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Abstract

We show that the classical Ramsey number R(3,3,3,3) is no
greater than 62. That is, any edge coloring with four colors of a
complete graph on 62 vertices must contain a monochromatic trian-
gle. Basic notions and a historical overview are given along with the
theoretical framework underlying the main result. The algorithms for
the computational verification of the result are presented along with
a brief discussion of the software tools that were utilized.

1 Introduction and Notation

In this paper we discuss the classical Ramsey Number R(3,3, 3,3), which
is the smallest integer n such that any edge coloring with four colors of the
complete graph K, must contain at least one monochromatic triangle.

In Section 2 we give a historical overview of triangle-free colorings. In
Section 3 we give the mathematical theory underlying the main result of
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this paper, which is R(3,3,3,3) < 62. Section 4 is a summary of Richard
Kramer’s unpublished manuscript [8] which contains a computer-free argu-
ment for the claimed improvement R(3,3,3,3) < 62. The manuscript [8]
is 116 pages long and very hard to verify. This motivated us to provide
independent verification of the claimed bound. In Section 5 we give the
algorithms for the computational proof of R(3,3,3,3) < 62. The software
tools that we utilized are discussed briefly in Section 6 and we give some
final thoughts in Section 7.

An (rq,ra,...,7E)-coloring, r; > 1for 1 < i < k, is an assignment of one
of k colors to each edge in a complete graph, such that it does not contain
any monochromatic complete subgraphs K, in color i, for 1 < ¢ < k. Also,
an (ry, e, ..., rk;n)-coloring is an (r1, re, ..., rx)-coloring of K,,. The
Ramsey number R(ry, 72, ..., rx) is defined to be the least n > 0 such that
the set of (ry, 2, ..., rx;n)-colorings is empty. A coloring using k colors
will also be called a k-coloring.

Two k-colorings are isomorphic if there exists a one-to-one onto mapping
between the vertices of the underlying complete graphs preserving all the
colors of the edges, and they are weakly isomorphic if there exists a bijection
between vertices that preserves the relation of two edges having the same
color. In our work to construct colorings, the assignments of one of k colors
to each edge in a complete graph may be only partial. In this case, we
consider any edge that has not yet been assigned a color to have color 0,
and call such a coloring a partial coloring. Each partial coloring can then
be considered as a (k + 1)-coloring with the extra color 0. It then makes
sense to talk about partial colorings being isomorphic.

The Ramsey number R(3,3,...,3) = R(3) is the smallest integer n

k times
such that any edge coloring with k colors of the complete graph on n vertices
must contain at least one monochromatic triangle. We will call an edge
coloring of K, good if no monochromatic triangles are formed.

Let V be the vertex set of an edge-colored complete graph. Let a be
a color. For v € V, the neighborhood of v of color a, denoted N,(v), is
defined to be the set of vertices whose edges to v are of color a. We refer
to |Na(v)| as the degree of v in color a and denote it by degq(v).

Now, for u and v two distinct vertices and é any color, the set Ns(u) N
Nj(v) is referred to as a u-v attaching set, or just an atteching set, if u,v
and § are clear from the context.

If v and v are vertices in an edge-colored graph and « is a color, we

write ¥ —— v to indicate that the edge connecting u and v has color o

Define [i1, ..., in] = { (is(1), ---» $(n)) | f is a permutation of {1,...,n} }.
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n  possible orders of N,(v)

65 [ 16, 16, 16, 16 ]
64 [ 16, 16, 16, 15 ]
63 [ 16, 16, 16, 14 ]

[ 16, 16, 15, 15 ]
62 [ 16, 16, 16, 13 ]

[ 16, 16, 15, 14 ]
[ 16, 15, 15, 15 ]
61 [ 16, 16, 16, 12 ]
[ 16, 16, 15, 13 ]
[ 16, 16, 14, 14 ]
[ 16, 15, 15, 14 ]
[ 15, 15, 15, 15 ]
60 [ 16, 16, 16, 11 ]
[ 16, 16, 15, 12 ]
[ 16, 16, 14, 13 ]
[ 16, 15, 15, 13 ]
[ 16, 15, 14, 14 ]
[ 15, 15, 15, 14 ]
59 [ 16, 16, 16, 10 ]
[ 16, 16, 15, 11 ]
[ 16, 16, 14, 12]
[ 16, 16, 13, 13 ]
[ 16, 15,15, 12]
[ 16, 15, 14,13 ]
[ 15, 15, 15, 13 ]
[15, 15, 14, 14]

Table 1: Color degree sequences for (3, 3,3, 3; > 59)-colorings.
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Suppose K, has a good edge coloring in colors a, 8, v, and 4. Then for
any 7 € {a, B, 7, 6} and for any v € V the induced edge coloring on the com-
plete graph with vertex set Ny (v) cannot contain any edges of color 7. That
is, Ny(v) inherits a good 3-coloring. Thus, the order of each Ny(v) must be
less than R(3,3,3) = 17 [5). Therefore, (|Na(v)|, |Ng(v)|, |Ny(v)], | Ns(v)]) €
[a, b, ¢, d] where a, b, ¢, d are nonnegative integers less than 17 that sum to
n — 1. We refer to [deg,(v), degs(v), deg,(v), degs(v)] as a color degree se-
quence of v for a (3, 3, 3, 3; n)-coloring. The possibilities for the color degree
sequences are given in Table 1 for 59 < n < 65.

All good 3-colorings of K15 and K¢ are known (see Section 2). So,
when a certain neighborhood in a good 4-coloring has order at least 15, the
possible colorings are limited to two good 3-colorings of K5 and two good
3-colorings of Kj¢. Note that for n = 64 all four neighborhoods have order
at least 15. The proof that R(3,3,3,3) < 64 [13] uses this fact. For n > 62
for at least three out of four colors, the neighborhoods must have order at
least 15. This is the basis for our approach to show that R(3,3,3,3) < 62.
For n > 60 for at least two out of four colors, the neighborhoods must have
order at least 15. It is possible that this approach might be used to further
lower the upper bound on R(3,3,3,3) to 60.

2 Historical Overview

The problem of finding R(3,3) was posed in a 1955 article by R. E. Green-
wood and A. M. Gleason [5] as it appeared as a question in the March 1953
Putnam exam. In this article, Greenwood and Gleason show R(3,3) = 6,
give the first proof that R(3,3,3) = 17, and show 42 < R(3,3,3,3) < 66,
making this the first paper to survey triangle-free colorings.

The proof that R(3,3,3) = 17 consists of two parts. R(3,3,3) > 17 was
shown by giving a good 3-coloring of K;g. The construction relies on finite
field theory using the Galois Field of order 16 and considers elements of the
field to be the vertices of a graph. The cubic residues in the multiplicative
group of the non-zero field elements are given. There are five cubic residues
giving rise to three cosets. An edge is then colored according to which coset
the difference of its vertices belongs. It is then shown that such a coloring
contains no monochromatic triangles.

The authors go on to show that any 3-coloring of K7 must contain
a monochromatic triangle by considering the possible orders of the neigh-
borhoods of a fixed vertex. The same type of argument works to show
R(3,3,3,3) < 66, and we will present it later in this section.

The next major item in the literature of triangle-free colorings is the
1968 article by J. G. Kalbfleisch and R. G. Stanton [7] where they prove
there are exactly two non-isomorphic good 3-colorings on 16 vertices, and
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they are not weakly isomorphic to each other. The two good 3-colorings of
K6 were both known before the article but new constructions were given
based on argument that in a good 3-coloring of K¢ the subgraph formed
by the 16 vertices and the edges of any one color is isomorphic to a given
graph. The color degree sequence for each vertex in each of these good
3-colorings on Kjg is [5, 5, 5.

Another construction of the two non-isomorphic good 3-colorings of K¢
was given by C. Laywine and J. P. Mayberry [9] in their 1988 article. The
approach is similar in spirit to Kalbfleisch and Stanton [7] in that finite
field theory was not used. Instead, the good colorings were built from good
3-colorings of K4 called tri-colored tetrahedrons (T'CTs). These TCT’s were
fitted together to make each of the two good 3-colorings of K. One of them
was called untwisted by the authors, and it is isomorphic to the construction
done by Greenwood and Gleason [5]. The other was called twisted and is
isomorphic to the one found by a computer search and given for the first
time in [7]. We denote the twisted coloring T; and the untwisted coloring
Ts.

We now focus our attention on R(3,3,3,3). As mentioned, Greenwood
and Gleason [5] showed R(3,3,3,3) < 66. We fill in the details by giving
the standard argument.

Theorem 2.1:R(3, 3,3, 3) < 66. [5]

Proof:

Let K, have a good 4-coloring in colors o, 8, v, 8. Let v € V be a fixed
vertex. Consider the induced coloring on N,(v) for each n € {a,8,7,6}.
N,(v) does not contain edges of color n otherwise there would be a tri-
angle in color 7, and hence Ny(v) exhibits a good 3-coloring. Thus, since
R(3,3,3) = 17, each |N,(v)| < 16. Since {v}, Na(v), Ng(v), Ny(v), Ns(v)
form a partition of V', we have:

Vi
= [{v} + [Na(v)} + [Np(v)| + [Ny (v)] + [N5(v)]
< 1+16+16+16+ 16 =65

n

Therefore, R(3,3,3,3) < 66. O

The bound R(3, 3,3, 3) < 65 appeared first in a 1973 paper by E. White-
head [14], although he gives credit for part of the proof to J. Folkman. Notes
by Folkman were printed posthumously in 1974 (3].

We note that K. Heinrich showed, in a 1977 article [6], that deleting
one point from each of the good 3-colorings of K¢ leads to exactly two
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nonisomorphic (3, 3, 3; 15)-colorings and that no other (3, 3, 3; 15)-colorings
exist.

No progress was made on lowering the upper bound for R(3, 3, 3, 3) until,
in 1995, A. Sanchez-Flores [13] gave a computer-free proof that R(3, 3, 3,3) <
64. Sidnchez-Flores proves a key lemma which shows that certain attaching
sets (namely those which contain a monochromatic K ) are not possible
in a good 4-coloring of K,,, unless n < 60.

In the spring of 1994 the second author [8] gave a series of talks at a
graph theory seminar at Iowa State University to show that R(3,3,3,3) <
62. These talks led to an unpublished manuscript, a summary of which
is given in Section 4. This manuscript provided the spark to develop the
algorithms for the computational proof of the same result which are given
in detail by the first author in her master’s thesis [2], and which appear
here in Section 5.

year reference lower upper
1955 Greenwood, Gleason [5] 42 66
1967 false rumors [66]

1971  Golomb, Baumert [4] 46

1973 Whitehead [14] 50 65
1973 Chung [1], Porter 51

1974 Folkman (3] 65
1995 Sanchez-Flores [13] 64
1995 Kramer [8] 62
2001 this work 62

Table 2: History of bounds on R(3,3,3,3)

In her 1973 article, F. R. K. Chung took an incidence matrix for one
of the two good 3-colorings of K¢ and constructed from it the incidence
matrix corresponding to a good 4-coloring of Ky, thereby establishing
R(3,3,3,3) > 50, which is to date the best known lower bound. Many
nonisomorphic good 4-colorings of Ksg, though all with the structure of
Chung’s coloring, were obtained by S. Radziszowski while this work was in
preparation.

We summarize the history of triangle-free 4-colorings in Table 2. For
values and bounds on classical and other types of Ramsey numbers, see the
regularly updated dynamic survey by S. Radziszowski {12}.
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3 Framework

Lemma 3.1: If K2 has a good 4-coloring in colors a, f, 7, § then for each
v in the vertex set V,

(INa ()], |Ng(v)], [Ny (v)], |N5(v)])
€ (16,16, 16,13]U [16, 16,15, 14] U [16, 15, 15, 15].

Proof:
Suppose K2 has a good 4-coloring in colors a, 8,4, 4. Let v € V. Since {v},
Na(v), Ng(v), Ny(v), Ns(v) form a partition of V we have,

62 = |V
1+ [Na(v)] + INp(v)] + |Ny(v)] + |N5(v)}

So, 61 = |Na(v)| + [Ng(v)| + |[Ny(v)| + |Ns(v)|. Moreover, for each n €
{a, 8,7, 4}, the induced coloring on N,(v) must contain no edges of color
7, otherwise there would be a triangle of color 7 in the original coloring.
Thus, Ny(v) exhibits a good 3-coloring and hence |N,(v)| < 16. The only
partitions of 61 into four nonnegative integers each at most 16 are given,
and so the lemma, follows. O

Theorem 3.2: If Kg, has a good 4-coloring in colors a, 8, 7, é then there
exist vertices u, v along with a color (without loss of generality, §) and
integer k, 3 < k < 14, such that the u-v attaching set Njs(u) N Nj(v) has
order k, and |Ns(u)| = 16 = | N5(v)|.

Proof:
Let V' be the vertex set of a K¢y with a good 4-coloring in colors a, 8,7, 4.
By lemma 3.1, for each v € V there exists an n € C = {a, 8,7,d} such that
|Ny(v)| = 16. So for X = { (v,n) | [Nz(v)| = 16,v € V,7 € C } we have | X|
> 62. For n € C, define V;, = {v | (v,n) € X}. Then V =V, UVaUV,UV;
and |V| = 62 together imply that at least one of V,, V3, V,, V5 must have
order > 16. Without loss of generality, let § be a color such that |Vs| > 16.
Let 2o, 21, 22, 23, 24, 25 € Vj be distinct. We first show | Njs(z;)NNs(z;)| >
3 for some distinct 4,5 € {0,1,2,3,4,5}. Suppose not, that is, |Ns(z;) N
Njs(z;)| < 2 for all distinct 4,5 € {0,1,2,3,4,5}. Then,

62 = |V

> |Ns(20) U Ns(21) U Ng(22) U N5(23) U Nj(24) U Ni(25)|
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> 16+14+12+10+8+6
= 66

leads to a contradiction. Thus, for some distinct ¢,j € {0,1,2,3,4,5} we
have |N5(2;) N Ns(z;)| 2 3. Let u = z; and v = 2;.

Now we will show that |Njs(u) N Ns(v)| < 14. Since Ns(u) N N5(v) #
@, the edge between u and v must be colored by one of a, §,v. Without

loss of generality, suppose u = . Then, no vertex can have edges
to both u and v colored by 7. That is, N,(u) N N,(v) = @. So, the sets
{v}, Ny(u) N Ng(v), Ny(u) N Ng(v), and Ny(u) N Njs(v) form a partition
of N,(u). Now, N,(u) N Nu(v) inherits a good 2-coloring in colors S, 4 so
| Ny(u) N Ng(v)| < 5. Similarly, |N,(u) N Ng(v)| < 5. Note that lemma 3.1
implies |N,(u)| > 13. So,

13 < [Ny(u)l
= [{v}| + |N,(u) N No(v)| + | Ny(u) N Ng(v)] + |Ny(u) N Ns(v)|
< 14545+ |Ny(u) N Ns()].

Thus | N, (u) N N5(v)| > 2.
Now consider the partition of the set Njs(v) into N, (u)NN5(v), Ng(u)N
Nis(v), Ny (u) N Nj(v), N5(u) N N5(v). So we have,

| N5 (v)]
| Ny (w) N N5 ()] + |Ng(u) N Ns(v)|
2 + |[Ns(u) N Ns(v)].

16

vV IV Il

Thus |Ns(u) N Ns(v)| < 14. 0

4 Summary of Manuscript by Richard Kramer

This section contains a summary of a 116 long manuscript by the second
author [8], which contains a computer-free proof of the nonexistence of good
(triangle-free) 4-colorings of Kgs.

The proof in [8] is split into two major parts, or layers, namely, the local
arguments, and the global arguments. The purpose of the local arguments
are to restrict, as much as possible, the structure of potential attaching
sets. Recall that for any color 4, and any distinct pair of vertices « and
v, the d-attaching set of u and v is the set Njs(u) N Nj(v), that is, the
intersection of the d-neighborhoods of « and v. In the local arguments of
[8], é-attaching sets of u and v are only considered where the cardinalities
of the é-neighborhoods of both vertices is 16.

48



Good Numerology

Given such an attaching set, consider any vertex w € Njs(u) N Njs(v).
According to Lemma 3.1, there are at least two distinct colors, say o and
B, both distinct from 4, such that the a-neighborhood of w and the §-
neighborhood of w both have cardinality 15 or 16. As such, the induced
colorings on these neighborhoods of w are known, up to isomorphism. Con-
sider the induced coloring on Nj(u), and let v be the fourth color. Then
Nj;(u), of cardinality 16, is either the untwisted or twisted good coloring
with colors o, 8, and 7. Thus, we know that the a-degree of w € Njs(u) in
N;(u) must be 5, that is, the cardinality of Nj(u) N N,(w) is 5. Similarly,
the cardinality of Njs(v) N Na(w) is also 5. Thus, we have two subsets of
Nu(w) of cardinality 5, namely Ns(u) N N,y(w) and Njs(v) N No(w), whose
induced subgraphs are colored with the two colors 8 and «. Since the in-
duced coloring on N,(w) is a good coloring with the three colors 3, v, and
4, and the cardinality of N,(w) is either 15 or 16, and therefore known,
we see, by inspection of the four possible isomorphism types for N, (w),
namely the untwisted or twisted good colorings on either 15 or 16 vertices,
that any pair of subsets of N,(w) of cardinality 5 whose induced subcol-
orings have only edges of the two colors § and v must have intersection of
cardinality 0, 2, or 5. Thus, the intersection of the sets Njs(u) N No(w) and
N;s(v) NN, (w) must have cardinality 0, 2, or 5. But this is just the a-degree
of w in Ns(u) N Ns(v). Thus, considering the é-attaching set of u and v,
with the induced coloring, the a-degree of w, and similarly, the S-degree of
w, must be either 0, 2, or 5. (Recall here that the colors « and 8 depend
on the element w of the attaching set chosen.)

Suppose that we are given an edge coloring of a complete graph with
three colors. We say that the coloring has good numerology provided that
for every vertex w, the degrees of w in at least two of the three colors are
contained in the set {0,2,5}. Otherwise, the coloring is said to have bad
numerology. We also apply these terms to a set of vertices by looking at the
induced colorings. What we have shown is that if u and v are two vertices
whose é-neighborhoods both have cardinality 16, then the é-attaching set
of u and v must have good numerology.

Embedding Attaching Sets

Suppose that we wish to construct an exhaustive set of potential at-
taching sets. We could start with an ordered pair of sets, X and Y, each of
cardinality 16, together with good colorings on the complete graphs on X
and Y, denoted by X and Y, respectively, colored with the colors a, 3, and
«v. X would represent the d-neighborhood of u, and Y would represent the
d-neighborhood of v. We would also need a partial isomorphism © from the
d-neighborhood of u to the d-neighborhood of v. The domain of © would
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represent the attaching set, viewed as a subset of X, and the range of ©
would represent the attaching set, viewed as a subset of Y. © itself, would
represent a rule for “gluing” X and Y along the attaching set. The roles of
X and Y here are symmetric, so consider X, together with the attaching
set, namely, dom(®). By the discussion above, we know that the attaching
set has good numerology. There are, up to isomorphism, two possibilities
for the good coloring X, namely, the untwisted coloring and the twisted
coloring.

Figure 1: Forbidden subconfigurations for attaching sets of cardinalities 4
and 6 (numbers in parenthesis)

In Table 3, the first column represents the cardinality of the attaching
set. The second and third columns represent the number of subsets of X
of the cardinality, up to weak isomorphism of the coloring on X, under the
assumptions that the coloring is untwisted and twisted, respectively. The
fourth column represents the total of columns two and three. The fifth and
sixth columns represent the subsets represented in columns two and three,
respectively, once the subsets with bad numerology have been filtered out.
Again, column seven represents the total of columns five and six. Columns
two and three are easily generated by computer, and presumably, are also
tractable by hand, although it is doubtful that it would be worth the ef-
fort. Columns five and six, on the other hand, can be generated by hand
fairly easily, together with the subsets that they represent. The numbers
in parenthesis come from further quasi-numerological restrictions involving
only the induced coloring on the attaching set, namely, that the induced
colorings on attaching sets of cardinality 4 or 6 cannot include either of
the subcolorings illustrated in Figure 1 where the solid, dashed, and dotted
lines represent the colors a, 8, and v, in any order.
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Suppose that we are given X, Y, and ©, as above, and X', Y', and ©'.
We assume that © is a partial isomorphism of edge colored graphs, with
dom(©) C X and ran(©) C Y. We imagine X and Y glued together along
©. Similar statements hold for X', Y’, and ©’. Assume also that dom(©)
and dom(©’) have the same cardinality. Given two such models of attaching
sets, we may define the notion of an isomorphism of them as follows. A weak
isomorphism of the models is a pair of bijections ¢ : X =+ X’ and ¢ : Y —
Y such that both ¢ and 9 are weak isomorphisms of edge colorings, and for
any z € dom(®), we have ¢(z) € dom(©') and 8'(p(z)) = ¥(6(z)). The
last condition simply states that ¢ and ¢ “agree” on the attaching set. By
restricting attention to the case where both ¢ and 1 are color preserving,
we also obtain a notion of isomorphism of the models.

cardinality | untwisted twisted total | untwisted twisted total
0 1 1 2 1 1 2
1 1 1 2 1 1 2
2 1 2 3 1 2 3
3 2 5 7 0 0 0
4 5 16 21 2(1) 6(4) 8(5)
5 8 26 34 1 1 2
6 14 52 66 4(2) 11(2) 15(4)
7 17 66 83 0 0 0
8 20 79 99 0 0 0
9 17 66 83 0 0 0
10 14 52 66 0 0 0
11 8 26 34 0 0 0
12 5 16 21 0 0 0
13 2 5 7 0 0 0
14 1 2 3 0 0 0
15 1 1 2 1 1 2
16 1 1 2 1 1 2

Table 3: Counts of types of attaching sets

Note that weak isomorphisms preserve the roles of X and Y. It is some-
times convenient to allow the roles of X and Y to be switched, that is,
letting o : X = Y’ and 9 : Y = X' in the definition of a weak isomor-
phism. In this case, for any z € dom(®), we must have ¢(z) € ran(©’)
and ©' "} (p(x)) = ¥(O(z)). We will refer to these, together with the weak
isomorphisms defined in the previous paragraph, as weak isomorphisms in
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the wider sense.

In Table 4, we count the number of attaching set models, for each pos-
sible attaching set cardinality. Columns two through six are counted up to
weak isomorphism, and columns seven through ten are counted up to weak
isomorphism in the wider sense. For example, according to Table 3, for car-
dinality 4, there is essentially only one possible subset of vertices possible
for the untwisted coloring, and four possible subsets for the twisted color-
ing, up to weak isomorphism of the underlying good coloring of K. (Note
here that the smaller numbers in parenthesis are used for cardinalities 4
and 6.) The heading for column three of Table 4 is “u~t”. This means that
we require X to be untwisted, and Y to be twisted. Essentially, there is
only one possibility for the attaching set dom(®), and four possibilities for
the attaching set ran(©). For each such pair of choices, we must find all
possible (color preserving) isomorphisms ©. Of course, there will be none
for any choices of dom(©) and ran(©) where the induced edge colorings on
those sets of vertices are not isomorphic. If they are isomorphic, there may
be more than one possibility for ©. However, we must “mod out” by weak
isomorphism types of the models, that is, of X, Y, and ©. In the case of the
entry in column three of Table 4 for cardinality 4, there are 3 possibilities.

The column of most interest in Table 4 is the last column, giving the
numbers of attaching set models surviving to this point, up to weak isomor-
phism in the wider sense. Let G be a set of cardinality 62, and let G be a
good coloring of the edges with four colors. Given an attaching set model,
that is, given X, Y, and ©, a realization of the model (in G) is a pair of
functions f : X & G and g : Y — G such that f is an embedding of the
edge coloring X into G, g is an embedding of the edge coloring Y into G,
and for any z € dom(©), we have g(©(z)) = f(z).

Of course, there are no such G’s, and therefore no such realizations for
any attaching set model, but we don’t know that yet.

Local Arguments

The goal of the local arguments is to restrict the possible structure of
such realizations as much as possible. It is trivial to show that there are no
realizations for cardinalities 15 and 16. The 7 models for cardinality 6 are
a bit more involved, but are not really difficult to eliminate, and in fact,
need not even be dealt with individually. Only two arguments are actually
needed, one for each of the weak isomorphism types of the edge colorings
induced on the attaching set itself. (Here we mean, up to weak isomorphism
of the induced coloring on the complete graph on the set of vertices of the
attaching set itself, and not of the underlying good colorings of either X
or Y, or of the attaching set model.) For cardinality 5, each of the four
models must be argued individually. Two of them survive this stage, with
restrictions detailed below. For cardinality 4, each of the fourteen models
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cardinality f u-u u-t t-u t-t total [u-u u-t t-t total
0 1 1 1 1 4 1 1 1 3
1 1 1 1 1 4 1 1 1 3
2 1 2 2 5 10 1 2 4 7
3 o 0 o0 o0 0 0 0 O 0
4 1 3 3 14 21 1 3 10 14
5 1 1 1 2 5 1 1 2 4
6 2 2 2 3 9 2 2 3 7
7 0 0 o0 O 0 0O 0 O 0
8 O 0 o0 0 0 0 0 O 0
9 o 0 o0 o0 0 0 0 0 0
10 0 0 o0 O 0 0 0 O 0
11 6 0 o0 o0 0 0 0 O 0
12 0 0 o0 O 0 0 0 0 0
13 0 0 o0 O 0 0 0 0 0
14 0 0 o0 O 0 0 0 0 0
15 1 0 0 1 2 1 0 1 2
16 1 0o 0 1 2 1 0 1 2

Table 4: Counts of types of attaching models

must be argued individually, in detailed arguments. Here, and in the case of
cardinality 5, it is very convenient to make use of any weak automorphisms
in the wider sense of the individual models. Cardinalities 2, 1, and 0 need
not be dealt with in the local arguments.

The entire purpose of the local arguments is to establish Theorem 13
of [8], which states that the only possible cardinalities of attaching sets are
0, 1, 2, and 5. Furthermore, only two of the four models for cardinality
5 might potentially have realizations. They can be defined as follows. Let
X =Y be either the twisted or untwisted good edge coloring with colors
a, B, and <. Choose any subset of X = Y of cardinality five with no edges
of color 7. (There is only one way to do this, up to isomorphism.) Let © be
the identity map on this set of vertices. That is, we have two copies of the
same good coloring, attached along a “pentagram” via the identity map.
This gives two possible models, depending on whether the colorings are both
untwisted or both twisted. Furthermore, in any realization of either of these
two models, if w € G is any of the five vertices in the attaching set itself,
the cardinality of N, (w) is less than or equal to 14, thus ensuring that all
other neighborhoods of w have cardinality 15 or 16, so that it makes sense
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to ask whether the induced subgraphs on N,(w) and Ng(w) are twisted or
untwisted. In fact, they are both twisted, for any w in the attaching set.
(Of course, this entire discussion is vacuous, but we don’t know that yet.)

Global Arguments

Note that in the local arguments, the restrictions on the structure of
attaching sets are proved independently, on a case-by-case basis. Only one
attaching set is considered at a time. The global arguments are quite dif-
ferent. Starting with a good coloring G on the complete graph with vertex
set G of cardinality 62, we assume the theorem described in the previous
paragraph, not just for one attaching set, but for every attaching set in
G, hence the adjective “global”. Using this theorem alone, the global argu-
ments produce a contradiction, thus showing that there can exist no such
good edge coloring on G using 4 colors.

To give some perspective on the relative difficulty of the local and global
arguments in the the original proof by hand, after about 15 pages of pre-
liminaries in [8], consisting mostly of facts about the untwisted and twisted
colorings on complete graphs on 15 and 16 vertices with three colors, the
local arguments comprise 95 pages, whereas the global arguments comprise
less than 6 pages. Of the 95 pages of local arguments, 19 pages are devoted
to attaching sets of cardinality 5, and 47 pages are devoted to attaching
sets of cardinality 4.

5 Algorithms and Computations

The remainder of this paper describes the computations, performed by the
first and the third author, whose goal was the same as of section 4: the
proof of the nonexistence of triangle-free 4-colorings of K¢2. While the main
concept of attaching sets is the same, the strategy used was quite different
in that for each step of the computations all possible orders of attaching
sets were considered simultaneously.

In this section, all references to isomorphism do allow for the permu-
tation of colors, hence they refer to isomorphisms in the weak sense. In
particular, in Tables 5 through 8, we give statistics of the number of equiv-
alence classes of colorings under weak isomorphism.

Suppose Kgz has a good 4-coloring C in colors 1, 2, 3, 4. That is, let
C € (3,3,3,3;62). Then, by Theorem 3.2, there are two distinct vertices
u,v in the vertex set V and a color, which without loss of generality we
can choose to be 4, such that the attaching set Ny(u) N Ny(v) has order k,
where 3 < k < 14, and |Ny(u)| = 16 = |N4(v)|. We note that throughout
this section all computational results were obtained independently by the
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first and third authors, compared, and no discrepancies were found.

The preliminary step is to identify all possibilities for induced colorings
of attaching sets Ny(u) N Ny4(v). Such a set is a subset of Ny(u) which, since
|N4(u)| = 16, has a coloring induced by one of the two good 3-colorings of
K 16y T1 or Tz.

Proposition 5.1: There exist 533 nonisomorphic ways for a nonempty set of
vertices to have a coloring induced on it by a good 3-coloring of K.

Proof: The following algorithm was executed for T} and T%. For each possi-
ble order k, k =1,2,...,16 (although k = 3,4, ..., 14 suffices for our work
by Theorem 3.2), for each nonempty subset S of vertices of Ky having
order k, construct a partial coloring of K7 by adding a 17** vertex and
coloring the edges between the new vertex and each vertex in the set S with
color 4. Eliminate isomorphic copies. 533 partially colored K¢’s resulted. O

We say these partial colorings (denote them by ;) have marked subset
and corresponding induced marked subcolorings. Table 5 lists the results by
order of the marked subset. Notice that these results agree with column 4
of Table 3. The computational approach parts here from the approach used
in Section 4.

order of marked number
subset of K¢

1 2

2 3

3 7

4 21

5 34

6 66

7 83

8 99

9 83

10 66

11 34

12 21

13 7

14 3

15 2

16 2

total 533

Table 5: Statistics of marked colorings in Y.
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Now we want to see how each of the marked subsets along with its
induced marked subcoloring can be embedded in another good 3-coloring
of Ki¢. By an embedding of the marked subset S, we mean an injection
¢:8 = V(T (i =1, 2) such that for every z,y € Sif — y then
o(z) 2 4(y)forne {1,2,3}. That is, we want to construct all possible
partial colorings of Ns(u) U Ny(v) agreeing on the induced marked subcol-
oring of S. Each such partial coloring on N4(u) U N4(v) can be considered
as an overlapping of two good 3-colorings of Kie.

Proposition 5.2: There exist 724 nonisomorphic ways for two good 3-colorings
of K¢ to overlap.

Proof: The following algorithm was executed. For each partial coloring in
T, embed the marked subset S of order k in all possible ways into each
of Ty, T;. Using such an embedding, construct a partial coloring of a K,
(s = 16 + 16 — k). Eliminate isomorphic copies. 724 partial colorings re-
sulted, listed by order in Table 6. We denote this set by T2. O

order of
marked subset number
1 3
2 7
3 20
4 54
5 74
6 109
7 110
8 116
9 91
10 69
11 35
12 22
13 7
14 3
15 2
16 2
total 724

Table 6: Statistics of overlapping colorings in 5.
Each of the objects in Y is a partial coloring with vertex set Ng(u)U

Ni(v). In order for one of these partial colorings to be contained in a full
good 4-coloring of Kg2 we consider possible color degree sequences as in
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Table 1. At least two of the three degrees (for colors 1,2, 3) are at least 15,
and each good 3-coloring of K5 is contained in one of the good 3-colorings
of K¢ [6]. It follows that for each vertex in the attaching set Ny(u) NNy (v),
for at least two of the three colors {1,2,3}, the neighborhood in that color
must be embeddable into one of the good 3-colorings of Ki¢. Applying this
restriction reduced the number of partial colorings from 724 to 129. Further,
we eliminated the five with attaching set of order 1 or 16 due to Theorem
3.2. This is still more than needed to show R(3,3,3,3) < 62, as orders 2
and 15 will also not be used, again due to Theorem 3.2. However, inclusion
provided additional correctness checks between the two implementations.
The vertices u and v were added to the vertex set and the appropriate edges
were colored with color 4. Let T3 denote the set containing the 124 partial
colorings obtained in this manner. See Table 7 for a breakdown of these
partial colorings by order. Note that already all attaching sets of orders
8,9,10 and 13 have been eliminated.

number order of number of
of vertices attaching set partial colorings

19 15 2
20 14 3
22 12 3
23 11 1
27 7 8
28 6 16
29 5 43
30 4 21
31 3 20
32 2 7

total 124

Table 7: Partial colorings with vertex set Ny(u) U Ny(v) U {u,v}, Ts.

We will now color additional edges in partial colorings from Y3 with
vertex set Ng(u) U Ny(v) U {u,v}. We do so by using embeddings of the
induced coloring of N,(z), for ¢ € {1,2,3}, into good 3-colorings of K¢
in colors {1,2,3,4}\{c}, where z is the first vertex in the attaching set.
For i = 1,2 and ¢ € {1,2,3,4} let T;(c) denote the good 3-coloring of
K6 in colors {1,2,3,4}\{c} obtained by replacing color ¢ in T; by color
4. We extend the previous definition of embedding ¢ to include handling
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color 0. If the edge between z; and z, is uncolored then the edge between
#(z1) and @(z2) can be of any color. Let C be a partial coloring. We say
that we pull back an embedding, or pull back an embedding onto C, if for
every 1,72 € N(z), 1 # 2, with the edge {z1, 22} uncolored, we assign
to {z1,z2} the color of the edge {¢(z1),#(z2)}. Call such an embedding
good if pulling back the embedding does not introduce any monochromatic
triangles.

All the remaining statements and propositions in this section assume
the configuration of vertices is within a good 4-coloring of Kga.

Proposition 5.3: A good 4-coloring on the set on vertices Ny(u) U Ny(v) U
{u,v} within Kg2, must contain as a partial subcoloring one of the 454
outputs obtained from colorings in T3 by pulling back all good embeddings
into good 3-colorings of K¢ of the neighborhoods of the first vertex in the
attaching set.

Proof: The following algorithm was implemented. For each coloring C' in
T3, let V be the vertex set of the underlying coloring and let A be the
vertices in the attaching set. Then V z € A, V ¢ € {1,2,3} find all good
embeddings of N(z) into T)(c) and Ty(c). If V = € A there exists a good
embedding in two out three colors from {1, 2,3} then keep the partial color-
ings on V obtained by pulling back each of the good embeddings into T} (c)
and T»(c) of the first vertex in A. After eliminating isomorphic copies, 454
partial colorings resulted. O

Each of these 454 results is a partial coloring with vertex set Ns(u) U
Ny (v) U {u,v}, where now the first vertex in the attaching set has one of
its neighborhoods fully colored in colors 1,2,3. We refer to the colorings
that result from this phase as partial colorings with marked attaching sets
extended by one vertez. Two of these partial colorings had attaching sets
of order 15, which are not needed for the final result and these two partial
colorings were discarded. The only remaining orders for attaching sets were
2,4,5 and 6. Denote the set of all partial colorings with marked attaching
sets having order less than 15 extended by one vertex by Y4. See Table 8
for a breakdown of these partial colorings by order of attaching set.

We now attack the problem of coloring all the edges in the neighbor-
hoods of the vertices in the attaching set simultaneously. Suppose z,y are
vertices in the attaching set of a partial coloring in T4. For ¢,d € {1,2,3}
suppose N.(z), Na(y) each have a good embedding into Ti(c), T2(c), and
Ti(d), T>(d), respectively. We say that two good embeddings overlap if an
uncolored edge in the partial coloring that is colored by each of the pull-
backs is assigned the same color by each of the good embeddings. Moreover,
we say that the pullbacks overlap successfully if pulling back both good em-
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order of number of
attaching set partial colorings

6 7
5 13
4 103
2 329
total 452

Table 8: Partial colorings in T 4.

beddings introduces no monochromatic triangles.

We extend the definition of successful overlap to more than two embed-
dings. Let C be a partial coloring. Suppose we have a sequence ¢;, @, .. ., o
of good embeddings where each ¢; is of the form ¢ : N.(z) = V(Tj(c))
where ¢ € {1,2,3}, z is in the attaching set of C and j € {1,2}. Define
a sequence of colorings by C; = C and for ¢ > 1 let C; be the coloring
obtained by pulling back ¢; onto C;—,. We say ¢1,¢2,...,dr overlep suc-
cessfully if at each step C; contains no monochromatic triangles and refer to
such a sequence as a good sequence. We call Cj, the pullback of the sequence
of embeddings.

Proposition 5.4: A good 4-coloring on the set of vertices Ny(u) U Ny(v) U
{u,v} within Kg,, where the attaching set has order less than 15 and at
least 2, must contain as a partial subcoloring one of the 512 outputs (5 with
attaching set of order 5 and 507 with attaching set of order 2) obtained from
colorings in T4 by pulling back all possible good sequences of embeddings
obtained by using two out of three of the colors 1,2,3 for each vertex in
the attaching set.

Proof: The following algorithm was implemented. For each partial coloring
C in Ty, let V be the vertex set of the underlying coloring and let A =
{z1,%2,...,Zm} be the vertices in the attaching set. ThenVz € A4, V¢ €
{1,2, 3} find all good embeddings of N(z) into T}(c) and T2(c). fVz € A
there exists a good embedding in two out three colors from {1,2,3} then
continue, otherwise reject C.

In all possible ways, successfully overlap the pullbacks of good embed-
dings V £ € A, for two out of three colors from {1,2,3}. That is, find
sequences of embeddings ¢1,¢,, ®1,d1y D2,c20 D2,d21++-3sPn,cms Pn,d, Where
each (c;,d;) € {(1,2),(1,3),(2,3)} and for b; € {ci,di}, dip; : Np, (i) —
V(Tx(b;)), for some k € {1,2}, that overlap successfully. The sequences
that were constructed are built in such a way as to yield all overlappings
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possible to obtain from any such sequence. For each such good sequence,
retain the pullback of the sequence. 512 nonisomorphic partial colorings
resulted. O

The only orders for Ny(u) N Ny(v) left were 2 and 5. There were 507
partial colorings with attaching set having order 2 and 5 partial colorings
with attaching set having order 5. Since the partial colorings with attach-
ing set having order 2 were not needed for our result (by Theorem 3.2),
we discarded them. Let Ts denote the set of all (5) partial colorings with
attaching set of order 5 that result from implementing the algorithm from
Proposition 5.4.

We now color additional edges by implementing a somewhat similar al-
gorithm for vertices in S = (N4(u) U Ny(v) U {u, v})\(Na(u) N Ny(v)), and
for all four colors. Let = € S be a vertex in a partial coloring from Ys. For
c € {1,2,3,4}, we say c is a feasible color for z if N.(z) is fully colored or
if N.(x) has a good embedding in Tj(c), for some i € {1,2}.

Proposition 5.5: A good 4-coloring on the set of vertices Ny(u) U Ny(v) U
{u, v} within K, where the attaching set has order 5, must contain as a
partial subcoloring one of the 8191 colorings obtained from colorings in Y5
by successfully overlapping in all possible ways the pullbacks for three out
of four colors from {1,2,3,4} for each vertex not in the attaching set that
has exactly three feasible colors.

Proof: The following algorithm was implemented. For each coloring C € T
let V be the vertex set of C and let S = V'\(N4(u)NN4(v)). For each z € S,
for each ¢ € {1,2,3,4} find all good embeddings of N.(z) into Ti(c) and
Ty(c). Let f(z) denote the number of feasible colors for z. The actions
depending on f(z) are as follows: If f(z) < 3 then reject the input color-
ing and quit. If f(z) = 3 then store the good embeddings for later use. If
f(z) = 4 then ignore this vertex, and continue. ¥ z such that f(z) = 3,
for the three feasible colors ¢ for z, in all possible ways successfully over-
lap the pullbacks of the good embeddings into T;(c), = 1,2, and store the
result. 8191 nonisomorphic partial colorings resulted. Denote them by T¢ O

Each of 8191 results in YTg is a partial coloring with vertex set Ng(u)U
N4(v) U {u, v} obtained by coloring additional edges in a partial coloring
C € Y5. Now each vertex not in the attaching set that had exactly three
feasible colors has all three of those feasible color neighborhoods from C
fully-colored. This, of course, changes some of the neighborhoods so that
the new (possibly larger) neighborhoods need not be fully colored.

Note that we could have mimicked the proof of Proposition 5.4 at this
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stage. That is, for vertices in S, we could have found all sequences of em-
beddings using three out of four colors from {1,2,3,4} for each vertex, that
overlap successfully and stored the pullback of each such sequence. In fact
such a program was written. It was not needed since the following simpler
computation sufficed.

The final phase consisted of running each of the independent programs
used in Proposition 5.5 to obtain Yg but now with T¢ as input. No color-
ings were obtained by either program. Thus we have shown:

Theorem 5.6: There does not exist a good 4-coloring of Kg2.

Proof: In Theorem 3.2 we showed that every good 4-coloring of Kgs con-
tains an attaching set of order k, where 3 < k < 14. Propositions 5.1 — 5.5
above along with the final phase that obtained no output show there is no
good 4-coloring for such an attaching set.O

6 Software Tools

We have at our disposal the software to store and manipulate multicolored
graphs in the .mc format developed by Brendan McKay. The .mc format
allows each graph coloring to be represented by one line of printable bytes.
That is, given a c-coloring of a graph G on n vertices, the .mc encoding of
G consists of a string of characters formed by one byte for n, one byte for
c, followed by n(n — 1)/2 blocks of k bits where k = [(log2(c + 1))], each
storing color of an edge.

Nauty, a program that computes a canonical labeling of graphs, was
developed by B. McKay [10]. For a graph G, a canonical labeling, can(G),
is a labeling with the property that two graphs G and G, are isomorphic
if and only if can(G;) = can(G2). Thus, we can translate the isomorphism
problem into identity which is then solved by the standard UNIX sort -u
utility which deletes identical lines.

The interface between the .mc format and nauty, called shortmc was
also developed by B. McKay [10]. Shortmc run on an input file of colorings
held in the .mc format results in a file containing a subset of the original
colorings, one from each isomorphism class.

7 Conclusions

Can we push our approach further? Suppose K, has a good coloring C in
four colors. For n > 60, for at least three out of four colors, the orders
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of the neighborhoods must be at least 14 and for at least two the orders
are at least 15. All R(3, 3, 3;14) colorings are known [11] and, up to weak
isomorphism, there are 115 of them. Further, our proof of Theorem 3.2 can
be modified to show the existence of a u — v attaching set Ns(u) N Ns(v)
in C of order k, where 3 < k < 13, with |[Nj(u)| = |Ns(v)| > 15. Marked
subsets of the two (3,3,3;15) colorings and ways to overlap two good 3-
colorings of K5, were obtained while this paper was in progress when we
still considered a possibility of obtaining the bound R(3,3,3,3) < 60. It
was at the Proposition 5.3 stage that the number of partial colorings with
marked attaching sets extended by one vertex became too numerous to
handle.

Concerning the exact value of R(3,3,3,3), our expectations are mixed.
The second author hopes that 62 is correct or close, while the other two
authors feel that the current lower bound of 51 is likely to be correct. We
don’t have much evidence to argue for either case.
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