Remark 3.2. If we slightly change condition (3.1) to
g+1-/ghn—1)(hn —2) > A’n +3hn + 1,

then K} ,, is not a minimal dense set. Indeed, suppose that it is minimal
and let P € K4,,. Then there exists Q € P2(F,) such that any line through
Q intersects Kj; ,, \ {P} at most once. Thus the proof of Theorem 1.1, the
above inequality and Proposition 2.1 imply @ € {(0:1:0),(0:0: 1)}.
This is not possible by Proposition 2.2.
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