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Abstract

We consider the rank of the adjacency matrix of some classes of
regular graphs that are transformed under certain unary operations. In
particular, we study the ranks of the subdivision graph, the connected
cycle graph, the connected subdivision graph and the total graph of the
following families of graphs: cycles, complete graphs, complete bipartite
and multipartite graphs, circulant graphs of degrees three and four and
some Cartesian graph products.

1 Introduction and Preliminary Results.

Ranks of regular graphs under the following unary operations are considered in
the present work. The subdivision graph S(QG) of a graph G is obtained by
subdividing every edge of G; that is, for every edge e = uv € G, we add a new
vertex w and replace the edge uv by the edges uw and wv. The connected cycle
graph R(G) of a graph G is obtained by adding a new vertex corresponding to
every edge and adding two new edges from each new vertex to the endpoints of
the corresponding edge. Note that this operation creates a triangle on every
edge of G. The connected subdivision graph Q(G) of a graph G is obtained by
subdividing every edge and connecting the pairs of new vertices that lie on
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adjacent edges of G. Finally, if G = (V, £) then the total graph T(G) has as its
set of vertices VU E with vertices connected by an edge if and only if the
corresponding elements of G are either adjacent or incident.

Let Pg()) be the characteristic polynomial of the adjacency matrix of a
regular graph G of degree r on n vertices with m = %nr edges and let its
spectrum consist of the numbers Aj, A2, A3, ..., An. The spectrum is also
denoted by spec(G) = {)\g"’), A A ,\i“")} where ) is a distinct
eigenvalue of G with multiplicity p;, for j =1, 2, ..., k. Note that since G is
regular, 7 is the largest eigenvalue of G and its multiplicity is 1. Thus, it is
customary in the literature to denote A; = r and to omit the superscript, which is
understood to indicate a multiplicity of 1.

The lemmas below, found in [2}, relate the eigenvalues of a regular graph to
the eigenvalues of the graph under each operation.

Lemma 1 If G is a regular graph of degree T with n vertices, m edges and
characteristic polynomial Pg()), then S(G) has (m + n) vertices, 2m edges
and the characteristic polynomial

PS(G)()‘) = )\m_nPG()\z -7).

Equivalently, the spectrum of S(G) consists of (m — n) numbers equal to
zero and 2n numbers given by

V4T (1)

where ); is an eigenvalue of G fori =1, 2, ..., n.

_ Lemma 2 If G is a regular graph of degree r with n vertices, m edges and
characteristic polynomial Pg()), then R(G) has (m + n) vertices, 3m edges
and the characteristic polynomial

Pricy(A) = A™ (A +1)"Pg M- ’”)
RG) A+1)

Egquivalently, the spectrum of R(G) consists of (m — n) numbers equal to
zero and 2n numbers given by the expression

: (,\,- 1 \/m) @

where A; is an eigenvalue of G fori =1, 2, ..., n.



Lemma 3 If G is a regular graph of degree r with n vertices, m edges and
characteristic polynomial Pg()), then Q(G) has (m + n) vertices, m(r + 1)
edges and the characteristic polynomial

)\2—(1'—-2))\—1').

PQ(G)()\) = (/\ + l)mPG( Y +1

Equivalently, the spectrum of Q(G) consists of (m — n) numbers equal to
-1 and 2n numbers given by

%()\i+r—2:|:\/)\?+21v\,~+r2+4) (3)

where ); is an eigenvalue of G fori =1, 2, ..., n.

Lemma 4 If G is a regular graph of degree T with n vertices and m edges, then
T(G) has (m + n) vertices, r(m + n) edges and (m — n) eigenvalues equal to
—2 and 2n eigenvalues given by the expression

%(z,\i +r—2+ VAN T 14) (4)

where ); is an eigenvalue of G fori =1, 2, ..., n.

As an example of the application of the preceding lemmas, we examine the
Petersen graph P. It is well known that P is 3-regular, has 10 vertices and 15
edges and that its spectrum is spec(P) = {3,1(), 24}, By Lemma 1,
spec(S(P)) = {—\/E, —20), 14 o), 1), 265), \/g} so rank(S(P)) =
20. Similar computation of eigenvalues by the results of Lemmas 2 and 3 reveal
that rank(R(P)) = 20 and rank(Q(G)) = 25. '

Finally, we state a useful result for conditions under which an eigenvalue of
T(G) will be zero.

Corollary 1 If G is a regular graph of degree r with n vertices and m edges,
then T(G) will have zero eigenvalues if and only if the numbers given by

l(-r+3:1:\/r2—T+§) (5)

2
are included in the spectrum of G.

Proof. Setting (4) equal to zero and solving for ); gives the result. B



Again, we illustrate this by examining the Petersen graph. Since r = 3, (5)

indicates that the numbers ==+/3 should be in spec(P) if T(P) is to have any
zero eigenvalies. Clearly, this is not the case. Hence, rank(T'(P)) = 25.

The specaum of a graph is known to indicate some fundamental structural
properties of a graph. This is the purpose of the next section.

2 Bipartite Graphs

The following theorem from (3], concerning bipartite graphs, is useful in
determining the structure of some graphs transformed by the unary operations
under consideration.

Theorem 1 Let G be a connected graph. Then the following statements are
equivalent.

1) G is bipartite.

2) Ifr is the largest eigenvalue of G, then —r is an eigenvalue of G.

3) The eigenvalues of G are symmetric about zero on the real line. In other
words, if ) is an eigenvalue of G, then so is —\ with the same multiplicity.

Theorem 1 combined with Lemma 1 gives the following corollary.
Corollary 2 S(G) is bipartite for any connected regular graph G.

Proof. By Lemma 1, the nonzero eigenvalues of S(G) are given by

A ==x4/); + 7, where )\; € spec(G) and 7 is the degree of G. Hence, the
eigenvalues of S(G) are symmetric about zero. Therefore, S(G) is bipartite. B

Because we seek the rank, we determine the number of zero eigenvalues of
the graph. This is more easily done by setting the eigenvalue expressions in the
four lemmas in Section 1 equal to zero and solving for A;. Solutions to those
equations are values of the original graph that will be transformed to zero
eigenvalues of the graph under the unary operations. Noting that if a graph G is
r-regular and bipartite then its largest and smallest eigenvalues are r and —r
motivates the following theorem.

Theorem 2 Let G be a connected regular graph of degree r with n vertices, m
edges and eigenvalues \) =1, A, A3y ..., An.  Then the following statements
are equivalent.

1) G is bipartite.
2) rank(S(G)) =2n —2.
3) rank(R(G)) = 2n - 1.



4) rank(Q(G)) =m+n—1.

Proof. Let G be a connected bipartite r-regular graph with n vertices, m edges
and eigenvalues A\; =7, Ay, A3, ..., An. Setting each of the expressions (1), (2)
and (3) for the eigenvalues of S(G), R(G) and Q(G) equal to zero we obtain
the following equations.

:t\/ Ai+T=0 (1’)

Mty /A2+4(r+X)=0 (2)

Mitr—2% M4+ 2rA +1244=0 (3)

All three equations have only one solution: A\; = —r. The multiplicity
determined by those solutions is, however, different.

For S(G), both positive and negative roots satisfy (1’). Hence, there are
two eigenvalues equal to zero in addition to the (m — n) given by Pscy(N).
Thus rank(S(G)) = (m+n) — (m—n) —2 =2n - 2.

Only the negative root satisfies (2'), so there is only one additional zero
eigenvalue of R(G). There are already (m — n) eigenvalues of zero given by
Pr(g)(7). Hence, rank(R(G)) = (m+n) — (m—n)—1=2n—1.

For Q(G) also, only the negative root satisfies (3'). Thus, there is only one
zero eigenvalue and so rank(Q(G)) = m +n — 1.

Now, assume that G is a connected r-regular graph with n vertices, m
edges and eigenvalues A} =7, Ag, A3, ..., An. Also, let rank(S(G)) = 2n — 2.
We know there are (m —n) zero eigenvalues given by the characteristic
polynomial of S(G). Thus there are two additional zero eigenvalues in the
spectrum of S(G) that have been transformed from a nonzero eigenvalue of G.
Since the other numbers in the spectrum are given by (1), it must be that
Ai = —r. Hence, by Theorem 1, G is bipartite. Since G is bipartite, it must
follow that rank(R(G)) = 2n — 1 and rank(Q(G)) = m +n — 1.

Assuming the rank of R(G) or Q(G) instead of that of S(G) also
establishes that G is bipartite, and is proved similarly. I

Notice that Theorem 2 does not imply rank conditions for a non-bipartite
graph. For that, we need the next theorem.

Theorem 3 Let G be a connected regular graph of degree r with n vertices, m
edges and eigenvalues M) =r, Ay, A3, ..., \n. Then the Jollowing statements
are equivalent.



1) G is not bipartite.

2) rank(S(G)) = 2n.

3) rank(R(G)) = 2n.

4) rank(Q(G)) =m +n.

Proof. Let G be a connected non-bipartite r-regular graph with n vertices, m
edges and eigenvalues \y = 7, Ag, A3, ..., Ap. Then, since G is not bipartite,
—r & spec(G) by Theorem 1. Thus there are no solutions to (1') which implies
that there are only m — n zero eigenvalues in S(G). Hence, rank(S(G)) = 2n.
Similarly, there are no solutions to (2') or (3’). Thus, rank(R(G)) = 2n and
rank(Q(G)) =m +n.

Now, assume that S(G) has full rank. Then there are no eigenvalues of G
that satisfy equation (1'), which implies that —r is not an eigenvalue of G.
Hence, G is not bipartite by Theorem 1. Assuming that R(G) and Q(G) have
full rank instead of S(G) is established similarly. ll

In the sections that follow, we investigate the rank of a regular graph under
each of the four operations. We consider cycles, complete graphs, the n-
dimensional hypercube, the cocktail-party graph, complete bipartite and
multipartite graphs, circulant graphs of degrees three and four and some
Cartesian graph products.

3  Cycles, Completes, Cubes and Cocktails
A cycle C, is 2-regular, has n vertices and » edges, forn > 3.
Theorem 4 Forn > 3,

2n—2 ifniseven
rank(S(C,)) = { on ifn is odd

rank(R(C2) = rank(@() = { 5n e

2n—3 ifn=0mod3

rank(T(C)) = { 2n—1 otherwise

Proof. If n is even, C,, is bipartite, and for n odd, C, is not bipartite. Thus the
ranks of S(C,), R(C;) and Q(C,,) follow from Theorem 2 and 3.



Since r = 2, (5) gives that the numbers 2 and —1 should be included in
spec(Cp) for there to be any zero eigenvalues. Since the spectrum of C,
includes the numbers A; = 2cos(2mj/n) for j =1, 2, ..., n, (from [2]) we set
A;j equal to 2 and then to —1 and solve.

2cos(27j/n) =2
2rj/n=m(2k), ke Z
j= g(zk), keZ
j=0modn

Thus, 2 € spec(C,) for every n and will give one zero eigenvalue of

T(C,). This should be obvious, since 2 = r = ;.
2cos(2mj/n) = —1

omj/n = 23—”(31c4_r 1), keZ
j=§@kin,kez
ji= :tg mod n
Hence, —1(? € spec(C,) only for n divisible by 3, and so will give two

zero eigenvalues of T'(C,). The result follows. B

We now turn to the complete graph K,. The complete graph on n > 2
vertices is (n — 1)-regular with in(n — 1) edges.

Theorem 5 Forn 2 2,

rank(S(K,)) = { 2 fn=2

2n  otherwise

3 ifn=2
rank(R(K,)) = {2n Z;herwise

2 fn=2
rank(Q(K,)) = { ;—,n(n +1) otherwise
3 fn=3

rank(T(K,)) = { In(n+1) otherwise

Proof. The graph K, is bipartite only for n = 2, otherwise K, is not bipartite;
hence, the ranks of S(K,,), R(K;) and Q(K,,) follow from Theorems 2 and 3.



For the rank of T'(K,,) we examine (5) upon substitution of r = n — 1:
%(—n+4ﬂ:\/n2—-4n+12) (6)

Spec(Ky) = {n — 1, =11} (from [2]). Thus we set (6) equal to each of
n—1 and —1 to examine which values of n give eigenvalues that will be
transformed to zero in the total graph. Solving expression (6) equal to n — 1
gives n = 3, and solving equal to —1 gives n = 3. Hence, n = 3 gives the only
instance of rank deficiency, in which case spec(K3) = {2, —1®} so that all
three eigenvalues become zeros of T'(K,). The result follows. B

Next we examine the n-dimensional hypercube @, for n > 2. This graph
is defined recursively by @, = K> and Qu41 = Qn X Kj, where ( x ) indicates
the Cartesian product. @, is n-regular, has 2" vertices and 2"~!n edges.

Theorem 6 Forn > 2,

rank(S(Qn)) = 2(2" — 1),
rank(R(Q,)) = 2" — 1,
rank(Q(Qn)) = 2"(n +2) - 1,

7 ifn=2
2" (n +2) otherwise

rank(2(Qn) = {

Proof. The ranks of S(Q,), R(Q,) and Q(Qy) follow from Theorem 2 since
Q- is bipartite for all n > 2.

The spectrum of @, consists of the numbers n — 2k, each with multiplicity
(3), for k=0,1,..,n (from [1]). Substituting r=n in (5) gives
%(—n +3+tyn?-2n+ 9). We set this expression equal to n — 2k to
determine conditions for zero eigenvalues in T(Q,).

—n+3tvVn?—-2n+9=2n-—-4k

*vVn?2-2n4+9=3n—-4k-3
n? — 2n + 9 = 9n? + 16k? — 24nk — 18n + 24k + 9
0 = 8n? + 16k? — 24nk — 16n + 24k
0 =n?—n(3k+2)+2k*+ 3k

n=%(3k+2:!:\/k2+4)

10



The only rational value of k that gives a rational value of n is k = 0, which
implies that n = 2. Thus, if n = 2, the eigenvalue corresponding to k = 0 is n,
with multiplicity () = 1, and is transformed to a zero eigenvalue of T(Q,).
The result follows. W

The final graph examined in this section is the cocktail-party graph, C P(k),
k > 2, which is a complete graph on n = 2k vertices with a perfect matching
removed. Here, 2k? — 2k is the number of edges. This graph is the only
(n — 2)-regular graph on n vertices.

Theorem 7 Fork > 2,

6 ifk=
rank(S(CP(k))) = { 4k Z;herw?se
T ifk=
rank(R(CP(k))) = {4k loftherw?se
7 ifk=2

rank(Q(CP(k))) = rank(T(CP(k))) = {%z otherwise

Proof. From [2] we have that spec(CP(k)) = {2k -2, —2(-1), O(k)}.
Clearly, the eigenvalues are symmetric about zero on the real line only for
k =2. Thus, only for k =2 is CP(k) bipartite by Theorem 1, and for any
other value of k, CP(k) is then not bipartite. By Theorems 2 and 3, the ranks
of S(CP(k)), R(CP(k)) and Q(CP(k)) follow.

To find rank(T'(CP(k))), we substitute 7 = 2k — 2 in (5). This gives an
expression for the eigenvalues of CP(k) that will be transformed to zero

eigenvalues in T(CP(k)): }(—2k+5+ v/&k? — 12k + 17). Next, we set this

expression equal to each of the three eigenvalues, beginning with 2k — 2.
Recall that k& > 2.

—2k+5+4k2 - 12k +17 =4k -4
4k? — 12k + 17 = 36k* — 108k + 81
0 = 32k? — 96k + 64
0=k —3k+2
k=2
The remaining two equations do not give viable solutions (k = 8/3 and

k = 1); hence, there is one zero eigenvalue of T(CP(k)) only for k = 2.
Therefore, the result is established. B
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4  Complete Multipartite Graphs

We begin this section with the complete bipartite graph Ky, This n-regular
graph has 2n vertices and n? edges forn > 1.

Theorem 8 Forn > 1,

rank(S(Kpp)) = 4n — 2,
rank(R(K,,)) = 4n -1,

rank(Q(Knn)) =n? +2n —1,

7 fn=2
rank(T(Knn)) = { n?+42n otherwise

Proof. Obviously, K, is bipartite for all values of n > 1. Thus the ranks of
S(Knpn), R(Kynp) and Q(Kh,,) follow directly from Theorem 2.

Since spec(Knn) = {n, 0", —n} (found in [2]), we need only
substitute 7 = n in (5) and solve equal to the three distinct eigenvalues. Thus,
the equation

—n4+3+vVn?-2n+9=2n

gives only n = 2 as a solution for the positive root. The other equations using 0
and —n give a solution of n = 0, which is nonsense. Hence, rank(T'(Kn5)) is
deficient by one only for n = 2, and the result follows. Bl

Next we examine the complete multipartite graph Ky, n,,...n, Where the n;'s
are all equal fori =1, 2, ..., k, k > 3. Letting n = n;, we have that this graph
is n(k — 1)-regular and has nk vertices and {n?k(k — 1) edges.

Theorem 9 Forn > 2andk 2 3,
rank(S(Kn, ny,..m)) = 1 ank(R(Knxmz,---,nk)) = 2nk,

rank(Q(Kﬁl.nz,-mnk)) = rank(T(Kﬂl,nz,m.nk)) = %nk(nk -n+ 2)

12



Proof. Since K, 5, a, is clearly not bipartite, the ranks of S(Knyngyine)s
R(Kpy ma,...n,) and Q(Kpy ..., ) follow from Theorem 3.

To establish the rank of T(Kp, n,,...n,), We examine the spectrum. Again,
from [2] we have spec(Kp, p,..n,) = {n(k — 1), 0"*~") _n®*-1}  Hence, we
substitute r = n(k — 1) and set (5) equal to n(k — 1), 0 and —n in turn. We
then have the three equations below.

n?(k—1)* - 2n(k—1)+9 = (3n(k — 1) — 3)?
n’(k—1)? = 2n(k — 1) +9 = (n(k — 1) - 3)°

n?(k—1)* - 2n(k — 1) + 9 = (n(k ~ 3) — 3)°

The solutions to these equationsare k =1,k =1+2/n and k = gr%z which
are not acceptable solutions since & > 3 and n > 2. Hence, there are no zero
eigenvalues in T(Kp, 5, ), and the rank is jnk(nk —n+2). W

5 Circulants of Degrees Three and Four

Developed in this section are the ranks of 3- and 4-circulants under the unary
operations. We begin with 3-circulant graphs. Recall from [4] that a three-
circulant is defined by a jump set S = {a, %, n — a}; in other words, vertex 3 is
adjacent to vertex j if and only if (|i — j| mod n) € S. We denote a 3-circulant
on n vertices with jump set S = {a, 2,n—a} by 3C,(a). A three-circulant is
3-regular and has n vertices and 3n/2 edges. Note that n must be even. The
following theorem from (8] gives a formula for the eigenvalues of a circulant

matrx.

Theorem 10 If A is an n x n circulant matrix with first row [cy, ¢, ..., ¢4,
n .

then the eigenvalues of A are given by Ay = Y ciw(™VP, p=0,1, .., n~1,
i=1

where w = 27,

Now we determine the ranks of circulants under the unary operations. In
the following, we assume a connected 3-circulant. This implies gcd(a, n) =1
(see [4]).

Theorem 11 Forevenn > 4 and ged(a, n) = 1,

13



-2 4 is odd
nsscuon = {3, 7" Lo

=13 s odd
S CURLC A

5n/2—1 ifn/2isodd
rank(Q(3Cx(a))) = { 5n/2 ifn/2 is even

rank(T(3Cy(a))) = 5n/2.

Proof. In light of Theorems 1, 2, and 3, there will be rank deficiency if and only
if 3Cp(a) is bipartite, and 3C,(a) is bipartite if and only if
—r = —3 € spec(3C,(a)). Thus, we examine conditions under which and
eigenvalue of 3Cy(a) is —3.

By Theorem 10, Ap = w + w(®/2? 4 ((n=a)P = _3 if and only if

2cos(2wap/n) + cos(mp) = —3 )

From this, two cases arise: p even and p odd. If p is even, (7) reduces to
2cos(2map/n) = —4, which has no solution. Thus, p must be odd; so (7)
reduces to 2cos(2map/n) = —2, which implies ap = n/2 mod n.

Since connectivity is assumed, gcd(a, n) = 1, which implies a is odd, since
n is even. Thus both @ and p are odd, forcing n/2 to be odd for there to be a
solution to the congruence; that solution being p =n/2. Hence, 3Cy(a) is
bipartite for n/2 odd, and the results for the ranks of S(3Cy(a)), R(3Cx(a))
and Q(3Cy(a)) hold.

For T'(3C,(a)), we substitute » = 3 in (5). This gives that ++/3 should be
in spec(3C,(a)) for there to be a zero eigenvalue in the total graph of 3C,(a).
Thus we examine

2cos(2map/n) + cos(mp) = +/3

For p even, this reduces to cos(2wap/n) = (-1 + v/3)/2 and for p odd, it

reduces to cos(2map/n) = (1 — v/3)/2. Neither of these equations have
solutions for which ap/n is rational. Thus, there are no eigenvalues of 3C,(a)

equal to ++/3, which implies no zero eigenvalues in the total graph. I

Now we consider the four-circulant graph. Recall from [5] that a four-
circulant is defined by a jump set S = {a, b, n — b, n —a}; in other words,

14



vertex ¢ is adjacent to vertex j if and only if (Ji — j| mod n) € S. We denote a
4-circulant on n vertices with jump set § = {a, b, n — b, n — a} by 4C,(a, b).
A four-circulant is 4-regular and has n vertices and 2n edges. Again, we
assume the 4-circulant is connected; then, gcd(a, b, n) = 1 (see [5]).

Theorem 12 Let dy = ged(a, n) and dy = ged(b, n). Then for n > 5 and
ged(a, b, n) =1,

2n—2 ifniseven and 2 divides (d; — d;)

rank(S(4Cx(a, b)) = {Zn otherwise

2n—1 ifniseven and 2 divides (d; — d,)
2n otherwise

rank(R(4Cy(a, b))) = {

3n—1 ifnisevenand 2 divides (d;, — d
rank(Q(4Cn(a, b)) = { 3n otherwise 2 )

rank(T(4Cy(a, b))) = 3n.

Proof. Proceeding in a similar fashion to Theorem 11, we find conditions under
which an eigenvalue of 4C,(a,b) will be —4. By Theorem 10,
Ap = W + Wb 4 (bl 1 (-0 — _4 if and only if

2cos(2map/n) + 2cos(2wbp/n) = —4. (8)

Clearly, this can only happen when each cosine term is equal to —1. Hence,
it must be that ap = n/2 mod n and bp = n/2 mod n. Note that this implies
that n must be even. Let d; =gcd(a, n) and dy = gcd(b, n). By the
Generalized Chinese Remainder Theorem (see [10]), a simultaneous solution for
the two congruencies exists if and only if gcd(n/dy,n/dy) divides
n(dz — d1)/2d1d;. But since the graph is connected, gcd(d;, do) = 1; and so
ged(n/di,n/dy) = nflem(dy, dp) = n/dydy divides n(dy — dy)/2dyd. This
implies that (dz — d;)/2 must be an integer. Therefore, 4C,(a, b) is bipartite if
and only if n is even and 2 divides d; — d;. Hence, the results for the ranks of
5(4Chn(a, b)), R(4Cx(a, b)) and Q(4Cx(a, b)) hold.

Now for the total graph of 4C,,(a, b), we substitute = 4 in (5). This gives
that 3(-1+ V/17) should be in spec(4Cy(a, b)) for there to be a zero
eigenvalue in the total graph of 4C,(a, b). Thus we examine

2cos(2map/n) + 2cos(2mbp/n) = %(—-1 ++/17)

15



This equation has no solutions for which ap/n and bp/n are rational. Thus,

there are no eigenvalues of 4C,(a, b) equal to 1(—1 = 1/17), which implies no
zero eigenvalues in the total graph. ll

6  Some Cartesian Graph Products

We begin by recalling some basic facts concerning the Cartesian product of two
graphs. The Cartesian product of graphs G and H is a graph that has vertex set
V(G x H) = V(G) x V(H) and edge set £(G x H) = {{{u, w1}, {%, v2}} |
u € V(G) and {vy, v} € E(H)} U {{{w, v}, {uz, v}} | {w1, v} € £(G) and
v € V(H)}. The next result is well-known and can be found in various works,
including [2].

Theorem 13  If graph G has eigenvalues )y, ..., A\n and graph H has
eigenvalues p, ..., bm, then the Cartesian graph product G x H has
eigenvalues \i + pifori=1, ..,nandj=1, ..., m.

The first product we shall consider is that of a cycle on n vertices and a path
on 2 vertices. This graph has 2n vertices and 3n edges, and is 3-regular for
n 23 :

Theorem 14 Forn > 3,

4n —2 ifniseven
rank(S(C, x Py)) = { 4n z;:n is odd
dn—1 ifniseven
rank(R(Cp x Pp)) = dn ifnis odd

S5n—1 ifniseven
rank(Q(Cyn x B;)) = { 5n ifnis odd

rank(T(Cp x P)) = 5n.

Proof By Theorems 1, 2 and 3, there will be rank deficiency if and only if
Cn,x P, is bipartite, and C,x P, is bipartite if and only if
—r = -3 € spec(Cyp, X P;). Thus, we examine conditions under which
A =-3.

16



Using the result of Theorem 13, the eigenvalues are given by
2cos(2mj/n) — 1 and 2cos(2mj/n) + 1 for j=1,2, .., n. Thus \; = —3 if
and only if either 2cos(2mj/n) = —2 or 2cos(2mj/n) = —4. The latter
equation has no real solution; the former implies a solution exists if and only if
Jj=n/2mod n. Thus, n must be even for a solution to exist. Hence, C,, x P,
is bipartite if and only if n is even. The results for S(C, x P;), R(C, x P)
and Q(C, x P,) follow.

Next, we substitute r =3 in (5) to obtain that ++/3 must be in the
spectrum of C, x P, for there to be any zero eigenvalues in the total graph.
Since neither 2cos(27j/n) + 1 = +1/3 nor 2c0s(2mj/n) — 1 = /3 have
solutions for which j/n is rational, there are no zero eigenvalues in T'(C,, x B).
|

Next, we examine K, x P,, which has 2n vertices, n? edges, and is n-
regular.

Theorem 15 Forn > 2,

6 ifn=2
rank(S(K, x P,)) = {4n otherwise
7 ifn=2
rank(R(K x Py)) = {411, oftherwise
7 ifn=2
n?+2n  otherwise

rank(Q(K, x P3)) = rank(T(K, x P;)) = {

Proof. We determine conditions under which all eigenvalues of K, x Py will
be symmetric about zero, since this implies K, x P, is bipartite. There is no
need to solve any eigenvalue equations, since from [2] we have that the
spectrum of K, x P; is {n, n — 2, 0(*~1), —20=D}. Clearly, only n = 2 will
give a symmetric set of eigenvalues. Hence, the first three results follow from
Theorems 2 and 3.

For T(Kn x P,), we substitute r =7 in (5) to get that an eigenvalue of

K, x P, must be equal to %(—n+ 3++/n2-2n+ 9) for there to be zero

eigenvalues in the total graph. We set this expression equal to each of the four
distinct eigenvalues in the spectrum in turn. Solving the four resulting equations
reveals that only n=2 is a feasible solution. Therefore, the rank of
T(Kn x P,) follows. B
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The product of a cycle on m vertices and a cycle on n vertices is 4-regular,
has mn vertices and 2mn edges.

Theorem 16 Form, n 2> 3,

2mn —2 m and n both even
rank(S(Cm x Cn)) = {2mn otherwise

2mn —1 m and n both even
rank(R(Cm x Cy)) = {2mn otherwise
3mn—1 m andn both even
3mn otherwise

rank(Q(Cpn % Cp)) = {

rank(T(Cp % Cp)) = 3mn.

Proof. Since a graph is bipartite if and only if the graph contains no odd cycles,
Cm X Cy, is bipartite if and only if m and n are both even. Then by Theorems 2

and 3, the results for the ranks of S(Cp, X Cp), R(Cr % Cyp) and Q(Cr, x Cy)
hold.

For the total graph of Cy, X Cp, we substitute r = 4 in (5). This gives that

1(—1£+/17) should be in spec(Cr, x Cy) for there to be a zero eigenvalue in
the total graph of C,, x C,. However, just as in Theorem 11, there are no

eigenvalues of C, x C, equal to %(—1 =+4/17), which implies no zero
eigenvalues in the total graph. Bl

Next, we examine the Cartesian product of a complete graph on m vertices
and a complete graph on n vertices for both m,n > 3. This graph is
(m + n — 2)-regular, and has mn vertices and %mn(m +n — 2) edges.

Theorem 17 Form,n > 3,

rank(S(Kny x Kp)) = rank(R(Kn x Ky)) = 2mn,

rank(Q(Km x Ky)) = rank(T(Km x K,)) = %mn(m + n).

Proof. Since K, is not bipartite for n > 3, the Cartesian product of two
complete graphs cannot be bipartite; the results then follow from Theorem 3.

18



Spec(Km X Kp) = {m +n -2, m — 201, p — 2(m-1)  _g(m-1)n-1)}
(from [2]). For the total graph, we substitute 7 = m + n — 2 in (5) and set equal
to each of the four eigenvalues. Tedious computations reveal that no solutions
satisfy the requirement that both m and n are greater than 3. Hence, the total
graph has full rank. B

Finally, we look at the Cartesian product of a cycle on m vertices and a
complete graph on n vertices for both m, n > 3. This graph is (n + 1)-regular,
and has mn vertices and ;mn(n + 1) edges.

Theorem 18 Form,n > 3,
rank(S(Cm x Ky)) = rank(R(Cp, x K,)) = 2mn,

rank(Q(Cp, x K,)) = rank(T(Cp x K,)) = %mn(n + 3).

Proof. Since K, is not bipartite for n > 3, the Cartesian product of a complete
graph and a cycle cannot be bipartite. The results then follow from Theorem 3.

For the total graph, we substitute 7 = n + 1 in (5) and set it equal to each of
the eigenvalues of C,, x K,. By Theorem 13, the spectrum of C,, x K,
consists of the numbers 2cos(27j/m) +n—1 for j =1, 2, ..., m along with
n — 1 each of the numbers 2cos(27j/m) — 1 for j =1, 2, ..., m. Therefore (5)
implies that

cos(2mj/m) = %(4 - 3n++/n? +8)
or
cos(2mj/m) = 2(4 —nt/n?+8)
However, the only solutions for which j/m is rational occur only when

n = 1. Thus, no solutions satisfy the requirement that both m and n are greater
than 3. Hence, the total graph of C,, x K, has full rank. Bl

7 A Special Non-Regular Graph

We begin this section with a result from [2] for the connected subdivision graph
of a non-regular graph. This relates the eigenvalues of Q(G) to those of the line
graph of G, denoted L(G).
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Theorem 19 Let G be a graph with n. vertices and m edges. Then

n—-m m M2
PQ(G)()\) = A (A+1) Pre m .

The path P, is a well-known non-regular graph. Due to the unique
structure of this graph, it is a straightforward procedure to establish basic results
for P, under the unary operations.

Theorem 20 Forn > 2, Rank(S(P,)) = rank(Q(F,)) = 2n — 2.

Proof Since S(P,) is another path on m+n=(n—-1)+n=2n—1
vertices, the rank(S(P,)) = rank(Pzn-1). It is well-known that
rank(P,) =n—1 if n is odd. Hence, because 2n—1 is odd for all n,
rank(Py,—1) = rank(S(F,)) = (2n—1)—-1=2n-2.

For Q(P,), note that L(P,) ~ P,_;. Now, from Theorem 18, simple
algebra reveals that the eigenvalues of P, are transformed by the operation of
comnected subdivision into numbers given by the expression
Lt V/M¥+4)+8), where X €spec(Pp-1) for i=1,2,..,n—1
Setting this expression equal to zero determines that only an eigenvalue of —2
will be transformed into an eigenvalue of zero in Q(P,-1). Now, eigenvalues of
P, are given by 2cos(ni/[n — 1+ 1]) = 2cos(mi/n) for i=1, 2, .., n— 1.
Thus, we determine which eigenvalues are equal to —2. But cos(mi/n) = —1
has no solution since ¢ # n. So —2 ¢ spec(P,-1) which implies additional zero
eigenvalues, other than the n—m=n—(n-1)=1 given by the
characteristic polynomial, do not exist. The result follows. H

, To treat R(P,), we require some results from matrix theory and the block
matrix representation of the adjacency matrix of R(G) for some graph G.
Recall that for every graph G on n vertices, where each vertex has degree d; for
i=1,2,...,n, we have the valency (or degree) matrix D = diag|d,, dy, ..., dn].
The following lemma can be found in [2].

Lemma 5 If A is the n x n adjacency matrix of graph G and D is the valency
matrix of G, then the adjacency matrix of R(G) is of the block form

0, RT
R A
where RRT = A + D and 0,, denotes the m x m zero matrix.

Lemmas 6 and 7 can be found in [9].

Lemma 6 If A is a nonsingular matrix and D is square, then
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where all entries are zero except on the sub- and super-diagonal (where entries
are all —\ — 1) and the main diagonal. We denote this tridiagonal matrix B,.

By Lemma 7, |By| = (A2 = 1)|Bn-1] — (A +1)?|Bn—3|. Note that B,_,
and B, are tridiagonal; moreover, all entries are identical to B, except for the
last diagonal entry which is A2 — 2. To simplify the following argument, we
denote B,_; by Ay. Thus we have |Bn| = (A2 — 1)|An| — (A + 1)%|An_i|.

The determinant of B, results in a characteristic polynomial of degree 2n;
denote it by p()). Upon multiplication of p(A) by 1/, the result must be a
polynomial of degree 2n — 1. Therefore, there will be a constant term in the
polynomial p(A\)/) if and only if the A term of p()) is nonzero. Thus we
examine the )\ term of |B,|. This term is obtained by the multiplication of the
A terms of both |Ay| and |Ay—;| by —1 and the constant term of |Ay-| by
—2)\. We show that none of these terms is nonzero; in fact, we show by
induction that the constant term of |Ay| is (1), the X term of |Ay] is
(=1)¥-1N(N — 1), and that the X term of | B,| is given by 2(—1)""!(n —1).

We begin with |Ay|. Note that

| 43| = (A% = 2)| 42| = (A +1)°| A4
=N =-2)[(A-2)M2-1)-A+1))]-(A+1)*(V-1)
=X —7A - 4N +9NT+6A - 1.

Assume that the constant term of |Ak| is (—1)* and the A term of |A| is
(=1)¥k(k — 1) for all k< N. Let N =k+1. Then the constant term of
|Ak41] is given by —2(=1)F — (—1)F~! = (—1)*+! and the X term is given by
~2(=1)F1k(k — 1) = [(=1)*2(k — 1)(k — 2) + 2(—1)%"") = (—1)¥k(k + 1).

Now we examine | B,|. Note that

|Bs| = (A% = 1)|4z| — (A + 1)| A4}
=(2-1)[2-2)M-1)-A+1))] - (A +1)’ (M -1)
=X — 61 — 43 + 5% + 4.

Assume the A term of |Bi| is 2(—1)*"'(k—1) for all k<n. Let
n=k+1. Then the X term of |Bgu| is given by
—(=1)*k(k — 1) — [(~1)2(k — 1)(k — 2) + 2(=1)1] = 2(=1)%k.

Hence, p()\) has a nonzero A term, which implies p(A)/A has a nonzero
constant term. Since the constant term is the product of the roots (the
eigenvalues) of the characteristic polynomial of R(FP,), and the constant term is
nonzero, there cannot be any zero eigenvalues of R(P,). Thus, its rank is
2n-~1.1
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8 Concluding Remarks

The direction of research is to determine which structural properties of a graph
are related to the rank of its adjacency matrix. Notice that the bipartite property
has an important role in the rank of regular graph under the unary operations
specified. The authors have previously investigated the more familiar unary
operations: complements and line graphs of regular graphs ([6] and [7]). The
next possible step includes determining ranks of binary operations on two
graphs, such as the complete product, the strong product, more Cartesian
products, the bipartite product of a graph with itself, and the composition of two
graphs. More results involving specific graphs, such as the generalized Petersen
graphs, cages and Cayley graphs, are also possible studies. Eventually, we hope
that all results will be summarized, and a relationship between a graph and its
rank will be found.
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