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Abstract

We show that if G is a 3-connected graph of order at least 5,
then there exists a longest cycle C of G such that the number of
contractible edges of G which are on C' is greater than or equal to

vic)|+9
—

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no
loops and no multiple edges.

A graph G is called 3-connected if |V(G)| > 4 and G — § is connected
for any subset S of V(G) having cardinality 2. An edge e of a 3-connected
graph G is called contractible if the graph which we obtain from G by
contracting e (and replacing each of the resulting pairs of parallel edges
by a simple edge) is 3-connected; otherwise e is called noncontractible. We
let E.(G) denote the set of contractible edges of G and E,.(G) denote the
set of noncontractible edges of G; thus E(G) = E.(G) U E,.(G) (disjoint
union). In [8], Tutte proved that if G is a 3-connected graph other than
Ky, then E(G) # ¢. In [2], Dean, Hemminger and Qta proved that if
G is a 3-connected graph other than K4 or K, x Kj, then every longest
cycle C of G satisfies |E(C) N E(G)| > 3. In 3], Ellingham, Hemminger
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nd Johnson proved that if G is a nonhamiltonian 3-connected graph,
hen every longest cycle C of G satisfies |E(C) N E(G)| > 6. Further the
lassification of those pairs (G,C) of a 3-connected graph G and a longest
:ycle C of G such that |[E(C) N E.(G)| < 5 has been completed by [1}, [7],
4] and [6]. On the other hand, in [7], Ota made a conjecture that there
>xists a constant a > 0 such that if G is a 3-connected graph of order at
ieast 5, then G has a longest cycle C such that |E(C)N E.(G)| 2 o|E(C)|.
In [5], we showed that such a constant exists if we restrict ourselves to
3-connected hamiltonian graphs:

Theorem ([5]). Let G be a 3-connected hamiltonian graph of order at least
5. Then there exists a hamiltonian cycle C of G such that |[E(CYNEA(G)| >
[FIEC)] + 31

In this paper, we show that the same conclusion holds for 3-connected
graphs in general, i.e., we prove the following theorem:

Main Theorem. Let G be a 3-connected graph of erder at least 5. Then
there ezists a longest cycle C of G such that |[E(C)NE(G)| > [L|E(C)|+2].

Let ag denote the supremum of those real numbers a which make true
the aforementioned conjecture of Ota. The above theorem shows ag 2> %.
On the other hand, ag < 1. To see this, let G be the line graph of a graph
obtained from a 3-regular 3-connected graph by subdividing all edges once.
Then G is 3-connected, and |[E(C)NE(G)| = ]E%C—')l for every longest cycle
C of G.

The organization of this paper is as follows. Section 2 contains funda-
mental results concerning noncontractible edges lying on a longest cycle of a
3-connected graph. In Section 3, we state two propositions, Propositions 1
and 2, and show that the Main Theorem follows from Proposition 2. In Sec-
tion 4, we define an admissible partition, which is an indispensable concept
for the proof of Proposition 2, and we prove Proposition 2 in Section 5.

Our notation and terminology are standard except possibly for the fol-
lowing. Let G be a graph. For U C V(G), we let (U) = (U)c denote the
graph induced by U in G. For U, V C V(G), we let E(U,V) denote the
set of edges of G which join a vertex in U and a vertex in V; if V = {v}
(v € V(G)), we write E(U,v) for E(U,{v}). A subset S of V(G) is called
a cutset if G — S is disconnected; thus G is 3-connected if and only if
[V{G)| > 4 and G has no cutset of cardinality 2. If G is 3-connected, then
for e = uv € E(Q), we let K(e) = K(u,v) denote the set of vertices  of G
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such that {u,v,z} is a cutset; thus e is contractible if and only if K(e) = ¢.
If e = wv is noncontractible, then for cach x € A'(e), {u,v,2} is called a
cutset associated with e. For an x-zpath X of G, we let X denote the z-z
path such that V(X) = V(X) and E(X) = E(X). For a cycle C of G and
for u, v € V(C) with u # v, we let Fo(u,v) € { P C G|P is an u-v
path and (V(P) - {u,2}) N V(C) = ¢}, Fo(u,v) & Fo(u,v) — E(G) and

%(u, v) def Fe(u,v) — B, (G).

We conclude this introductory section with the following easy lemma,
which we use in Sections 2 and 5.

Lemma 1.1. Let G be a 3-connected graph of order at least 5, and let
C = vovy -+ - vpug be a longest cycle of G. Let 0 < t5k0 <nandi# g,
k#1andi +# k, and suppose that %(vg,vj) # ¢ and Fclvg, v1) # ¢. Take
Pe -%(U{,Uj) and Q@ € %(vk,v,), and suppose that (V(P) — {v;,v;}) N
(V(Q) — {v,vi}) # &. Then the following hold.

(i) Folvi,ve) # &.
(i) k#i+1.
Proof. Statcment (i) is trivial. If & = i + 1, then since we can take
R € .F¢(vi,vi4)) by (i), we get a cycle
C'= vy - Vi1 RUigavigy - - vpvo

such that [E(C')| > |E(C')|, which contradicts the maximality of the length
of C.

2 Preliminaries

In this section, we prove fundamental results concerning noncontractible
edges lying on a longest cycle of a 3-connected graph. Some of the assertions
in lemmas of this section are already proved in Ota [7], but we include their
proofs for the convenience of the reader.

Throughout this section, we let G denote a 3-connected graph of order
at least 5, and let C = wyv; - - v, vy denote a longest cycle of G. Moreover,
throughout this section, we assume that the edge v,vg is noncontractible.

Lemma 2.1. Let u € K(v,,v). Then u € V(C) and, if we write u = v;,

then we have 2 <1 < n—2, and {v|1 <k < i1} and {v;|i+1 < k < n-1}
lie in distinct components of G ~ {vq, v, v;}.
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Proof. All assertions follow if we show that in G — {va,vo,u}, V(C) —
{vn,vo,u} is not contained in a single component. By way of contradiction,
suppose that V(C) — {vy,vo,u} is contained in a single component of G —
{vn,vo,u}. Then since {v,, v, u} is a cutset, there exists a component H
of G — {v,,v9,u} such that V(H) N V(C) = ¢. Since G is 3-connected,
there exists a v,-vopath P such that ¢ # V(P) — {v,,ve} € V(H), and
hence, we get a cycle

C' E 0 'vn—lP'

Since |E(C')| > |E(C)|, this contradicts the maximality of the length of C.

Throughout the rest of this section, we fix v; € K(v,,vo).

Lemma 2.2.
(1) FLo(vg,vt) =¢ for any k, l with1 <k<i-~landi+1<I<n-1.

(it) There ezists k with 1 <k <i—1 such that S¢(vn,vr) # &, and there
ezists p with i + 1 < p < n — 1 such that Fc(vo,vp) # 6.

Proof. Statement (i) follows immediately from Lemma 2.1. Since G is
3-connected, G — {vg,v;} must be connected. Consequently, there exist &
and ! with 1 <k <i—1andi+1 <! < nsuch that Fe(vg,v) # ¢, and
we get [ = n by (i). Thus considering symmetry, (ii) is proved.

Lemma 2.3. If i=2, then .¥c(vn,vy) = {vavy}.

Proof. By Lemma 2 2 (ii), Sc(vn,v1) # @. Suppose that /C(vn,t,,) #
¢. Take P € ./c (vn, m) and let H be the component of G —V(C) contain-
ing V(P)—{vn,v1}. Since G is 3-connected, there is v,z € E(V(C),V(H))
with v, # Un, V1. Then we have %(vl,v,,) #¢ Nowif3<p<n-1,
then from .S/’C(uj,vp) # ¢, we get a contradiction to Lemma 2.2 (i); if
p =0 or 2, then Yc(vl,vo # ¢ or .S’C(vl,vz) # ¢, which contradicts the
maximality of C. Thus ./(v(v,,,m) = ¢. Since .#¢c(vn,v1) # ¢, this forces
Fc(vn,v1) = {vavr}.

Lemma 2.4. Suppose that v,v;4; is noncontractible, and let {vi,viy1,v;}
be a cutset associated with it. Then the following hold.

(i) i+3<j<n(and hencei <n—3).

(i) If j = n, then Fc(vo,vit1) = {vovis1} and voviy, € E(G).
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Proof. To prove (1), by way of contradiction, suppose that 0 < j < i4+3.
Then by Lemma 2.1, 0 < j < ¢ — 2 and, applying Lemma 2.2 (ii) to
{viyvig1,v5}, we see that Fo(vigy,ve) # ¢ for some k with j +1 < k <
1 — 1, which contradicts Lemma 2.2 (i). Thus (i) is proved. To prove (ii),
suppose that j = n. Then applying Lemma 2.2 (ii) to {v;,vi4,,vn}, we
see that there exists [ with 0 < | < i — 1 such that Fo(vipr,n) # ¢
and, by Lemma 2.2 (i), we get [ = 0, which im&es Felve, vier) # .
To prove Fc(vo, vit1) = {vovis1}, suppose that Fc(ve,vigr) # @. Take
P e %(vo,vi.,.j), and let H be the component of G — V(C) containing
V(P) — {vo,vi+1}. Then there is vyz € E(V(C),V(H)) with v, # vo, vi4).
By symmetry, we may assume 1 < p <i. Nowif 1 < p <7 -1, then
since Fc(vp,viy1) # ¢, we get a contradiction to Lemma 2.2 (i); if p =
i,’jhen %(vi,v;“) # ¢, which contradicts the maximality of C. Thus
Fc(vo, vig1) = ¢. and hence Fc(vo,vig1) = {voviy1}. It remains to show
voviy1 € E:(G). By way of contradiction, suppose that vov;4; € Ene(G),
and let

{vo,vi41,u} be a cutset (2-1)

associated with it. From %(vo, Vi+1) = ¢, we see that in G— {vg, viy1, u},
there is no component which is disjoint from C. By Lemma 2.2 (ii), there
exists k with 1 < k < 7 — 1 such that (v, v) # ¢. Further, ap-
plying Lemma 2.2 (ii) with {v,,v,v;} replaced by {vi,vig1,vn}, we see
that there exists m with i + 2 < m < n — 1 such that Fe(vi,vm) # ¢.
Teke P € Fo(vn,vi) and @ € Fc(vi,vm). We now show that « € V(C).
Suppose that © ¢ V(C). Then in G — {vo,vit1,u}, {vi,ve,...,v;} and
{vi+2,vi43,..., v, } lie in distinct components. Since each of P and Q joins
V1V -+ v; and vi4avi43 -+ - vy, this forces v € V(P) N V(Q). But then by
Lemma 1.1 (i), Sc(vk,vm) # ¢, which contradicts Lemma 2.2 (i). Thus
u € V(C). Write u = v,. By symmetry, we may assume 1 < ¢q < i. We
show that 2 < ¢ <7i—1. Suppose that g = 1. Then {vo,v1,vit1} is a cutset
by (2-1). Hence vpv; € E,.(G) and v;4; € K(vg,v;). Consequently, we get
a contradiction by applying (i) with {vp,v0,v;} and {v;, vi41,v;} replaced
by {v1,v0,vi41} and {vi41,v:,vj(=vn)}, respectively. Similarly, if ¢ = 1,
then by (2-1), {vo,vi41,v:i} is a cutset, which contradicts (i). Thus2< ¢ <
i—1. Now since G is 3-connected, G — {vy, v} is connected, and hence there
exist r, s with r € {1,2,...,q— 1} and s € {g+1,¢+2,...,n} such that
Fc(vr,vs) # ¢. Note that {Vg+1,Vg42,- .., v} and {vViga,vigs,...,vn} are
contained in the same component of G — {vp,vi41,v,} because Q joins
Vg+1Vg42 < Vi ANd Vig2¥iy3* UmUm41 - Un. Now if s # i + 1, then
from (v, v,) # ¢, we see that {vi,v2,..., 0421}, {Vgt1,Vg42,-- ., 04}
and {vi42,vits,...,v,} are all contained in the same component of G —
{vo,vit1,v4}, which contradicts the fact that there is no component of
G — {vo, vi+1,v¢} which is disjoint from C. Thus s = ¢ + 1, which implies
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Fe(vr,vig1) # ¢. But this contradicts Lemma 2.2 (i), completing the
proof.

Lemma 2.5. If i =2, then v,v; € E(G).

Proof. Considering symmetry, this follows immediately from Lemma 2.4

(i)

Lemma 2.6. Suppose that vgv; is noncontractible and v; € K(vg,vy).

Then .?c(v,,,v,) # ¢,

Proof. Tt follows from Lemma 2.2 (ii) that there exists k with 1 <k <
i — 1 such that Fc(vn, vk) # ¢ and, applying Lemma 2.2 (i) to {vo,v1,vi},
we get k = 1, which implies #¢(va,v1) # ¢. Now by way of contradiction,
suppose that 5”?;(1),,,01) = ¢. Then we have v,v; € E,(G). Let

{vn,v1,u} be a cutset (2-2)

associated with it. Since the assumption .572-(0,,, v1) = ¢ implies %(vn, vy)
= ¢, we see that in G —~ {v,,v;,u}, there is no component which is disjoint
from C. Applying Lemma 2.2 (ii) to {v,,vo,v;} and {vg,v1,v;}, we see
that there exists m with i + 1 < m < n — 1 such that Fe(vo,vm) # o,
and there exists a with 2 < a <7 — 1 such that Fc(ve,v.) # ¢. Take P €
Fc(vo,vm) and Q € Fc(vp,v,). We now show that u € V(C). Suppose
that u € V(C). Then in G — {v,,vy,u}, v and {ve,v3,..., 00—y} lie in
distinct components. Since each of P and @ joins vg to vavs -+ - vp—y, this
forces u € V(P)NV(Q). But then by Lemma 1.1 (i), Fc(vm,ve) # ¢, which
contradicts Lemma 2.2 (i). Thus v € V(C). Write u = v,. If ¢ =0, then
we get a contradiction by Lemma 2.1. Thus 2 < ¢ < n — 1. By symmetry,
we may assume 2 < ¢ < 7. Suppose that ¢ = 2. Then {v,,v;,v2} is a cutset
by (2-2). Hence v1v2 € E,(G) and v, € K(vy,v,). Consequently, we get a
contradiction by applying Lemma 2.4 (i) with {v,,vo,vi} and {vi,vi41,v;}
replaced by {v|,v2,v,} and {v,,ve,v:}, respectively. Thus 3 < ¢ < i.
Now since G is 3-connected, G — {v,v,} is connected, and hence there
exist v, s with » € {2,3,...,9q~1} and s € {0} U {g+1,g+2,...,n}
such that #c(vr,v,) # ¢. Note that vy and {vg41,v¢42,...,Un-1} are
contained in the same component of G — {vn,v;1,v4} because P joins vg
and vg1Vg42- - Un—1. Now if 8 # n, then from Fc(v,,v,) # ¢, we see
that vo, {vVg41,Vg+2,...,Vn—1} and {va,vs,...,v4-1} are contained in the
same component of G — {v,,v;,v,}, which contradicts the fact that there
is no component of G — {vy,v1,v,} which is disjoint from C. Thus s = n,
which implies S (v, v,) # ¢. But since v; € K(vg,v;) by assumption,
this contradicts Lemma 2.2 (i), completing the proof.
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Lemma 2.7. Let 1 < j <1 — 2. Suppose that vjvjy,; is noncontractible,
and let {v;,vj1,v1} be a cutset associated with it, and suppose that i +1 <
l<n—1 Thenl =i+1, vjvy € E,(G) and, unless | = n — 1, we have
v; € K(vy,vp).

Proof. Suppose that 1 # 74+ 1. Then {wfi+1 <k <! -1} # ¢ and,
by Lemma 2.2 (i), Sc(vr,v.) = ¢ for any k, a withi+1 <k <! -1 and
1<a<i— l Applying Lemma 2.2 (i) to {v;,vj41,m}, we also see that
Fo(vi,vp) =¢d forany k,bsuchthat i +1 <k <l—-land!+1<b<n
or 0 < b < j— 1. Consequently, Fc(ve,v;) = ¢ for any k, t such that
t+l1<k<l-land0<t<i—1lorl+1<t<mn, which means that
{vi, vt} is a cutset, a contradiction. Thus ! = ¢ + 1. Suppose that v;»; is
noncontractible, and let v, € K(v;,v;). Theni+3 < ¢ < n by Lemma 2.4 (i)
and, applying Lemma 2.4 (i) to {vj}1,v5,v} and {v,v;,v,}, we also get
J+1 £ ¢ <1-3. Butsince -3 = i—2 < i+3, this is impossible. Thus v;v; is
contractible. Now assume that [ <n —2. Then {w|l+1<k<n—-1}# ¢
and, by Lemma 2.2 (i), we see that Fc(vk,v,) = ¢ for any k, a with
[+1<k<n-1land 1l <a <i-1, and that Sc(vi,vs) = ¢ for any
k,bwithl+1<k<n-—1andj+2<b<!-1. Consequently, we get
Sc(vk,v) =@ forany k, t withl+1<k<n-1land1<t<I~-1, which
means v; € K(v,,vp).

Lemma 2.8. Suppose that vov, is noncontractible, and let {vo,v1,v;} be
a cutset associated with it, and suppose that i +1 < _7 < n=-—2. Then
v; € K{(vp,v0).

Proof. As in Lemma 2.7, applying Lemma 2.2 (i) to {v,,vy,v;} and
{vo,v1,v;}, we see that Fe(vy,v,) = pforany k, a with j+1 <k <n-—1
and 1 € a <¢—1, and that Fc(vg,vs) = ¢ forany k, bwith j+1 <k <n-1
and 2 < b < j — 1, respectively. Consequently, .%c:(vi, v) = ¢ for any k, ¢
with j+1<k<n-1and1<t<j— 1, which means v; € K(vn, o).

3 Statement of Propositions
Let G be a 3-connected graph of order at least 5, and let C be a longest
cycle of G such that no longest cycle has more contractible edges than C,

ie.,

there is no longest cycle C’ of Gsuchthat |[E(C")NE(G)| > |E(C)NE.(G)].
(3-1)

If E(C)N E.(G) = ¢, then E(C) N E(G) = E(C), and hence the Main

135



Theorem trivially holds. Thus we may assume that E(C) N E,..(G) # ¢.
Write

C = wvgvy - - vy, Where n > 4.

Without loss of generality, we may assume that v,v9 € E,(G). Let
{vn,v0, v} be a cutset associated with it (then 2 < k < n—2 by Lemma 2.1).
Set

P =v,vvy ---vp and Py = vgUg41 - Unvo -

Then |E(P,)| + |E(P,)| = |E(C)| + 1, and |E(P,) N E(G){ + |E(P;) N
E.(G)| = |E(C)YN E(G)| because vpavg € Enc(G). Thus to prove the Main
Theorem, it suffices to prove the following proposition:

Proposition 1. |E(P))NE(G)| 2 3|1E(Py)|+ % and |E(P,)NE:(G)| >
%lE(P2)| + % .

Now we define the following set .Z:

Definition 3.1. & = { P C C|there exist x,y,z € V(G) such that P is
an z-zpath, ry € E(P) and z € K(z,y) }.

Remark. Let 0 < i < j < n. Then viviyy---v; € ZF if and only if
vj € K(v;,v,'.,.l) or v; € K(v,-_l,vj).

Note that P; € & and P, € & because v} € I (v,,v). Hence Proposition 1
follows from the following proposition:

Proposition 2. Let W € &. Then |E(W)N E(G)| > §|E(W)|+ 3 .

Thus we prove the Main Theorem by proving Proposition2. The proof
of Proposition2 is given in Section 5. We conclude this section with two
lemmas. The first lemma immediately follows from Lemmas 2.1 and 2.5.

Lemma 3.1. Let P € &. Then |E(P)| > 3. Further if |E(P)| = 3, then
|E(P) N E(G)| > 1.

Lemma 3.2. Let 0 <1 < n-—3, and let A = v;v;4+1Vi42vi+3. Suppose that
A € F. Then one of the following holds:

(1) vits € K(vi,vi41) and v;viqp € E(G); or

(ii) vi € K(vig2,vit3) and vi41vip3 € E(G).
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Proof. By the definition of F, we have viys € K(vi,vig1) or v; €
K(vig2,vi+3). Hvip3 € K(v;,vig1), then applying Lemma 2.3 with {v,, vo,
v;} replaced by {v;,vi+1,vit3}, we obtain viviys € E(G); if v; € K(viyo,
vit3), then applying Lemma 2.3 with {v,,vo, v;} replaced by {vit3,vi42,0;},
we obtain v;4+1v;43 € E(G).

4 Admissible Partition

In [5], an admissible partition is defined under the condition that G
is a 3-connected hamiltonian graph. But even if G is nonhamiltonian, an
admissible partition can be defined in the identical way. In this section, we
define an admissible partition for a 3-connected graph in general.

As in the preceding section, let G be a 3-connected graph of or-
der at least 5, let C be a longest cycle of G satisfying (3-1), and write
C = vy -+ Vuvg. Assume that E(C) N E,.(G) # ¢, and let .F be as in
Definition 3.1. Note that for each of the lemmas in Sections 2 and 3 of [5],
we have in this paper a corresponding lemnma in Section 2 or 3. Thus the

proof of the following lemma corresponds word for word to that of Lemma
4.29 in [5]:

Lemma 4.1. Let P € #, and write P = vjviy, ---v; (indices are to be
read modulo n + 1). Then there ezists

$={A1,A2,...,A‘}

such that
Ay C P forall 1 <h<H,
t
E(P) — {vivit1} = U E(A;) (disjoint union)
h=1
or

t
E(P) — {vj-1v;} = | J E(As) (disjoint union)
h=1

according as vj € K(vi,viy1) or v; € K(vj;,v;),

t
|E(P)N E(G)| = Y |E(44) N E(G)),
h=1

and for each 1 < h < t, one of the following holds:
(i) Ar € F (s0 |E(A4)| = 3);
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(ii) Ax ¢ Z, |[E(An)| =5 and |[E(An) N E(G)| 2 2;
(iii) |E(An)| =2 and |E(A4) 0 E(G)| > 1; or
(iv) |E(An)| = |E(An) N E(G)] = 1.

Having Lemma 4.1 in mind, we define an admissible partition in the same
way as in Definition 4.5 of [5].

Definition 4.1 (an admissible partition). For P € %, a family %8 =
{ A1, Az2,..., A} of paths satisfying the conditions stated in Lemma 4.1 is
called an admissible partition of P. For A, € B, A is said to be of Type
R, Type F, Type S, or Type T according as A, satisfies (i), (ii), (iii), or (iv)
of Lemma 4.1.

5 Proof of Proposition 2

Recall that the Main Theorem follows from Proposition 2 as we saw in
Section 3. Before proving Proposition 2, we prove the following lemma.

Lemma 5.1. Let 0 < ¢ < j < n. Suppose that A = vjviy,---vj, A € .F,
A is an admissible partition of A, |B| =1, B = {B} and B € .#. Then

one of the following two situations, (I) or (II), occurs.
(I) vj € K(vi,vi41), B = vig1vig2- - vj and one of the following holds:
(i) v; € K(vig1,vign) and Fo(vi,vira) # 6; or
(1) viy1 € K(vj—1,7v;) and v;vj_; € E(G).
(I1) v; € K(vj-y,v;), B = v;vi4y -+ vj—1 and one of the following holds:
(i) vj—1 € K(vi,viq1) and vig1v; € E(G); or
(ii) vi € K(vj2,v5-1) and Fe(vj-2,v5) # 6.
Proof. By the assumption that A € &, we have
v; € K(vi,vit1), (5-1)

or
v; € K(vj~1,v1'). (5-2)

First assume that (5-1) holds. Then it follows from Lemma 4.1 that E(A) =
E(B) U {vivi;1} (disjoint union), which means B = v;40i42---vj. Hence
by the assumption that B € .%,

vj € K(v,-.H , v,-+2), (5—3)
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or

Vig1 € K(v,-_l,vj). (5-4)

If (5-3) holds, then by (5-1), we can apply Lemma 2.6 with {v,, v, vi}
and {vg,v),v;} replaced by {vi,vit1,vj} and {viyy,vig2,v;}, to obtain
%(v,-, vip2) # ¢; if (5-4) holds, then by (5-1), we can apply Lemma 2.4 (ii)
with {va,vo,vi} and {v;,vis1,v;j} replaced by {viyy,vi,v;} and {vj, vy,
vi41}, to obtain vivj_; € E.(G). Thus (I) holds. By symmetry, we have
(II) in the case where (5-2) holds.

Proof of Proposition 2. We proceed by induction on |E(W)|. By
Lemma 3.1, |[E(W)| > 3. If |[E(W)| = 3, then |[E(W) N E(G)} 2 1 by
Lemma 3.1, and hence |E(W) N E.(G)| > 3 E(W)| + %, as desired. Thus
let

EW)| = w > 4, (5-5)

and assume that
|E(P) N E.(G)| > %|E(P)| + % for any P € F such that |E(P)| < w - 1.
(5-6)
Further by way of contradiction, suppose that
|B(W) n E(G)] < gIBO)] + 5. )

Without loss of generality, we may assume that W = vyv; -+ -v,,. Since
W € #, we may also assume that

vy € K(vg,v1), (5-8)

i.e.,
voty € Ene(G). (5-9)

We now prove the following claim:

Claim 5.1. Let Q be a member of F such that Q C W, |E(Q)| > 4 and
[E(W)| = |E(Q)| <3, and let B be an admissible partition of Q. Then

|‘@] =1,
and if we write % = {B}, we have
[E(@)| - |E(B)| =1,

and

Be#Z.
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Proof. Let |%| = t and & = {A),As,...,Ar}. We first prove the
following subclaim:

Subclaim.

(i) [E(As) N E(G)| > HE(An)| + 2 forall1 < h <t

() IB@) = Y 1B(An)| +1.

h=1
t

(iii) |E(Q)N Ec(G) =) |B(As) N Ee(G)].
h=1

Proof. Statements (ii) and (iii) follow immediately from Lemma 4.1.
We now prove (i). If A, is of TypeF, TypeS or TypeT, then the desired
conclusion follows immediately from Lemma 4.1 (ii), (iii) and (iv). Thus
we may assume that Ay, is of Type R. Then it follows from Lemma 4.1 that
Ay € F and E(A;) € E(Q), and hence |E(A)] < [E(Q)]| -1 < w—1.
Consequently, it follows from (5-6) that |E(A,) N Eo(G)| > §|E(As)| + £,
as desired.

Now since |E(Q)| > |E(W)| — 3 by assumption, it follows from Sub-
4

cleim (ii) that Y |E(Ay)| > |E(W)| - 4. By Subclaim (iii), we also have
h=1

t t
E(W) N EG)| 2 )" |E(44) N E(G)]. Since I |E(44) N E(G)} >
h=1 h=1

Z |E(A)]) + -t by Subclaim (i), we now obtain |E(W) N E.(G)| >
h=1
§(|E(W)| -4)+4t = §|E'(W)|+ 3(t-1). If t > 2, then |E(W)NE(G)| >
sIE(W)|+4%, whlch contradicts (5-7). Thus ¢ = 1. Hence by Subclaim (ii),

|E(Q)] — |E(A1)| = 1. (5-10)

It remains to show A4; € .#. Since |E(Q)| > 4 by assumption, |E(4;)] >
3 by (5-10), and hence A; cannot be of TypeS or T. Consequently, A4,
is of TypeR or F by Lemma 4.1. Suppose that A; is of TypeF. Then
|E(A1) N E¢(G)} > 2 and |E(A,)| = 5, and hence

|[E(W)| < |E(A1)|+4=9 (5-11)

by (5-10) and the assumptlon thaf IE(W)| < |E(@)| + 3. Consequently,
[E(W)NE(G)| > 22> §+% > HE(W)|+%, which contradicts (5-7). Thus
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Aj is of TypeR, and hence A4; € F, as desired.

Returning to the proof of the proposition, let £ be an admissible par-
tition of W € #. Applying Claim 5.1 with @ = W, we see from (5-5) that
|%| = 1. Write 2 = {B}. Then again by Claim 5.1,

[E(W)| - |E(B)| =1 (5-12)

and B € &. If |[E(B)| = 3, then |E(W)| = 4 by (5-12) and |E(W) N
E.(G)| 2 |E(B)N E.(G)| > 1 by Lemma 3.1, and hence |E(W)N E.(G)| >
$IE(W)| + §, which contradicts (5-7). Thus

|E(B)| 2 4. (5-13)

Let 2 be an admissible partition of B € #. By (5-12), (5-13) and
Claim 5.1, |2| = 1. Write 2 = {D}. Then again by Claim 5.1, D € .&
and |E(B)| ~ |[E(D)| = 1, and hence

|E(W)| - |E(D)| =2 (5-14)

by (5-12). Now by (5-8), it follows from Lemma 5.1 (I) that B = vjv2 - - - v,
and either

vy € K(vy,v7) (5-15)
and . '
'yC(UOaUZ) ?é ¢1 (5'16)
or
vy € K(vw—1,vy) (5-17)
and
Yovw-1 € E(G). (5-18)

We now divide the proof into two cases, according as (5-15) and (5-16)
hold, or (5-17) and (5-18) hold.

Case 1. (5-15) and (5-16) hold.
By (5-16), take

X3 € Fo(vo,v2). (5-19)
On the other hand, by (5-15), it follows from Lemma 5.1 (I) that D =

VU3 « - - Uy, and either
vw € K(vz,v3) (5-20)

and .
Fel(vi,v3) # ¢, (5-21)
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or
v2 € K(vy—1,vu) (5-22)

v1vw-1 € Ee(G). (5-23)

Case 1.1. (5-20) and (5-21) hold.

We can take X, € .5””2'(1)1,03), and hence in view of (5-19), (5-9) and
Lemma 1.1 (i), we get a cycle

!
C' = X1X20405 -+ - VyVygs - * V¥

such that either |E(C’)| = |E(C)| and |E(C')NE:(G)| > |E(C)NE(G)| or
|E(C")} > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively.

Case 1.2. (5-22) and (5-23) hold.
Note that (5-22) implies

V-1V € Ene(G). (5-24)

Now if |E(D)| = 3, then by (5-22), it follows from Lemma 3.2 (ii) that
w =5 and v3vs € E(G), and hence in view of (5-19), (5-23), (5-9), (5-24),
we obtain a cycle
C’ = lelv4v3v5vs e VUplo

such that either |E(C")| = |E(C)| and |E(C")N E,(G)| > |E(C)NE.(G)| or
|E(C")| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively. Thus |E(D)| > 4. Let J# be an admissible partition of
D € Z. By (5-14) and Claim 5.1, |#| = 1. Write ## = {H}. Then again
by Claim 5.1, H € & and |E(D)| -~ |E(H)| = 1, and hence

E(W)| - |E(H)| =3 (5-25)

by (5-14). Moreover by (5-22), it follows from Lemma 5.1 (II) that H =
VaU3 * ** Vg1, and either

V-1 € K(’Uz, ’03) (5°26)
and
V30w € E(G), (5-27)
or
V2 € K(vw-2avw—l) (5'28)
and e
Fe(vw—2,vw) # &. (5-29)
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Case 1.2.1. (5-26) and (5-27) hold.
In view of (5-19), (5-23), (5-9), we get a cycle

!
C' = X 10101 Vi—2Vp-3 " V4V3V Vw41 Vw42 " Unlo

such that either |E(C")| = |E(C)| and |E(C')N E(G)| > |E(C)NE(G)| or
|E(C')| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively.

Case 1.2.2. (5-28) and (5-29) hold.
Take R
X3 € yc('vw...z, 'Uw)- (5—30)

Claim 5.2. |E(H)| > 4.

Proof. By way of contradiction, suppose that |E(H)| = 3. Then by
(5-28), it follows from Lemma 3.2 (ii) that w = 6 and v3vs € E(G). I
(V(X1) = {vo,v2}) N(V(X3) — {v4,v6}) = ¢, then in view of (5-19), (5-23),
(5-30), {5-24), (5-9), we obtain a cycle

Cl = le]’(Js’():;Xg‘U‘['Ug e UnpYg

such that either |E(C")] = |E(C)| and |E(C")N E.(G)| > |E(C)NE(G)} or
|E(C")| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively. Thus (V(X1)~ {vo,v2})N(V(X3)—{vs,v6}) # ¢. Hence
by (5-19) and (5-30), it follows from Lemma 1.1 (i) that %(vo,m) # ¢.
Take X, € %(vo,v.;). Then in view of (5-23), we obtain a cycle

C' = X4'D V201 V5V6VT * -~ U Vg
3

such that |E(C")| > |E(C)|, which contradicts the maximality of the length
of C.

Returning to the proof of the proposition, let .# be an admissible par-
tition of H € #. Then by (5-25), Claim 5.2 and Claim 5.1, |.#}| = 1. Write
A = {M}. Then again by Claim 5.1, M € .#. Therefore by (5-28), it
follows from Lemma 5.1 (II) that

either v3vy—1 € Eo(G) or Fo(vuw—3,vw—1) # ¢.

Case 1.2.2.1. Fo(vy—3,V0-1) # ¢.

We can take X5 € .5,”:7(0,,,_3, Vy--1), and hence in view of (5-30), (5-24) and
Lemma 1.1 (ii), we get a cycle

!
C = VgV --- vw_4X5X3vw+;vw+2 s Uno
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such that either |E(C')| = |E(C')| and |E(C')NE(G)| > |E(C)NE(G)| or
|E(C")| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively.

Case 1.2.2.2. v3v4; € EC(G)
If (V(X1) = {vo,v2}) N (V(X3) = {vw—2,vw}) = ¢, then in view of (5-19),
(5-23), (5-30), (5-9), we get a cycle

! >
C' = Xiv10w—1 030405 - -- V-3 X3Vw41 Vw2 " Vnlo

such that either |[E(C')] = |E(C)| and |E(C")NE(G)| > |E(C)NE.(G)| or
|E(C’)| > |E(C')|, which contradicts (3-1) or the maximality of the length of
C, respectively. Thus (V(X;)—{vo, v} )NV (X3)~{vw-2,vu}) # ¢. Hence
by (5-19) and (5-30), it follows from Lemma 1.1 (i) that ¢ (vo, vw—2) # ¢.
Take X € %(’Uo,’vw_z). Then in view of (5-23), we obtain a cycle

! d
C' = Xgvy-30y—q - *U3Ve U Vyy—1 P Vy41 *°* Unlp

such that |E(C’)| > |E(C)|, which contradicts the maximality of the length
of C. This concludes the discussion for Case 1.

Case 2. (5-17) and (5-18) hold.
Note that (5-17) implies

Vw—1Vw € Enc(G)~ (5-31)

By (5-17), it also follows from Lemma 5.1 (II) that D = v;v, - - vy_y, and
either

Vw-1 € K(v1,v2) (5-32)
and
VaUy € EC(G)’ (5'33)
or
v € K(”w—% vw—l) (5~34)
and R
Fc(vw-2,Vw) # ¢. (5-35)

We now divide the proof into two subcases, according as (5-32) and (5-33)
hold, or (5-34) and (5-35) hold.

Case 2.1. (5-32) and (5-33) hold.
If |E(D)| = 3, then by (5-32), it follows from Lemma 3.2 (i) that w = 5 and
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v1v3 € E(G), and hence in view of (5-18), (5-33), (5-9), (5-31), we obtain
a cycle

C' = Vo403V VU506 VT * * * UV
such that {E(C’)| = |E(C)| and {E(C’) N E(G)| > |E(C) N E.(G)|, which
contradicts (3-1). Thus |E(D)| > 4. Let 5% be an admissible partition of
D € #. By (5-14) and Claim 5.1, | 3| = 1. Write ¢ = {H}. Then again
by Claim 5.1, H € % and |E(D)| — |E(H)| = 1, and hence

|[E(W)| - |E(H)| =3 (5-36)

by (5-14). Moreover by (5-32), it follows from Lemma 5.1 (I) that H =
UV2¥3 * - - Uy-1, and either

V-1 € K(vg,03) (5-37)
and R
yC(vlav:i) # ¢a (5'38)
or
v € K(vp—2,0w—1) (5-39)
and
v1Vy-2 € E(G). (5-40)

Case 2.1.1. (5-37) and (5-38) hold.
We can take X7 € #c(v1,v3), and hence in view of (5-18), (5-33), (5-9),
we get a cycle

, -
C' = 000y 1V 2Vy—3 * * V4 X 70200V} Vg2 - * - U

such that either |[E(C’)| = |E(C)| and |E(C")N E.(G)| > |E(C)NE(G)| or
[E(C")| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively.

Case 2.1.2. (5-39) and (5-40) hold.
If |E(H)| = 3, then by (5-39), it follows from Lemma 3.2 (ii) that w = 6
and vzvs € E(G), and hence in view of (5-18), (5-40), (5-33), (5-9), (5-31),

we obtain a cycle
C' = vgusv3v4v1 V2 V6T Vg - - - Up Vg
such that |E(C")] = |[E(C)| and |E(C’) N Eo(G)| > |E(C) N E(G)|, which

contradicts (3-1). Thus |[E(H)| > 4. Let .# be an admissible partition of
H € Z. By (5-36) and Claim 5.1, |.#| = 1. Write .# = {M}. Then again
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by Claim 5.1, M € &. Therefore by (5-39), it follows from Lemma 5.1 (II)
that

either v3v,,—1 € E,(G) or .?b(vw_g,vw_l) # ¢.

Case 2.1.2.1. Fo(vu—3,vu-1) # ¢

We can take X3 € %(vw_3,v,”_,), and hence in view of (5-40), (5-33),
(5-31), we get a cycle

C' = vg01Vy—2 X §Vi—4V—5 = * V3V2Vso Vi 1Vt 2 * * * UnT0
such that either |E(C")| = |E(C)| and |E(C")N Eo(G)| > |E(C)NE(G)] or

[E(C")| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively.

Case 2.1.2.2. v3vy- € E (G).
In view of (5-18), (5-40), (5-33), (5-31), we get a cycle

!
C = VoV V304 V5 * Uiy 3V ~2 V1 V2V Vst 1 Vg2 * * * Un V0

such that |E(C’)| = |E(C)| and |E(C") N E.(G)| > |E(C) N E.(G)|, which
contradicts (3-1).

Case 2.2. (5-34) and (5-35) hold.
By (5-35), take

Xo € F(Vw—2,Vu)- (5-41)

We now prove the following claim:
Claim 5.3. |E(D)| > 4.

Proof. By way of contradiction, suppose that |E(D)| = 3. Then by
(5-34), it follows from Lemma 3.2 (ii) that w = 5 and

vyvy € E(G). (6-42)
On the other hand, applying Lemma 2.5 with {v,,vg,v;} replaced by
{v4,v3,v1}, we see from (5-34) that vyv; € E(G). Hence if vov3 € E.(G),
then |E(W)N E(G)| > 2, which implies |E(W)NE(G)| > & = }H|E(W)|+
%, contradicting (5-7). Thus

vovs € E¢(G). (5-43)
Consequently in view of (5-42), (5-41), (5-31), (5-43), we obtain a cycle

C' = VoVi vgv4X9v3v7 et Unplp
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such that either |E(C’)| = |E(C)| and |E(C')N E:(G)| > |E(C)NE,(G)| or
|E(C')| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively.

Returning to the proof of the proposition, let 7 be an admissible par-
tition of D € #. Then by (5-14), Claim 5.3 and Claim 5.1, |#°| = 1. Write
2 = {H}. Then again by Claim 5.1, H € & and |E(D)| - |E(H)| = 1,
and hence

|E(W)| - |E(H)| =3 (5-44)

by (5-14). Moreover by (5-34), it follows from Lemma 5.1 (II) that H =
ViVg -+ * Uy—2, and either

V-2 € K(v1,07) (5-45)
and
VaUy~y € EC(G)7 (5-46)
or
v1 € K(vw-3,vu-2) (5-47)
and .
.S’C(vw_s,vw_,) 75 ¢ (5~48)

Case 2.2.1. (5-47) and (5-48) hold.

We can take X9 € Fc(vw-3,vw-1), and hence in view of (5-41), (5-31)
and Lemma 1.1 (ii), we get a cycle

!
C' =vovy--- vw—4X10X9'Uu;+1‘vw+2 *rUplp

such that cither |E(C")| = |E(C)| and |E(C")NEe(G)| > |E(C)NEo(G)| or
|E(C")| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively.

Case 2.2.2. (5-45) and (5-46) hold.
¥ |E(H)| = 3, then by (5-45), it follows from Lemma 3.2 (i) that w = 6
and v;v3 € E(G), and hence in view of (5-18), (5-46), (5-41), (5-9), (5-31),

we obtain a cycle
C' = vov5vgv1v3X9V7v3 *tUpVg
such that either | E(C")| = |E(C)| and |E(C")N E.(G)] > |E(C)NE.(G)| or

|E(C")| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively. Thus |E(H)| > 4. Let .# be an admissible partition
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of H € &. Then by (5-44) and Claim 5.1, |.#| = 1. Write .# = {M}.
Then again by Claim 5.1, M € &. Therefore by (5-45), it follows from
Lemma 5.1 (I) that

either .?b(v;,va) # ¢ or vivy—3 € E(G).

Case 2.2.2.1. vyvy-3 € E.(G).
In view of (5-46), (5-41), (5-31), we get a cycle

1
C' = v9v1Vp—_3Vw—4aVw—5 * * * V3V2Vw—1 X9Vuw4+1Vw+2 *** VnVo

such that either |[E(C’)| = |E(C)| and |E(C')NE(G)| > |E(C)NE(G)] or
|E(C")| > |E(C)], which contradicts (3-1) or the maximality of the length
of C, respectively.

Case 2.2.2.2. . (vy,v3) # ¢.
Take

X11 € Fe(vy,v3). (5-49)

I (V(X11) = {v1,u3}) N (V(Xp) = {vw=2,Vw}) = ¢, then in view of (5-18),
(5-46), (5-49), (5-41), (5-31), we get a cycle

!
C' = voUw—1v2 X 110405 * Vo3 XoVuw+1Vw+2 ** - UnVo

such that either |E(C")| = |E(C)| and |E(C')NE.(G)| > |E(C)NE.(G)| or
|E(C")| > |E(C)|, which contradicts (3-1) or the maximality of the length
of C, respectively. Thus (V(X1;) — {v1,v3}) N(V(Xy) — {v,,,_i, Vw}) # &
Hence by (5-49) and (5-41), it follows from Lemma 1.1 (i) that S (v, vy-2)

—_—

# ¢. Take X15 € Fc(v1,vw-2). Then in view of (5-46), we obtain a cycle
C’ = 1o X12Vuw—3Vw—4 * * * V302V 1 Vg1 *** Un¥o

such that |E(C’)| > |E(C)|, which contradicts the maximality of the length
of C.

This completes the proof of Proposition 2, and hence also the proof of
the Main Theorem.
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