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1. Introduction

A non-increasing sequence « = (d;,dz,...,d,) of nonnegative integers
is said to be graphic if it is the degree sequence of a simple graph on n
vertices, and such graph is called a realization of w. If each term of a
graphic sequence 7 is non-zero, then r is called positive graphic. For a
graphic sequence 7 = (d;,ds,...,dp), define o(r) = dy +d2 + -+ + dp.
For a given graph H, a graphic sequence 7 is potentially H graphic if
there exists a realization of = containing H as a subgraph. Gould et al.
[2] considered the following variation of the classical Turdn-type extremal
problems: determine the smallest even integer o(H,n) such that every n-
term positive graphic sequence # = (dy,dy,...,dn) with o(x) > o(H,n)
has a realization G containing H as a subgraph, and proved that ¢(Cy,n) =
3n — 1 for odd n and d(Cy4,n) = 3n — 2 for even n, where Cy is a cycle
of length 4. If H = K, this problem was considered by Erdéds et al.[1]
where they showed that ¢(K3,n) = 2n for n > 6 and conjectured that
0(Kyg1,n) = (r — 1)(2n — 7) + 2 for sufficiently large n. Gould et al. [2]
and Li and Song [5)] also independently proved that o(K4,n) = 4n — 4 for
n > 8, i.e., the conjecture holds for r = 3 and n > 8. Recently, Li et
al. [6,7) showed that the conjecture is holds for # = 4 and n > 10 and
for r > 5 and n > (3) + 3. In the end of [2], Gould et al. pointed out
that o(Cy,n) < 0(K4 — e,n) < 0(K4,n), and hence it would be nice to
see where in the range from 3n — 2 to 4n — 4, the value o(Ky — e, n) lies.
Recently, Lai [4] further determined the exact value of g(K4 — e, n), ie.,

n—1 :
Theorem 1.1. o(K,; —e,n) = { 2[ 2 ] ifn>4andn#6,
20 if n =6,
where [z] denotes the integer part of z.

The purpose of this paper is to determine the values of ¢(K 41 —e,n) for
r > 3and r+1 < n < 2r and give a lower bound of ¢(K+1 —€,n), and prove
that o(Ks —e,n) = 5n—6 for even n and n > 10 and o(K5 —e,n) = 5n -7
for odd n and n > 9. In order to prove our results, the following notations
and results are needed.

Let G = (V(G), E(G)) be a simple graph with vertex set V(G) =
{v1,v2,.-.,v,}. The degree of v; is denoted by d; for 1 < i < n. Then
7 = (d,da,...,dy) is the degree sequence of G, where dy, da, . . ., d, may be
not in non-increasing order. The degree sequence 7 = (di,dy, . . ., dn) is said
to be potentially A,y graphic(resp. A,41— e graphic) if it has a realization
H = (V(H),E(H)), where V(H) = {u1,u2,...,un} and the degree of u;
is d; for 1 < i < n, such that the subgraph induced by {u1,uz,...,4r41}
is K41 (resp. contains K,y — e as a subgraph).

Theorem 1.2. [2] If 7 = (d1,dq,...,dn) is a graphic sequence with a
realization G containing H as a subgraph, then there exists a realization
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G’ of 7 containing H as a subgraph so that the vertices of H have the
largest degrees of 7. In particular, A graphic sequence 7 is potentially
K41 graphic(resp. K, — e graphic) if and only if it is potentially A,
graphic(resp. A,41 ~ e graphic).

Theorem 1.3. [7,8] Let n > 2r + 2, and let 7 = (dy,dy,...,d,) be a
graphic sequence with dyy1 2 7. fn—-2>d; > - >d, =dpyy =+ =
dd,4+2 2 dgy43 > --+ > dy > 7 — 1, then 7 is potentially A, graphic.

Let # = (dy,dy,...,d,) be a non-increasing sequence of nonnegative
integers, and let

(dl - 11-"$dk—1 - l)dk+1 - 1)“')ddk+1 - 11ddk+2!"':dn)
= lfdek,

(di-1,...,da, = L,dg41,. ., dk—1,dks1,-..,dn)

if dy < k.

Denote m; = (dy,d,...,d,,_,), where d{ > dj > --- > d!_, is the rear-
rangement of the n —1 terms in 7. Then 7}, is called the residual sequence
obtained by laying off d, from 7.

Theorem 1.4. [3] Let # = (dy,da,...,d,) be a non-increasing se-
quence of nonnegative integers. Then 7 is graphic if and only if m is
graphic. Moreover, one realization G of = can be obtained from any one
realization G’ of 7}, by adding a new vertex v}, of degree di to G’ and join-

ing it to the vertices whose degrees are reduced by one in going from 7 to

'}
T

Theorem 1.5. [5] If n > 8, then o(Ky,n) = 4n — 4.

2. The value o(K,;; —e,n) for small n and a
lower bound of ¢(K,;1 —¢e,n)

Theorem 2.1. If r >3 andr+1<n < 2r —2, then
o Kry1—en)=(r~-1)2n—-r)+(n—r)(n—7r-1).

Proof. Take m = ((n — 1)2"~27",(n — 2)2"~2"+2)  where the symbol
z¥ stands for y consecutive terms z. It is easy to see that the only graph
realizing m is K, — (n — r + 1)K2, where the graph operation — which
is used in this paper only means deletion of edges and pK, denotes the
union of p complete graphs K;. Since K, — (n — r + 1)K, contains no
K41 — e as a subgraph, = is not potentially K,;; — e graphic. Hence
oK1 —en)2o(m+2=0r-1)2n-r)+(n-r)(n—-r-1).

Now suppose that # = (d;,d2,...,ds) is a positive graphic sequence
with o(7) 2 (r — 1)(2n - 7) + (n — 7)(n — r ~ 1). Moreover, suppose that
G is a realization of # and G° is the complementary graph of G . Then
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2|E(G)| = o(n) and 2|E(G°)] = n(n - 1) — o(r) < 2(n —r). Hence G¢ is a
graph on n vertices with at most n — r edges. Assume that By, B,,..., B,
are all nontrivial connected components of G¢, where z < n—r < 2r—2—r =
r — 2. Then |V(By)| < |E(B;)| + 1 fori = 1,...,z, and hence [V (G*) \
VUL, Bi)|=n-7 1|V Bl 2n-Y5, IE(B N—z>n-(n-1)—z =
r —z. Now let v;,vs,...,v,_z be r — = vertices of V(G") \ V(UL, B;), and
take uj,u € B; and u; € B; for i = 2,...,z. Then the subgraph induced
by {v1,vz,...,%—z,u,u1,uz,...,u;} in G" is K7, or K¢_, UK,. Hence
G contains K4 or K, —e as a subgraph. Thus 7 is potentially K,,, —e
graphic. In other words, o(K,41—€,n) < (r—1)(2n-r)+(n—r)(n—r—1).0
Theorem 2.2. If r > 3 and 2r — 1 < n < 2r, then

o(Kr41 —e€,n) = (r - 1)(2n -r)+(n-r-1)(n—-r-2).

Proof. If n = 2r—1, we consider 7 = (2r—2, (2r-4)?"—2). Clearly, 7 is
graphicand o(7) = (2r-2)(2r-3) = (r-1)(2n—r)+(n—r-1)(n-r—2)-2.
Assume that G is a realization of 7. Then the degree sequence of G° is
n¢ = (227-2,0). Hence G¢ = K, UG, where |V(G,)| = 2r-2 and G, is the
union of disjoint cycles. It is easy to see that the subgraph induced by any
r vertices in G contains at least two edges. Hence G contains no K4, —e
as a subgraph. Thus 7 is not potentially K+, — e graphic. In other words,
o(Krp1—e€,2r-1) 2 0(m)+2=(r-1)2n-r)+(n—r-1)(n—-1r-2).

If n = 2r, we consider = = ((2r — 3)?"). Then = is graphic and o(7) =
2r(2r-3) = (r-1)(2n—r)+(n-r—1)(n—-r-2)-2. If G is a realization of =,
then G° is the union of disjoint cycles. Since the subgraph induced by any
7+1 vertices in G° contains at least two edges, 7 is not potentially K., —e
graphic. So o(K;y1—e,2r) > o(m)+2 = (r-1)(2n—r)+(n-r-1)(n—r-2).

In order to show that (): o(Ks41 —e,n) < (r—1)2n-r)+(n—71—
1)(n—=7r-2) for 2r — 1 < n < 2r, we use induction on r(> 3). It follows
from Theorem 1.1 that (*) holds for r = 3. Now suppose that (*) holds
for r — 1(r > 4), and let = = (d1,ds,...,d,) be a positive graphic sequence
with o(7) > (r — 1)(2n —r) + (n — r = 1)(n — 7 — 2). It is enough to prove
that m is potentially K, —e graphic. We consider the following two cases:

Case 1. n = 2r — 1. Then 7 = (d,ds,...,d2,—1) satisfies o(7) >
r-1@n-r)+(n-r—-1)(n-r-2)=(2r —2)(2r — 3) + 2, and hence
2r—2>dy >2r—3. Ifdypy = 1, then v = (2r - 2,(2r — 3)%"3,1). It is
easy to see that the unique realization of 7 contains K»,_o as a subgraph,
and clearly contains K., —e as a subgraph. Hence 7 is potentially K, —e
graphic. Now assume that da,—; > 2, and let 7} = (d},d5,...,d),._5) be
the residual sequence obtained by laying off d; from w. Then =} is a positive
graphic sequence and o(n}) = o(7) —2d; > (2r-2)(2r—-3)+2-2(2r-2) =
o(K(r-1)+1 — €,2(r — 1)). By induction hypothesis and Theorem 1.2, 7]
is potentially A, — e graphic. If dj =n-1=2r -2, 0ord; = 2r — 3 and
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there exists an integer ¢, r + 1 < ¢t < d; + 1 such that d; > dy4;, then
d2 —1,...,drq1 — 1 are the r largest terms in #}. Thus 7 is potentially
A,11 — e graphic. So we may assume that

2r-=3=d; 2dy >+ 2dpyy = =dpr.

Kfdryy <2r—=35,theno(m) < (2r-3)r+(2r=5)(r-1)=4r2 - 10r+5 <
(2r = 2)(2r — 3) + 2 < o(w), a contradiction. If d.q; = 2r — 3, then
o(m) = (2r — 1)(2r — 3) is odd, and = is not graphic, which is impossible.
Hence dry1 = 2r — 4, and so # = ((2r — 3)%,(2r — 4)*~1~*), where ¢ is
evenand 2<t<r. Ift =2, then o(n) =2(2r - 3)+ (2r —4)(2r - 3) =
(2r — 2)(2r — 3) < o(n), a contradiction. Assume 4 < t < r, and let
G=Ky_; — ((% — 1)K, U Py,_;), where Py,_; is a path of length 2r — ¢.
Clearly, G is a realization of = and contains K, — e as a subgraph. Hence
w is potentially K., — e graphic. In other words, o(K,+1 —e,n) = (r -
D2n-r)+(n—r-1)(n-r=-2)forn=2r -1,

Case 2. n = 2r. Then 7 = (d;,dy, ..., dy,) satisfies o(n) > (r—1)(2n—
r+(n-r—=1)(n-r-2)=2r(2r - 3)+2. Let n}, = (d},ds,...,d5_,)
be the residual sequence obtained by laying off dy, from 7. If dg, < 2r — 3,
then o(m3,) = o(7) — 2da, > 2r(2r — 3) +2 - 2(2r - 3) = (2r — 2)(2r -
3)+2 = o(Kr41 — e,2r — 1). By Case 1, 7}, is potentially K4 — e
graphic, and hence = is potentially K.y, — e graphic. If da, > 2r — 2,
then 7 = ((2r — 1), (2r — 2)27%), where t is even. It is easy to see that
K3 — (r — £)K is the only realization of 7, and contains K, —e as a
subgraph. Hence 7 is also potentially K., — e graphic. This shows that
o(Key1—en)=(r-1)2n-r)+(n-r-1)(n-r-2)forn=2r. O

Now we give a lower bound of o(K,4+1 — e,n).

Theorem 2.3. If r >2and n > r +1, then

-1)2n—-r)+2—-(n—-7) ifn—riseven,
"(K'“‘e’“)z{E:—1)(2Z-:)+1—(2-:) itn_risodd

Proof. Let

G = Kr2+ (5 + 1)K, if n — r is even,
T\ K2+ (K UK))  ifn—risodd,

where the join G; + G, of the graphs G and G, is the graph obtained from
G1 U G2 by joining each vertex of G; to each vertex of Go. Then

_ [ ((n=1)2,(r —1)"""*2) if n — r is even,
T=1 ((n=1)2,(r —1)""+,r —2) ifn—risodd,

is the degree sequence of G, and G is unique realization of 7. Since 7 only
contains r — 2 terms n— 1(> r), G does not contain K, —e as a subgraph.
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Hence 7 is not potentially K, — e graphic. Thus

o(Kry1—€n) > a(m)+2
r-D2n-7r)+2-(n-7) ifn—riseven,
(r-1)@2n-r)+1-(n—-r) ifn-—risodd.

§]

3. The value o(K5 —e,n)

In order to determine the value (K5 — e,n), we need the following
theorem.

Theorem 3.1. Letn > 2r+2, and let 7 = (dy,d;, ..., d,) be a graphic
sequence with d,, > r — 1.

(1) ¥ dr41 > r, then 7 is potentially A,,; graphic.

(2) Ifd,—; >r, then 7 is potentially A,;) — e graphic.

Proof. (1) We use induction on r. The conclusion is evident for
r = 1. Now assume that the conclusion holds for r — 1, » > 2. We
will prove that the conclusion holds for r. Let 7 = (d},d3,...,d,_;) be
the residual sequence obtained by laying off d; from #. Then =} satisfies
n—12>2r+1 2> 2(r-1)+2, er—1)+1 >r-landd,_, > r-2. Byinduction
hypothesis, 7] is potentially A, graphic. If d) = n — 1, or there exists an
integer t, r +1 <t < d; + 1 such that d; > dy4), thendy — 1,...,dry; — 1
are the r largest terms in 7]. Thus = is potentially A,4; graphic. So we
may assume that

n—22d > 2dr 2dpyy = =dgy42 2 day43 2 > dy.

If dr > dr41, then by laying off d,4; from m, the residual sequence 7}, =
(d1,d3,...,d_,) satisfies n =1 > 2(r - 1) +2, d,_;),;, 27 —1and
d,_, 2 v — 2. By induction hypothesis, «].,, is potentially A, graphic.
Since d; — 1,...,d; — 1 are the r largest terms in m,,;, 7 is potentially
Ar41 graphic. So we may further assume that

n—-2>d 2 2dr=dryy1 =+ =dg,42 2 dg, 43 2 - 2 dp.

By Theorem 1.3, 7 is potentially A,; graphic.

(2) If dpy1 > 7, then by (1), 7 is potentially A, graphic, and so 7 is
potentially A4 —e graphic. If dryy <7—1,thendry; =+ =dp=7-1.
Let ., = (d},d3,...,d,_;) be the residual sequence obtained by laying
off dryy from m. Then m,, satisfies n —1 > 2(r — 1) + 2, d(,_;y,; 2
r—1landd,_, 2 r -2 By (1), m,, is potentially A, graphic. Since
{di—1,d2-1,...,dr—1 =1} C {d},d),...,d.}, 7 is potentially A,y — e
graphic. O

156



It follows from Theorems 2.1 and 2.2 that (K5 — e,5) = 18, o(K;5 —
e,6) = 26, 0(Ks —e,7) = 32 and o(K5 — e,8) = 42. Now we compute the
value o(Ks —e,9).

Theorem 3.2. o(K; —e,9) = 38.

Proof. As Theorem 2.3 shows that o(K5—e,9) > (4~1)(2x9—4)+1—~
(9—4) = 38, we only need to prove that, if 7 = (d;,ds, ..., ds) is a positive
graphic sequence with o(x) > 38, then 7 is potentially K5 — e graphic.
Clearly, d; > 5. For any integer k, 1 < k < 9, let n}, = (d},d},...,d})
be the residual sequence obtained by laying off d from x. Then o(m}) =
o(m) —2d, > 38 — 2 x 8 = 22, and so 7}, has at least 6 non-zero terms. By
Theorem 1.1, we have 0(K;—e,6) = 0(K4—e,7) = 20 and o (K —e, 8) = 22.
Hence o(m;) > max{o(K4 — ¢,6),0(Ks — €,7),0(K4 — ¢,8)}. Thus by
Theorem 1.2, 7}, is potentially A4 — e graphic. If d; = 8, or there exists an
integert, 5 <t < d)+1such thatd; > diy1,thendy; ~1,d3—1,dy—1,ds—1
are the four largest terms in 7}. Hence = is potentially A5 — e graphic. If
dy > ds, then dy —1,dy — 1,d3 — 1,d4 — 1 are the four largest terms in 7.
Thus 7 is also potentially As — e graphic. So we may assume that

12d12dy>d3 >dy=+=dy 42 >da43> 2 dy.

We consider the following two cases:

Case 1. dy=7. Thendy =---=dyg >3. Ifdg =--- =dy = 3, then
7 = (72,6,3%), and hence n} = (62,5,3%). It follows from Theorem 3.1(1)
that 7} is potentially A4 graphic. Thus 7 is potentially As — e graphic.
Ifdy = --- = dy > 4, then by Theorem 3.1(1), the residual sequence
m = (d},d3,...,dg) is potentially A4 graphic. Since {d2—1,d3—1,d4—1} C
{d},d3,d3,d,}, 7 is potentially K5 — e graphic.

Case 2. d; <6. Thendy =--- = di,+2 > 4. If d3 > dg4, then the
residual sequence 7 = (d},ds,...,dg) is a positive graphic sequence and
o(my) = o(m) — 2dy > 38 — 2 x 5 = 28 = 0(K4,8). By Theorem 1.5, =}
is potentially A4 graphic. Since djy — 1,d; — 1,d3 — 1 are the three largest
terms in mj, 7 is potentially K5 — e graphic. So we may further assume
that

6>2di>dy>2dy=dg=---=dy 42 >dg 43> > ds.
The following two subcases are considered:
Subcase 2.1. d; =6. Thends =--- =dg > 4. If dg > dy > 2, then
the residual sequence m} = (d,ds,...,dy) satisfies df > 2 and dj > 3. By

Theorem 3.1(1), 7} is potentially A4 graphic. Since {dy—1,d3—1,d4—1} C
{d},d5,d5,d;}, 7 is potentially K5 — e graphic. If dg > dyp = 1, then
m = (6,57,1). If dg = dg, then 7 is one of (62,47), (6,48), (6°) and (6, 5%).
It is easy to check that the above five sequences are all potentially K5 — e
graphic.
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Subcase 2.2. d; =5. Thendy=---=dy > 4. Ifd; > ds > dy > 2,
then by Theorem 3.1(1), the residual sequence 7} = (d},dj,...,d}) is po-
tentially A4 graphic. It follows from {d, - 1,d3—1,d,—1} C {d},d}, d}, d}}
that 7 is potentially K5 —e graphic. If dy > ds > dy = 1, then 7 = (57,4,1)
or (57,2,1). If d7 = dg, then 7 is one of (52,47), (58,4) and (58, 2). It is easy
to verify that the above five sequences are all potentially K5 — e graphic.O

Theorem 3.3. If n > 9, then o(K;5—e,n) = { on -6 ifnis even,

n—7 ifnisodd.
Proof. By Theorem 2.3,

5n—6 if nis even,
a(Ks—-e,n)Z{ 5n—7 if nis odd.

In order to prove

5n—6 if n is even,
U(K5‘e’")5{ 5n -7 if nisodd,

it is enough to prove that, if # = (dy,ds,...,d,) is a positive graphic
sequence with _
5n -6 if n is even,

o(m) 2 { on—7 ifnis odd,
then 7 is potentially K5 — e graphic. Use induction on n. By Theorem 3.2,
the conclusion holds for n = 9. Now suppose that n > 10. If d,, < 2, then
the residual sequence ), = (d},d,...,d}_,) is a positive graphic sequence
and o(m) = o(n) —2d, 250 —T7-2%x2=5n~-11=5n—-1)-6 >
o(Ks—e,n—1). By induction hypothesis, 7, is potentially K5 —e graphic,
and hence so is 7. If d, > 3, then by d3 > 4 and Theorem 3.1(2), = is
potentially As — e graphic. So the conclusion follows. O

4. Conclusion

It is easy to see that

n+1 ifnisodd,
U(KS‘e’")_{ n+2 ifniseven.

In other words, if r = 2, then the lower bound (1) for r = 2 just is the exact
value o(K3 — e,n). By Theorems 1.1 and 3.3, the equality in (1) holds for
r=3and n > 7, and for r =4 and n > 9. So we feel that the equality in

(1) just is the exact value o(K,+1 — e,n) for sufficiently large n.
Conjecture: For sufficiently large n,

_fr-D2n-7r)+2-(n-r) ifn—riseven,
U(K"H_e’n)_{ r-12n-r)+1-(n-7) ifn—risodd.

158



References

[1]

(2]

[3]

[4]
[5]
(6]
(7

(8]

P. Erdés, M. S. Jacobson and J. Lehel, Graphs realizing the same
degree sequences and their respective clique numbers, in: Y. Alavi et
al., (Eds.), Graph Theory, Combinatorics and Applications, Vol. 1,
John Wiley & Sons, New York, 1991, pp. 439-449.

R. J. Gould, M. S. Jacobson and J. Lehel, Potentially G-graphic degree

sequences, in: Y. Alavi et al., (Eds.), Combinatorics, Graph Theory,
and Algorithms, Vol. 1, New Issues Press, Kalamazoo Michigan, 1999,

pp. 387—-400.
D. J. Kleitman, D. L. Wang, Algorithm for constructing graphs and

digraphs with given valences and factors, Discrete Math., 6 (1973),

Eﬁ?ﬁui Lai, A note on potentially K4 — e graphical sequences, The
Australasian Journal of Combinatorics, 24 (2001), 123-127.
Jiongsheng Li and Zixia Song, An extremal problem on the potentially
Py-graphic sequence, Discrete Math., 212 (2000), 223-231.
Jiongsheng Li and Zixia Song, The smallest degree sum that yields
potentially P-graphic sequences, J. Graph Theory, 29 (1998), 63-72.
Jiongsheng Li, Zixia Song and Rong Luo, The Erdés-Jacobson-Lehel
conjecture on potentially P.-graphic sequences is true, Science in
China, Ser. A, 41(1998), 510-520.

Rong Luo, Extremal graph theory and degree sequences(in Chi-
nese), Master Thesis, University of Science and Technology of China,
September, 1998, 8-10.

159



