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Abstract

Let my, my, ..., m, be positive integers with m; 2 3 for all i. An (my, m,, ..., m,)<cycle is defined as the
edge-disjoint union of r cycles of lengths my, m, ..., m. An (m, my, ..., m,)~cycle system of the complete
graph K, is a decomposition of K,, into (m,, m,, ..., m,)-cycles.

In this paper, the necessary and sufficient conditions for the existence of an (my, my, ..., m,)-cycle system of
K, are given, where m; (1 Si < r) are odd integers with3<m,<nand T/ ,m, = 2 forkz3. Moreover, the

complete graph with 1-factor removed K, ~ F has a similar result.

1. Introduction

In 1981, B. Alspach [3] posed the following conjecture.
Conjecture, If ny, ma, ..., m, are integers with 3 sm;snand T m, = n(n-1)/2 (n odd) or n(n — 2)/2
(n even), then the complete graph K, (the complcte graph with 1-factor removed K, — F) can be

decomposed into cycles of lengths my, mz, ..., m,.

A number of special cases of this conjecture have been done. More recently, Alspach and Gavlas [4]
and §ajna |8} have proved that this conjecture is true when all cycle lengths are the same. For various
cases when there are combinations of two or three distinct special cycle lengths, refer to (1, 2, 5, 6].
Moreover, the conjecture has been verified for all » < 10 by Rosa [7]). However, the conjecturc is still far
from solved.

The m-cycle (vo, V. ... V). denoted by G, is the graph induced by the edges {(vi. Vi) (Vo. Vm1) | i €
Zma}, and the (1, m, ..., m,)-cvele, denoted by C, i umg ---m, » 1S the union of edge-disjoint m,-cycles for 1

<i<r An(m.m, ..., m,)-cvcle svstem of a graph G is an ordered pair (J(G). C). where C is a set of (m.
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ma, ..., m,)<cycles whose edges decompose the edge set of G. The (m, ma, ..., m)-cycle is called odd if
each m, (1 Si S r)is odd; an odd (m,, m, ..., m,)-cycle system is defined similarly.

In this paper, it is shown that if m, (1 < < #) are odd integerswith 3 <m;<nand >_m, =2*fork2
3, then there exists a decomposition of X, into cycles with lengths m,, m, ..., m, if and only if T7_,m,
divides |E(K,) andn is odd. The complete graph with 1-factor removed K, - F has also a similar result.
It should be mentioned that the analogous conscquence (i.e., all m; are positive even integers) has been
proved in [10].

We will use difference methods; in aid of these, we first need some notation.

A labeling of an m<ycle C,, is an injection f (C,) — {0, 1, ..., m} such that the corresponding
induced edge labeling f*: E(C,,) = {1, 2, ..., m;} of the edges of C,, given by

ey =| )~ f(v) wheree=(u,v),
is also an injection, where m, n; are positive integers and m, n; 2 |[E(C,). L&t Cpn my ..., be an odd (m,
M. ..., m)<cycle with £/,m, =2' k2 3. A labeling of an my~cycle (1 €i <r)in Cp my ..., is s2id t0

be proper if m = 2E(C,,,l',,,7""'m’1 +1and n = IE(C"'I-"'I.---"'r)I' If each mcycle (1 S i < r)in

C

'mymy - m, 1125 @ proper labeling f; and UL, /; *(E(Cp)) = {1, 2. ... 2%}, then Cony my--m, Will be called

strongly proper.

2.The result

To prove the main theorem, we need some preliminary results.

Lemma 2.1. Let a, b. ¢, and p be positive integers satisfying thata + b £ 1 = ¢ and ¢ < p. Then, for each
positive integer m, the (4m + 1)-cycle Cums has a labeling f such that the induced edge labeling f*
satisfies f*(E(Cumn1)) = {a, b,c,p,p+ 1, ..., p+4m - 3}.

Proof. The graph Cq, is shown in Figure 1. We split the proof into two cases depending on whether ¢ =
atb+lora+b-1.

n ¢ Yom-2 Yam-1  Yom
. o—
%
- L e _ - .
" Y Yames Yomel  Vom
Figure. 1.

Caselic=a+b+1.
Consider the following three subcases.

Subcase 1: Suppose that a is odd and b is even.
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1f m = 1, then define 5-cycle as
Cs=(0,a,a+b,p+c,c).
If m 2 2, let f'be a labeling of Cyn.; defined as

0,if u =vy,
p+am+2j-4,ifu=vy;,,08 j<m-1,
2p+8m-2j-8,ifu=vy;, 1S jsm-1,
Sw)=3a+b+p+6m=5,if u=vy,,
p+am=3,ifu=v,
bp+dm+2j-5,ifu=v; 1< sm,

b+am=-2j-2,if u=vy;,/, 1< j<m-1,

where each vertex v € W(Cypm).
Since a is odd and & is even, a routine verification shows that all vertex labels in Cs are pairwise

distinct and the edge label set fME(Camn)) = {a, b, c,p,p+ 1, ..., p+d4m -3} form= 1.

Example. The 13<cycle C), with the edge label set {1, 2, 4,6, 7. ..., 15} is depicted in Figure 2, where a
=1,b=2,andp=6.

S D S SUE | S
27 - 1 - 8 6 - 4
i}
0 1
15
i o1 o9 o0 13
L 17 10 1% 8 an
Figure 2.

Subcase 2: Suppose that both a and b are even.
Similar to Subcase 1 and omitted.

Subcase 3: Suppose that both a and b are odd.
Similar to Subcase 1 and omitted.

Case2:c=at+b-1.

Subcase 1: Suppose that a is odd and & is even.
If m = 1, then define 5-cycle as

Cs=(0.a,a+b,pt+tc+1,0).

If m 2 2, then let us introduce a labeling fof Cam given by
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0,if u=vy,

p+a4m+2j-4,if u =v2j¢,,05j5m-l,
2p+8m-2j-8,if u=vy;, 1S j<m-],
JS@)=3b+p+6m=6,if u=vy,,
pH4m=3,ifu=v,

at+btp+dm+2j-6,ifu=vy;',1< jsm,

a+b+dm-2j-3,if u=vy;, '\ 1S jsm-1,

where each vertex ¥ € W(Cam1).

Similarly, it can be verified that all vertex labels in C., are pairwise distinct and the edge label set
SHECmn)) ={a,b,c,p,p+1,..,p+am-3}form21.
Subcase 2: Suppose that both g and b are cven.

Similar to Subcase 1 and omitied.

Subcase 3: Suppose that both a and b are odd.

Similar to Subcase 1 and omitted. ]

Lemma 2.2. Let a, b, c. and p be positive integers satisfying that a + b = ¢ and ¢ < p. Then, for each
positive integer m, the (4m + 3)-cycle Cams has a labeling f such that the induced edge labeling Vi
satisfies f{(E(Cem3))={a,b,c.p,p+ 1. ...,p+d4m—-1)}.

Proof. The proof is analogous to that of Lemma 2.1.

Case 1: Suppose that a is even and & is odd.

If m = 0, then define 3<cycle as

Cy=(0,a,a+b).
If m 2 1, let fbe a labeling of Can3 given as
0,if u=vp,
b»!'f'l="|,
a+b+2j-2,ifu=vy, 1S jsSm,
Sw)=ja+btp+dm=-2j-Lifu=vy; 1< jsm,
p+am+2j-\if u =vzl¢|',05j5m—l,

2p+8m=-2j-3,ifu=w' 1S j<m,

a+b+2p+6m=3,ifu=vy, ',
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where all vertices u € M(Cam3).
By the same argument, we have that the vertex labels in C,n are all pairwise distinct and the edge
label set f*(E(Camn1)) = {a, b.c,p,p+ 1, ..., p+4m -1}

Example. The 15-cycle C;s with the edge label set {1, 2.3, 5.6, .... 16} is shown in Figure 3, where a =
2,b=1,andp=>5.

5 3 B
o - 8 - 6
1
7~ 5 ~ 3
20 25 1]
Figure 3.
Case 2: Supposc that both a and b are odd.
Similar to Case 1 and omitted.
Case 3: Suppose that both a and bare even.
Similar to Case 1 and omitted. o

In what follows, we will assume that m,, ms, .... m, are odd positive integers with m, 2 3 for all i and
Tiam; =0 (mod 4). Let N; ( = 1, 3) denote the number of m;’s with the property that m, = j (mod 4).
Note that the value r is even since each m; (1 <iSr)isoddand T/,m; =0 (mod4).

Lemma 2.3. If r = 0 (mod 4), then N,, N3 are even.
Proof. Suppose. on the contrary, that Ny, Nyare odd, say Ny =2r+ land NV, =r-2r-1,081<r2 - 1.
For convenience, set m; =3 (mod 4), 1 Si<2r+ 1, and set m;= 1 (mod 4), 2t +2 < j < r. Then

Ul = 3(20+ 1) (mod 4) = 21 + 3 (mod 4)

i=1

and
Ziegreamy; =r- 21 -1 (mod 4).
Thus
Tiam; =r+2(mod4)=2 (mod4)
since r = 0 (mod 4). This contradicts the fact that /_;m; = 0 (mod 4). ju]

Using similar techniques as in Lemma 2.3, the following is given.

Lemma 2.4. If r = 2 (mod 4), then N\, N5 are odd.

The following lemma is vital for the proof of the main result (Theorem 2.8). We need the crucial help
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of Skolem sequences.

A Skolem sequence of order n is a set of ordered pairs (s, 1), 1 S i < n, such that , —s; = i and
Uy (s1) = €1, 2. ..., 2n}. A hooked Skolem sequence of order n is also a set of ordered pairs (s;. 1)), 1 <
isn suchthats, —si=iand ULi(s.) ={1,2,....2n-1,2n+1}.

Note that if {(s;, ;) | 1<7 <} is a (hooked) Skolem sequence of order r, then the set {1, 2, ..., 3r}({1.
2. ...,3r =1, 3r + 1}) can be arranged into r triples {a,, b;, ¢} such that a; + b; = ¢, where g, =i, b;= r +s,

andc;=r+1,.

Theorem 2.5. [9]
(1) A Skolem sequence of order n exists if and only if n = 0 or 1 (mod 4).
(2) A hooked Skolem sequence of order n exists if and only if n = 2 or 3 (mod 4).

Lemma 2.6. Let r be an even positive integer with Ny + N3 = r. Then the set {1, 2, ..., 3r} can be
partitioned into r triples {a;, b;, ¢;} such that a;+ b,= ¢, forl Si SNsanda;+b;t 1 =¢;for N3+ 1<isr.
Proof. Suppose first that r = 0 (mod 4). Then. by Theorem 2.5-(1), a Skolem sequence of order r exists.
i.e., we can arrange the set {1, 2, ..., 3r} into r triples {a,, b;, ¢;} such that a, + b, = c,. Since 7 = 0 (mod 4),
by Lemma 2.3, M, and N, are both even. So, for 1 <i < N, use the triple {a,, b,, ¢;} and for the remaining
triples, of which there are an even number. use {a., b, ¢;} and {a;, b1, ¢}, wherej =Ny + 1, Ny +3,
e 7= 1.

Now suppose that r = 2 (mod 4). Then, by Theorem 2.5-(2). a hooked Skolem sequence of order r exists,
i.e., we can arrange the set {1, 2, ..., 3r - 1, 3 + 1} into r triples {a;, b;, ¢;} such that a, + b, = ¢,. Since r
= 2 (mod 4), by Lemma 2.4, N} and N, are both odd, say N, = 2¢ + 1 for 0 S ¢ < (r — 2)/2. Subtracting |
from c; in the triple with ¢; = 3r + 1 gives one of the triples with a; + b, 1 = ¢;. There are r/2 — 1 pairs of
triples remaining with consecutive values for the a;’s. Hence, interchanging the values of the g,’s in r of
these pairs will give N, — 1 more triples with a; + b, + 1 = ¢; while the remaining triples all satisfy a; + b,
=¢;. n}

Let V(K,) = Z, and let (a, b) be any edge of X,. We need the following straightforward lemma.

Lemma 2.7. Let ¢ and d be distinct elements of Z,. If |a-b =iorn-ifor1sis L%J,lken (@a+c, b+

c)z(a+d b+d)yand |(a +c)—(b+cj =i or n - i, where all addition is taken modulo n.

Let my, ms, ..., m, be positive integers with 3 < m; < n. By Lemma 2.7, it is clear that if there exists a
strongly proper (m, my, ..., m,)<cycle, then there exists a (my, my, ..., m,)-<cycle system of K,, where n =
AZm) + 1

Now we have all the necessary tools to prove our main result.

Theorem 2.8. Let m; (1 S i S r) be odd integers with 3 <m,<nand ¥ ,m = 2* for k 2 3. Then there
exists an odd (m,. m, ..., m,)-cvcle system of K, if and only if T/ ,m; divides IE(K,,)I and n is odd.

Proof. The necessity follows since each (1, m;, ..., m,)-cycles contains 37_,m; edges. and each vertex
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in the m;~cycle (1 <7 < r) has even degree.

We begin with proving the sufficiency. Let the vertex set of K, be Z,, and all addition of vertex labels is
done mod n. Obviously, |E(K,) = n(n - 1)/2. Since » is odd, and 2* divides n(n — 1)/2, thus n = s2%' + 1,
s2landk23.

Now an odd (smy, snts, ..., sm,)-cycle is an odd (m, ..., M.y, ..., Wy, ..., Wy, ..., m)=Cycle with each
m; appearing s times. Note that ¥7.,m; = 2'. By Lemma 2.6, the set {1, 2, ..., 3rs} can be partitioned
into rs triples {a; &;, ¢;} such that N; of theses triples satisfy a; + b, = c; and the rest satisfy a, + b, 1 = ¢,
where N, + N3 = rs. Next, using the consecutive positive integers {3rs + 1, 3rs + 2, ..., s2*Y and the rs
triples {a, b, ¢;} and repeatedly utilizing Lemmas 2.1 and 2.2, we find a proper labeling f; of each cycle
in the odd (sm;. sy, ..., sm,)-cycle such that Uy f; *(ECm,») = {1,2, ..., 52"}). Hence the odd (smy. smy,
... sm/)=cycle is strongly proper and so K, has an odd (sm,, sm,, ..., sm/)-cycle system. Furthermore,
since the odd (smy, sma, ..., sm,)-cycle is the union of s edge-disjoint odd (m, my, ..., m,)<cycles, it
implies that X, also has an odd (m, m, ..., m,)-cycle system, and the proof is complete. u}

Theorem 2.9. Let 37.,m; = 2" and assume 2*"' divides (n - 2). where k 2 3. Then there exists an odd
(my, my, ..., m,)-cycle system of K, - F.

Proof. Let F = {(0, p2* + 1), (1, p2* +2), ..., (p2", p2**' + 1)}. The remainder of the proof is analogous to
that in Theorem 2.8 and so omitted. c
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