Minor clique free extremal graphs
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Abstract
In this note, we prove2 that the largest non contractible to K?
graph of order n with I- n+3'| < p £ m, is the Turdn’s graph

T2p—n—1(n). Furthermore, a new upperbound for this problem is de-
termined.

1 Introduction

The study of the maximum number of edges ex(n; F) of a graph of order
n not containing F' as a subgraph is one of the best known extremal pro-
blems in Graph Theory. In this sense, the most important result is Turdn’s
Theorem [17], proved in 1941, that answers the question when F is the
complete graph KP.

Various non-trivial extensions of the Turdn’s problem have been ana-
lyzed, but the results are rather fragmentary. Two of these extensions are
the following: ‘

(1) The study of the maximum number of edges ex(n; M K?) of a graph
of order n not containing K? as a minor.

(2) The study of the maximum number of edges ex(n; TKP?) of a graph
of order n not containing K? as a topological minor.

It is clear that these extremal functions are pairwise related. In effect,
if a graph G contains K? as a topological minor then G contains it as a
minor. The other implication holds for p < 4 (See [7]).

Dirac [8] proved that ez(n; MK®) = 3n — 6 and conjectured the same
exact value for the function ez(n; TK®). Finally, this famous conjecture
was verified by Mader in [14]. New exact values of the function ex(n; M KP)
have been found by Mader [13] for 6 < p < 7 and by Jorgensen [11] for
p = 8, but they are still unknown for the function ez(n; TKP). It seems
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that these values may be also the same, because up to now it has not been
possible to find a graph G of order n with at least ex(n; MKP) + 1 edges
not containing K7 as a topological minor.

There are also some works where the two extremal functions have been
bounded. An upperbound for the function ex(n; M K?) was first given by
W. Mader. He proved that there is a constant ¢, for each p > 2, such
that ex(n; MKP) < ¢,n, and if ¢p is the infimum of all the constants for
a p fixed, then ¢, < [2¢,-1]. He proved in (13] that ¢, < 8plogy(p). W.F.
de la Vega, in [6] and A. Thomason [15] proved that ¢, > 3p+/log,(p)
and this last author also showed that ¢, < 2.68p+/log,(p). These extremal
results have been improved by A. Thomason [16]. With regards to the
function ex(n;TKP?), it was conjectured by W. Mader [12] and P. Erdés
and A. Hajnal [9] that ez(n; TKP) < cp?n and finally, B. Bollobss and A.
Thomason [1] have shown that ex(n; TKP) < 256p®n.

All these works are devoted to find out results when p is a fixed integer.
However, in recent works of M. Cera, A. Didnez and A. Méarquez (2] and (3]
and M. Cera, A. Didnez and P. Garcia-Vézquez [4] a new technique based
in showing the existence of a complete matching in an adequate bipartite
graph has been developed and it has permitted them to find out new so-
lutions for the function ex(n; TK?). In this case, results have been found
+2

working with n and p related by the expression [Zn ] < p < n. Besides,

it is curious that the solutions may be expressed in terms of the Turédn’s
graph.

The purpose of this paper is to find out new exact values of the func-
tion ez(n; MKP?) in the same infinity sector as the one described above.
In fact, using the relationship between these functions both, we will prove
that the solutions are also coincident in this case. Besides we will charac-
terize the extremal family EX (n; M K?) formed by graphs of order n with
ex(n; M KP) edges that are not contractible to K?. Finally we will get an
upperbound of this function that, asymptotically, is worse than the one
proved in [1}, but it is a good upperbound when n and p are related.

2 Notations

For any graph G we say that G contains K? as a minor if K? can be
obtained from a subgraph of G by a sequence of edge-contractions. We say
that G contains K? as a topological minor, if it is possible to find p vertices

{vi...,v,} and (g) pairwise vertex disjoint paths joining these vertices in

We denote by T,(n) the r-partite Turdn’s graph with n vertices, i.e.,
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the unique complete r-partite graph of order n whose classes are as equal
as possible. The number of edges of this graph, known by the Turdn’s
number, is denoted by ¢,.(n).

Given a graph G and a subset of vertices of G, V, we denote by G[V]
the induced subgraph in G by the set V. Finally, we denote by E(G) the
set of edges of G and by e(G) the cardinality of this set.

Notations and terminologies not explicitly specified here can be found
in [7].

3 Exact values and extremal family for con-
tractions to KP

In this section we will show that for values of n and p such that
[2n+ 2

] < p £ n, the solutions for the extremal problem ex(n; M KP)

for contractions to complete graphs are the same as the solutions for the
extremal problem ez(n;TKP) for containing K? as topological minor. So,
we will conclude deducing that these solutions are the same as the ones
pointed by the Turdn’s Theorem for the function ex(n; K2~ ™).

We know that the two extremal functions described above are pairwise
related, as we observe in the following result:

Proposition 1 (See [7]) Every topological minor of a graph is also its
minor.

So, by applying Proposition 1, we may deduce various consequences,
described in this corollary:

Corollary 1 Let n and p positive integers, with n > p. Then:
1. ex(n; MK?) < ex(n; TKP?).
2. If ex(n; MKP) = ex(n; TKP), then EX(n; MKP) C EX(n; TKP).

On one hand, there exists the following result shown in [5] which relates
the extremal function ez(n; M K?) with the Turan’s graph Typ—pn—1(n).

Theorem 1 (See [5]) Let n and p be positive integers such that
p < n < 2p—3. Then the Turdn’s graph Top_n_1(n) is not contractible
to KP.

On the other hand solutions for the extremal problem for the function

ez(n; TKP) are gotten in [2] and they also are related with the same Turan’s
graph Tpp_p_1(n), as we may observe.
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Theorem 2 (See [2]) Let n and p be positive integers, with
[2n+2"l <p<n. Then:

ez (n; TKP) = top_n—1(n).

Taking into account Theorems 1 and 2, we may deduce that
ex(n; MKP) > ex(n;TKP) = top_n-1(n), and conclude with the follow-
ing result.

2
Theorem 3 Let n and p be positive integers, with [271;- -| <p<n

Then:

ex (n; MKP) = ex (n; TKP) = ex(n; K*~™).

In order to characterize the extremal family EX(n; M KP) formed by
the graphs with n vertices and ez(n; M K?) edges that are not contractible
to K?, we will also apply the known results about the extremal family
EX(n;TKP) for containing K? as a topological minor.

On one hand, in Theorem 3 we have proved that it is verified that

ex(n; M KP) = ex(n; TKP), for [2n;- 2
ry 1, we deduce that

] < p < n. So, by applying Corolla-

EX(n; MK?) C EX(n; TKP).

On the other hand, the extremal family EX(n;TKP?) is characterized
in (3], and they may be summarized in the following result.

Theorem 4 (See [8]) Let n and p be positive integers, with
|'2n:;i-3‘| <p<n-5 Then:

EX (n;TKP?) = {Top-n-1(n)}.

Finally, by Theorem 1, we know that the graph T5,_,_1(n) is not con-
tractible to KP. So the other contention is proved and, consequently, we
deduce the following result.

2n+3
3

Theorem 5 Let n and p be positive integers, with [

]Spsn—&
Then

EX (n; MKP) = EX (n;TKP) = EX(n; K*~™).
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4 An upperbound for the function ex(n; MKP)

2n+2
3
tremal problem ez(n; M K?) is unknown yet. In this section we are going
to approach the exact value of this function with an upperbound.
Previously, we recall a technical lemma shown in [2] that relates the
number of vertices of maximum degree 2 in a graph with the number of
them being independent.

the solution of the ex-

For values of n and p such that p <

Lemma 1 Let k be a nonnegative integer and H a graph with mazimum
degree 2 and at least 3k + 1 vertices of mazimum degree. Then there exist
at least k + 1 nonadjacent vertices with degree 2.

Since ex(n; MKP) < ex(n; TKP?), all exact values or upperbounds for
the function ez(n; TK?) permit us to deduce an upperbound for the func-
tion
ex(n; MKP). In this sense, the following theorem, shown in [4], may be
useful in order to get this goal.

Theorem 6 Let n and p be positive integers with n — p > 11 and

|'7n1;- 7-I <p< I'Zn;- 1.‘. It 1is verified:

1. ex(n;TK?) = (g) —(5n —6p +2).

2. EX(n; TK?) = {(2n ~3p+1)Ki+F: Fe .7-‘12,,-7,._4} ,

where F12p-7n—4 18 the family of graphs of order 12p—Tn—4 whose vertices
have degree 2.

If it would be verified that ez (n; M K?) = ex (n; TKP), then, by apply-
ing Corollary 1, we would have that EX (n; MK?) C EX (n;TKP).

Given G a graph belonging to the family EX (n; TKP?), denoting by H its
complement graph, we have that H is a graph of order n whose connected
components are 2n — 3p + 1 copies of K* and a certain graph F with
12p — Tn — 4 vertices formed by one or several disjoint cycles. Since F has

3 (4p _Int 7) + 1 vertices of maximum degree 2, by applying Lemma 1,

3
. m+7 . . . .
there exist, at least, 4p — 3 + 1 nonadjacent vertices with degree 2 in
F.
We are going to select an appropriate subset U = {vy,...,vn—p} of

vertices of H, according to the next two cases.
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(1) If 2(2n — 3p + 1) < n — p, then we have that

—3p+2
7n;-7+1=5p—3n—2+-2-7%-

So, there exist, at least, 5p — 3n — 2 nonadjacent vertices of degree 2 in F.
In this case, let U be the resultant subset obtained by choosing two vertices
in each copy of K* and 5p — 3n — 2 nonadjacent vertices of degree 2 in F.

(2) For 2(2n—3p+1) > n—p, let U be the resultant subset by choosing
two vertices in 2p —n — 1 copies of K¢ and one vertex in 3n — 5p + 2 copies
of K4.

Hence, it is easy to check that certain edge-contractions in G permit us
to obtain a complete graph K? whose set of vertices is V(G) \ U.

Summarizing, given any graph G € EX(n; TK?), we can check that G
contains K? as a minor. But since EX (n; MKP) C EX (n; TK?), we have
that EX(n; MKP) = @ and this is not possible.

So, in this infinity sector, solutions for both extremal problems are not
coincident, and we only may deduce the following upperbound.

4dp - >55p—-3n—-2.

Theorem 7 Let n and p be positive integers with n — p > 11 and

m+17 2n+1
[ 2 ]_p<[ 3 ] Then

ex(n,MKP) <ex(n;TK?)-1.

In the following theorem, we are going to get a relationship between
the values ez(n —1; MK?~!) and ex(n; M KP). For this, we will prove that
given G a graph belonging to the family EX(n — 1; M KP~1), it is possible
to find a graph G* with n vertices that are not contractible to K.

Theorem 8 Letn and p be positive integers, with n > p. It is verified that
ez (n— 1; MK?P™!) < ex(n; MK?) - (n—1).

Proof. Let G be a graph belonging to the family EX(n — 1; MK?P~1).
This graph has n—1 vertices, ex(n—1; M KP~1) edges and is not contractible
to KP~1. Let {v1,...,vp} be a subset of vertices of G and let v be a vertex
not belonging to G. Let’s consider the graph G* =G +v =G+ K.

Since G is not contractible to K?~!, it is evident that the graph with
vertices {v;,...,vp} obtained by certain sequence of edges-contractions in
G needs at least, two disjoint edges in order to be K?, because otherwise
this graph would contain a K?~! and, therefore, G would be contractible
to KP~1, So, G* is not contractible to a complete graph K? with vertices

{v1y...,vp}.
But, on the other hand, it is evident that G* is not contractible to
a KP with vertices {v,...,vp,v} — {v;}, because otherwise G would be
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contractible to a KP~! with vertices {vi,...,v,} — {v;} and this is not
possible.
Hence G* is not contractible to K? and, therefore,

ex(n; MKP?) > e(G*) = ex(n — 1; MKP™!) + (n — 1).

(]
The previous result permits us to obtain a new upperbound valid for

allnand pwithn—-p>11and 9 < p < [7n1-2|~7

, as it is observed in

this corollary.

Corollary 2 Let n and p be positive integers, with n —p > 11 and

9<p< [7n1;7-" Then

ez (n; MKP) < (g) _ |’18n—18p+4" .

5

Proof. Given n and p as in the hypothesis. Let’s consider the following
two positive integers:

Tn=p)+7
= [( 5p) ]
n* = p'+(n-p)
It is easy to check that p* = [ 7n12+ 7].

So, applying Theorem 7, we have that
. n*
*, P < _ *__pox .
ea:(n . MK ) < ( 2) (5n* — 6p* +3)

And applying Theorem 8 successively, we have that

ez(n; MKP) < ex(n+1L,MKP*')—n<... <
n*—1
< ex (n‘;MK".) -~ Z )

= i) (7))

(") — (5n" — 6p* +3).

IA

Hence,
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ex(n;MKP) < n — (5n* — 6p* +3)

= ~(5(n—-p)-p"+3)

_ (2)_[18n—;8p+4'|.

|
NN

=0
e N’

SN

5 Conclusions

Up to now, solutions for the extremal problem ez(n; M KP) were known
only for p < 8. In this work we have solved this problem for infinity values
+2| ¢ )< n—2 We have

also got a new upper bound for the function ex(n; M KP?). All results are
summarized in Tables 1 and 2.

of n and p related by the expression

Values of n and p ex(n; MKP) Reference
p—1
p<t w-20n-("3") 13
6n — 20, if 5 dividesn
p=8 6n — 21, otherwise [11]
2 2
[ n ;— ] <p<n top—n-1(n) Theorem 3

Table 1: Exact values for the function ez(n; M K?).
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Values of n and p ezx(n; MKP) Reference

™m+7 2n+1
[ 15 .ISP<[ 3 ] (n)—(sn—6p+3) Theorem 7
2
n—p2>11

™m+7
< [ 12 1 (;) - [_18715&" Corollary 2
n-p>11

Table 2: Upper bounds for the function ez(n; M KP).
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