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Abstract
Given S a benzenoid system, we find an expression of the second
order Randi¢ index, denoted by 2x(S), in terms of inlet features of S. As
a consequence, we classify benzenoid systems with equal %y and then find
the minimal and maximal value over the set of catacondensed systems.

1 Introduction

The connectivity index (or Randi¢ index) of a graph G, denoted by x(G), was
introduced by Randi¢ {16] in the study of branching properties of alkanes. It is
defined as

X6 =3~

where 6, denotes the degree of the vertex u and the summation is taken over
all pairs of adjacent vertices of the graph G.

A part of the current research in the mathematical properties of the connec-
tivity index, involves the problem of finding minimal and maximal values of x
over significant classes of graphs. For instance (see [1},{2] and [8]), among all
graphs without isolated vertices, the star has minimal connectivity index and
the graph in which all components are regular graphs has maximal connectiv-
ity index. Restricting to the set of all trees with a fixed number of vertices,
Caporossi et al. (3] proved that the path tree has maximal connectivity in-
dex. Other publications related to this problem can be found in the literature
(14),{7},9] and [17]).

With the intention of extending the applicability of the connectivity index,
Randi¢, Kier, Hall and co-workers ({10} and [11]) considered the higher-order
connectivity indices of a general graph G as

1

h
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where the summation is taken over all possible paths of length h of G (we
do not distinguish between the paths uyug---ups1 and upyqup---1y). This
new approach has been applied successfully to an impressive variety of phys-
ical, chemical and biological properties (boiling points, solubilities, densities,
anesthesic, narcotic, toxicities etc.) which have appeared in several hundred
scientific publications and in two books ([10] and [12]). Results related to the
mathematical properties of these indices have been reported in the literature
([1] and {14}).

Our main concern is the class of benzenoid systems, graph representations
of benzenoid hydrocarbons which are of great importance in chemistry. A ben-
zenoid system is a finite connected plane graph without cut vertices, in which
all interior regions are mutually congruent regular hexagons (we exclude the
hollow coronoid species from the class of benzenoid systems). More details on
this class of graphs can be found in [6).

Following the terminology proposed by Cyvin and Gutman ([5] and [6]), an
hexagon of a benzenoid system can be classified according to the number and
position of edges shared with the adjacent hexagons. Figure 1 shows the 12
different types of hexagons that can occur in a benzenoid system with more
than one hexagon.

Figure 1

We can associate to each path ujus - - - upyy of length h of a benzenoid sys-
tem S, the vertex degree sequence (8y,,0u,, - 6u,,,). If one goes along the
perimeter of S, then a fissure, bay, cove and fjord, are respectively, paths of
degree sequences (2,3,2), (2,3,3,2), (2,3,3,3,2) and (2,3,3,3,3,2) (see Figure
1). The number of fissures, bays, coves and fjords are denoted, respectively, by
f(8), B(S), C(S) and F(S).

A new parameter r(S) = f(S) + B(S) + C(S) + F(S), called the number of
inlets of S, was introduced in {13} and a simple relation with the connectivity
index was established; namely,

n(S) 5-2v6
x(s) =" 3220 1)

where n(S) is the number of vertices of S. If we restrict ourselves to the class
of catacondensed systems, i.e. benzenoi, systems with no internal vertices or,
equivalently, benzenoid systems which posseses only hexagons of the type L,,
Ly, A> and Az, then equation 1 can be used to find the minimal and maximal
value of x over the set of all catacondensed systems with a fixed number of
hexagons [15].

In this work we derive an expression for 2x(S) in terms of structural features
of S. Since all vertices in a benzenoid system S have degrees equal to 2 or 3, the
paths of length 2 of S have degree sequences (2,2,2), (2,3,2), (2,2,3), (2,3,3),
(3,2,3) and (3, 3,3). It follows that

1 1 1
2x(8) = ‘/—"1222 + \/1—2("1232 + mag3) + ﬁ(mna + mga3) + ﬁmm, (2)
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where m;;i. denotes the number of paths with degree sequence (i, 7, k). In The-
orem 2, we show that the second order connectivity index of S is completely
determined by the numnber of vertices n(S), hexagons h(S), inlets r(S), fissures
f(S) and adjacent inlets a(S) (i.e., number of pairs of inlets that have a com-
mon vertex of degree 2). As a consequence, in Corollary 3 we classify benzenoid
systems with equal second order connectiviy index.

The expression obtained for 2y in terms of inlet features is applied in The-
orem 6 to prove that, among all catacondensed systems with h hexagons, the
linear polyacene L has maximal and the ladder-type catacondensed system Ej,
has minimal second order connectivity index.

2 Second order Randi¢ index of benzenoid sys-
tems

In order to express the second order connectivity index of a general benzenoid
system in terms of the number of inlets, we begin by proving two reduction
formulas. But first, let us introduce the notation which we use in the sequel. If
S is a benzenoid system with n vertices, m edges and h hexagons, then

n; = number of vertices of degree j ( j = 2,3);

n; = number of internal vertices;

m. = number of external edges (i.e., edges lying on the perimeter of S);

m; = number of internal edges (i.e., non-external edges of S).

Relations between these structural invariants of benzenoid systems can be
found in [6]. Of particular interest in our next results are the relations m =
n+h-1,n3=2h-1)andn; =4h+2—-n.

Lemma 1 Let S be a benzenoid system with n vertices and h hezagons (h > 2 ).
Then

1. ma3 + 2m393 + 3maozs + dmazas + SMgoneey =0+ h —- 1;

2. ma3 + m323 + Maaa3 + M32003 + M322223 = J(h — 1);

where m3y...93 represents the number of paths of degree sequence (3,2,...,2, 3)
inS.

Proof. 1. We know that

4
m=m;+me=ma+ Y (i+1)mga, . . 23
~—~—

=1

since each path of S of degree sequence | 3,2,...,2,3 | has i +1 (external) edges.
——

The result follows from the relation m =n + h — 1.
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2. It is clear that

Ny = - | mag,. 23} =N —ng
Z o
since every path of S of degree sequence | 3,2,...,2,3 ]| has i vertices of degree
N’

i
2. Hence, by the equation of part 1 and bearing in mind that n3 = 2(h — 1),
we conclude that
4

1 —
stz >+ )m32 .23 Zi maz,... 23

i=0 i=0
(n+Il-])—(n—113)_ (h-1)

Theorem 2 Let S be a benzenoid system with n vertices, h hexagons, r inlets,
f fissures and a adjacent inlets. Then
2x(S)=an+Bh+yr+6f +ea+n

where a = %Z, 8= “\/3;3\/i 3\/51-82\/5’ § = s\/§l-86\/i
7= 3v2-4y/3
= 2AvS

’7‘_‘ ’e=

5v2-4\3
5 and

Proof. Using the equations of Lemma 1 and the relation mg3 =3h ~r -3
(13, Lemma 1], we express each of the m;; of equation (2) in terms of n, h, r,
f and a. First of all, it is clear that m323 = @ and mg3» = f. Furthermore,

Moz = Ma32023 + 2M322223

= (4 — 3)mazaz3 + (5 — 3)ma2z023

= (4mag3 + 51n320223) — 3(Ma2223 + M320203)
[(n 4 h — 1) — (ma3 + 2ma23 + 3mazas)]
-3[3(h — 1) — (ma3 + m323 + Maz03)]
= n—8h+2ma3+mg3+8
= n—-8h+2(3h-r-3)+a+8
= n—-2h-2r+a+2

Mao3 2maa23 + 2maz293 + 2322223

2(mag03 + m32223 + M322223)
= 2[3(h - 1) - (m33 + m323)|
6h — 2m33 - 2771323 -6
6h—2(3h —r —3) — 20— 6
= 2(r-a)
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and

Mo33 = 2f+4(B+C+F)
= d4r —2f.

To find m333 we use the fact that every path in S of the form (3,3, 3) has all
its edges in the same hexagon unless they belong to a cove or a fjord. Hence,

maaz = 6h — Gmaoogez — Smanoe3 — dmageg — 3mags + C + 2F,

But

-6m320993-5m32923-4m3223-3ma23 = —(5M320003 + 4Magnaz + 3many + 2ma3)
—(ma22203 + Mag223 + Ma23 + M393)
= —(n+h~l—m33)—[3(h-—1)—m33]
= —n-—4h+ 2mgz3 + 4
= —n-4h+2(3h—r—3)+4
= 2h—-n-2r-2.

In order to calculate C' + 2F, we first note that the number of external vertices
of degree 3 is given by the expression 4F + 3C + 2B + f. Consequently,

4F +3C+ 2B+ f =n3 —n;.
Since n3 = 2(h — 1) and n; = 4h + 2 — n we deduce that
1F+3C+2B+ f=n—-2h -4,
By definition of the number of inlets
F+C+B+f=r
and so from these two last relations we obtain
C+2F=n—-2h—-2r+ -4

Therefore,

M333 6h+(2h—n—=2r—2)+(n—2h—2r+ f - 4)

Gh—4r+ f—6.

Now the result follows by substituting the values of m;ji obtained above in
equation (2). =

Our next result classifies benzenoid systems that have equal second order
Randié¢ index.
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Corollary 3 Let S and S’ be benzenoid systems such that n(S) = n(S’) and
h(S) = h(S’). The following conditions are equivalent:

(i) 2x(S) =2x(S");
(ii) =2[r(S) —r(5")] = f(§) - f(§') = a($) - a(5").

Proof. Let u = r(S) —r(S'), v = f(S) - f(5’) and w = a(S) — a(S’). Since
n(S) =n(S") and h(S) = h(S’), we know by Theorem 2 that

36 (2x(S) -%x(8") = 2 (3\/5 ~2V3)u+2 (5\/3' - 6\/5) v
+3 (5\/5 - 4\/3) w
= (6u — 120 + 15w) V2 + (—4u + 10v — 12w) V3.

The fact that {v/2, v/3} is a linearly independent set over Q implies that 2x(S) =
2y(8') if, and only if,

u-4v+d5w = 0
~2u+Sv—-6w = 0
and the solution for this system is —2u=v=w. =
Example 4 Consider the benzenoid systems
Figure 2

Note that 7(S) = v(S') =5, f(S) = f(5') = 2 and a(S) = a(S") = 0. Conse-
quently, 2x(S) =*x(5").

The following example illustrates the situation in which r(T') # r(T"). f(T) #
f(T") and a(T) # a(T"), but still 2x(T) =2\ (T").

Example 5 Consider the benzenoid systems

Figure 3
Note that h(T) = h(T") = 16 and n(T) = n(T") = 66. Moreover, a(T) = 2,
f(T) =6, r(T) =17 and o(T’) = 4, f(T') = 8, r(T’) = 16. Then condition (ii)
of Corollary 3 is satisfied and consequently, 2x(T) =2x(T").

In Theorem 2 we reduced the number of parameters that occur in 2x(S)
from 6 (equation 1) to 5 (Theorem 2). Actually, we can reduce it to 4 when
considering catacondensed systems. In this type of systems we have the relation

n=4h+2

which gives
2%(8) =ph+yr+Ef tea+p 3)
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where u = 34@:;&@, o= 3—\/5—524@ and 7,8,¢ as in Theorem 2. We will now use
this relation to find the minimal and maximal value of 2y over Cy, the set of all
catacondensed systems with h hexagons.

For a positive integer k, let H(k) denote the catacondensed ladder system,
as shown in Figure 4

Figure 4

We can use H(k) as the basic structure to construct catacondensed systems with
minimal number of inlets, fissures and adjacent inlets as follows: let E4 be as
in Figure 5 and if 2 > 6 is even, let Ej be the catacondensed system obtained
from H(%:2) by adding two hexagons, one to the A, hexagon on the top and
the other to the A; hexagon on the bottom

Figure 5

In the odd case, E3, Fs and E; are shown in Figure 6 and if £ > 9 is odd, let
E}j, be the catacondensed system constructed from H (%) by adding E; to the
A3 hexagon of the bottom and an hexagon to the A, hexagon of the top

Figure 6

The following table contains information related to the inlet counts in each of
the catacondensed systems defined above:

f T
Lo (h2>22)[2(h—1) [ 2(h-1) 2(h.a— 2)
Ep (h > 6) 0 [#] 0

where [z] is the integer part of .
Theorem 6 For all h > 3. if S € Cy, then
2X(En) <*x(S) <%x(La).
Proof. It was shown in [15, Propositions 1 and 3], that if S € C), and h >3

then b3
r{Ep) = -;—] <7 (S)<r(Ly).

Morcover,
f(En) =0<f(S) <7(S) <7 (Ln) = f(Ly)

for h = 4 and k > 6. Finally, since S is a catacondensed system, it follows
that a (S) = 2, and {; > 2, where /; and [, denote the number of L, and L,
hexagons in S. Consequently,

a(Ep)=0<a(S)=2,<2(h-1)<2(h-2)=a(Ly).
This implies that 2x(Ey) <2x(S) <2x(Ly) for h = 4 and h > 6, in view of

relation (3); and the remaining cases when h = 3 or 5 can easily be checked
seperately. m
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Remark 7 Note that if we define Ey = L, and E3 = Ly then Theorem 6 holds
trivially for h =1 and 2, since C, = {L;} and Cy = {L,}.
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