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Abstract

Multi-loop digraphs are widely studied mainly because of their
symmetric properties and their applications to loop networks. A
multi-loop digraph, G = G(N;s1,...,8a) with 1 < 51 < 59 < ... <
sa £ N -1 and ged(N, 51, ...,5a) = 1, has set of vertices V = Zn
and adjacencies given by v — v+ simod N,i=1,.., A,

For every fixed IV, an usual extremal problem is to find the min-
imum value

.....

where D(N; s1, ..., sa) is the diameter of G. A closely related problem
is to find the maximum number of vertices for a fixed value of the
diameter.

For A = 2, all optimal families have been found by using a geo-
metrical approach. For A = 3, only some dense families are known.

In this work a new dense family is given for A = 3 using a ge-
ometrical approach. This technique was already adopted in several
papers for A = 2 (see for instance {5, 7]). This family improves the
dense families recently found by several authors.
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1 Introduction

Multi-loop networks have been widely studied in the last years because
of their relevance to the design of some interconnection or communication
computer networks. Multi-loop digraphs model such networks, and are
usually called circulant because their adjacency matrices are circulant.

Definition 1 A multi-loop digraph, G = G(N;s1,...,sa) with 1 < 51 <
s2 < ... < 8A < N —1 and gcd(N, s1,...,5A) = 1, has the set of vertices
V = Zn and the set of adjacencies A = {(v,v +s;mod N)| v € V,i =
1,...,A}.

The integers sy,...,5a are usually called the steps of G. These digraphs
are regular of in-degree and out-degree A and vertex symmetric. They are
strongly connected iff gcd(N, s1,...,sa) = 1. For a survey about multi-loop
networks and multi-loop digraphs see [4], for the case A = 2 see [11].

Double-loop (case A = 2) and triple-loop digraphs (case A = 3) are the
most studied cases of multi-loop digraphs. The minimization of the diame-
ter in the digraph, denoted by D(NV; sy, ..., 5a), corresponds to the problem
of minimizing the message transmission delay of the related network. This
problem have been studied using several techniques: from number theoret-
ical reasonings to geometrical approaches. In this work we use the latter
method which is presented in the next section. For fixed N and A, the
optimal diameter value which can be attained is denoted by Da(NV), that
is
DaA(N)=  min z D(N;s1,...,8A).

S1,..,5SA€LN

For A = 2 a sharp lower bound, [b(V), is known for this optimal value
Da(N) > Ib(N) = [\/3N] —2.

For A = 3 no analog to Ib(N) is known, however the relation D3(N) =
O(¥N) (or equivalently N3(D) = ©(D?), where N3(D) is the maximum
number of vertices reachable by a triple-loop digraph with fixed diameter
D) holds.

1.1 Known dense families of triple-loop digraphs

From now on we denote a triple-loop digraph by TLN (the ‘N’ stands for
network). Because of the poor knowledge of the integral function D3(N),
families with good N/D3 ratio are known as dense ones. Many works
have been published about dense families of TLN using several different
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methods. These techniques range from geometrical approaches [7, 10, 2, 1]
to asymptotic bases [3].

Some known families follow, ordered from lower to higher asymptotic den-
sity:
¢ Hsu & Jia in [10]:

N(D) = 1—6D3 + O(D?*) ~ 0.062D3 + O(D?).

Aguilé, Fiol & Garcia in [2]:
N(D) = —D3 + O(D?) = 0.074D% + O(D?).

e Chen & Gu in [3]:

N(D) = 65—4D3 +0(D?) ~ 0.078D% + O(D?).

Aguilé in [1):

860

ND) =33

— D3 + O(D?) =~ 0.0807D% + O(D?).

Fiduccia, Forcade & Zito in [6]:

100

N(D) = {1g5

——(D + 3)® = 0.0836 D3 + O(D?).

An explicit expression of D3(N) (or equivalently N3(D)) resists to be
known, as D3(N) does too. However some bounds on N3(D) have been
proposed by several authors using geometrical arguments. In [10], Hsu &
Jia gave the following lower bound for N3(D)

N3(D) > 11—6133 + §D2 + O(D) as D — .

Recently, Fiduccia, Forcade & Zito in [6] gave the following upper bound
N3(D) < %(D +3)® = 0.12D° + O(D?). (1)

The densest known family is proposed in the same work and has an asymp-
totic density N (D) » 0.0836D% + O(D?). This fact seems to point out two
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possibilities: the bound given in (1) is too optimistic, or the techniques
used to find dense TLN are not powerful enough.

Computational observations suggest a complex behaviour of D3(N) ver-
sus N. In fact, the same was pointed out for D,(N) in several works
on double-loop networks ([7], [4]) and no closed expression is known for
Dy(N). For instance, there are integral values of N, say Ny, having a
neighbourhood NV € N where for all N € N — {Ng} the value D3(N) is a
unit more (or a unit less) than D3(Np). Take for instance D3(623) = 18
and D3(622) = D3(624) = 17 for one unit less, and D3(638) = 17 and
D3(637) = D3(639) = 18 for one unit more.

2 Geometrical technique

The main idea of the geometrical approach is to link a basic 3D tile to a
triple-loop network. This tile contains all the metric information of the
digraph, in fact the diameter of the tile can be computed from its physical
dimensions and upperbounds the diameter of its related digraph. We will
comment this fact later using an example.

2.1 Obtaining a related tile from a given TLN

Consider the three dimensional space divided into unit cubes. Given a TLN
G = G(N; sy, 82, 83), each of its vertices is assigned to one unit cube. The
vertex as; + bsy + cs3 (mod N) in G, a,b,¢c € N, is assigned to the unit
cube centered at the point (a,b,c). Then all unit cubes in Z3 are labelled
with an element of Zy. These labels are periodically repeated and a basic
3D tile which periodically tessellates the space can be derived from this
representation as we will describe later.

Consider now the tile containing the unit cube (0,0,0) which is labelled
with ‘0. Any other unit cube (a,b,c) belonging to this tile has distance
value a + b + ¢ from the vertex zero (0,0,0). The diameter of this basic
tile is defined as the distance of the farthest vertex from the zero. This
diameter can be computed from the dimensions of the tile.

Given a TLN we can link several 3D tiles to it, however we are interested
in those tiles with minimum diameter which are also known as Minimum
Distance Diagrams, or MDD for short. The following algorithm searches
for one of these MDD tiles:
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e Assign one vertex of V' = Zy to every unit cube with the following the
rule: from a cube labelled with i € V', centered at the point (z,y, ),
we label by

t + s; (mod N) the unit cube centered at (z + 1,y, z),
t 4+ s2 (mod N) the unit cube centered at (z,y + 1, 2),
i+ s3 (mod N) the unit cube centered at (x,y,z + 1).

Now we have labelled each unit cube of the space Z3 with one label
in V. The labels repeat periodically in the space.

e Let S be the set of labels in V. Choose a unit cube with label (0,0, 0)
(this cube will be called the zere cube), mark it and set S = S — {0}.
Mark the other cubes, one per label in S, closed to the zero cube and
extract the corresponding label from S per each marked cube. This
marking process can be done by considering those labelled cubes that
minimize the norm ||(z,y,2)|| = |z| + |y| -+ |z| (only those placed in
the same direction and positive sense of the vectors e; = (1,0,0),
es = (0,1,0), and e; = (0,0,1)). This minimization guarantees that
the resulting tile will be a MDD also.

o We stop when S = @ and all the NV labels of V' have been assigned.
Then all marked cubes form a 3D-shaped tile which tessellates the
space.

Figure 1: A MDD tile of volume 4 and its related tessellation

As an example, consider the TLN G(4;1,2,3). This algorithm gives the ba-
sic 3D tile depicted in Figure 1. Note that the diameter of this tile is D = 1,
the same value as the diameter of the digraph G(4; 1,2, 3) because it is also
a MDD. However there are other tessellating tiles with different diameter
for the same distribution of labels in the space (first step of the above al-
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gorithm). For instance we have another tile with the same distribution of
labels and diameter D = 2 in Figure 2.

H-4, "De 7

Figure 2: Another tile related to G(4;1, 2, 3) which is not a MDD

Now we can link a basic 3D tile to a TLN, however we also want to reverse
this process. This reversion will allow us to study dense triple loop networks
through dense 3D tiles. We want to obtain a TLN from a given basic 3D tile
which tessellates the space. For this reason we must introduce a digraph
which generalizes the triple loop network.

2.2 Triple commutative-step digraphs

A TLN G(N; s1, 82, 83) can be seen as the Cayley digraph of the cyclic group
Z n generated by {si1, s2,s3}. This point of view of triple loop networks will
allow us to generalize it.

Let M be an integral 3 x 3 matrix with |det(M)| = N. Let us consider the
(column) vectors u,v € Z2 and the following equivalence relation

u~veoINEZu—v=MA\

Let be Z3,; = Z3/MZ? the quotient group of the 3-vectors modulo the above
relation. Note that the grid MZ3 = {MX: X € Z3} is a normal subgroup
of Z3. This group has | det M| elements and generalizes the usual concept
of congruence modulo N over Z3 as

u=v (mod M)& u=v+ M) for some \ € Z3.
See [8, 9] for more details.
Definition 2 A triple commutative-step digraph G(M) is the Cayley di-

graph of the additive group Z3, with generator set S = {e; = (1,0,0)7,es =
(01 I,O)T,63 = (0) Oa l)T}
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We can obtain a triple commutative-step digraph from a tessellation of the
space. This technique has been used before in several works dealing with
double and triple-loop networks. For instance see [7] for the 2D case and
(2] for the 3D case. We remember this process using the basic 3D tile of
Figure 1.

Consider the tessellation defined by the tile depicted in Figure 1. From the
dimensions of this tile, we can compute three independent vectors defining
the distribution of tiles in this tessellation. In this case we can take for
instance (1,0,1)7, (2,1,0)7 and (0,2,0)T. Then we define the matrix
M as the integral matrix with entries given by the above three (column)

1 20
vectors, that is M = ( 0 1 2 ) . So we can define the Cayley digraph
100

Cay(Z3,,S).

For any given tessellating tile T with related matrix M, let us denote by
D(Z3,, S) the diameter of Cay(Z3,,S) and let Dr be the diameter of T.
Then we always have D(Z3,,5) < Dr and the identity is given when the
tile T is also a MDD.

2.3 Obtaining a TLN from a given 3D tile

In the above section we have seen how to obtain a triple commutative-step
digraph from a given tile T which periodically tessellates the space. Now we
will see how to obtain a TLN from a given triple commutative-step digraph.
In fact, we will use a digraph isomorphism through the Smith normal form
of the 3 x 3 integral matrix, M, which defines the triple commutative-step
digraph G(M).

This isomorphism can be defined only when the group Z3, (defined in
Section 2.2) is cyclic. Although a proof of this fact can be found in [8], we
now introduce a breve explanation about this isomorphism and conditions
on the matrix M to assure his existence.

The Smith Normal Form, S(M), of M is a matrix S(M) = UMV, where
U and V are unimodular integral matrices generated from the necessary
elemental transformations to obtain S(M) from M. The entries of S(M)
are given by S(M) = diag(d,,d2,d3) with di|d; and dp|d;. These three
elementary divisors can be obtained from the integral entries of M by d;
ged(integral entries of M), didy = ged(2 x 2 minors of M) and didads
| det M|.

o

We have Z3, = Z3,, . and the cyclic case, the one we are interested in, is
M S(M) Y
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given iff

dy =dy = 1. (2)
Then, in this case, we have Z},,) = Z where N = | det M| = |det S(M)],
and the above mentioned isomorphism ¢ is given by

p:23 — Zn
u — Usu

where Us is the third row of the integral matrix U.

Note that {p(e1),p(e2),p(e3)} is a generator set of Z y and so the wanted
TLN is defined by the steps s; = ¢(ex) (mod N) for k = 1,2,3. That is,
in terms of digraph isomorphisms, G(| det M|; p(e1), v(e2), p(es)) = G(M).
Note that we also have D(| det M|; p(e1), p(e2), p(e3)) < Dr.

3 A new dense family

We will use the geometrical approach from the above section to find a new
dense family of TLN which improves all known dense families. Consider
the basic 3D tile depicted in Figure 3 with n and m being positive integral
values such that n < m < 3n < 2m. Let us denote by T(m,n) such a tile,
N(m,n) its related volume and D(m,n) its related diameter.

T(m,n) is based on the tile T'(2,1) of N(2,1) = 84 unit cubes and diameter
D(2,1) = 7.A portion of its related tessellation can be viewed in Figure 4.

Proposition 1 We have

D(m,n) = max{m+8n—3,3m +4n—3,5m — 3},
N(m,n) = m3+12m?n+ 14mn.

Proof:

We must compute the distance from the zero cube to the farthest unit
cube/s. These possible farthest unit cube/s are marked with the bold letters
A, B,...,M in Figure 3. Then we have:

d{(0,A) =d(0,B) =m + 8n — 3,
d(0,C) = ... = d(0,K) = 3m + 4n — 3,
d(0,L) = d(0,M) = 5m — 3.

So the diameter is the maximum of these three values. The computation
of the volume is obtained directly from Figure 3.00
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Figure 3: Basic 3D tile T'(m,n)

A possible related 3 x 3 integral matrix, as it is described in Section 2, is

n m —2m - 2n
M(m,n)=| 3n+m m m+ 2n
2n —m m+n

Note that det M (m,n) = N(m,n).
Theorem 1 Let G(N(t);s1(t), s2(t), s3(t)) be the family of TLN given by

N(t) = 2268t + 666t> + 54t + 1,

51(t) = —7938t% —2142t> — 144t — 2 (mod N(t)),
s2(t) = 54t%(63t+8) (mod N(t)),

s3(t) = —4536t° —576t2 +1 (mod N(t)).

Let D(t) = D(N(t);s1(¢), s2(t), s3(t)), then D(t) < 30t + 2 and its related
assimptotic density is 0.084 at least.

Proof:
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Figure 4: Part of the 7'(2, 1)-tessellation

Let us consider the tile T'(6t + 1, 3t), with related integral matrix

3t Gt =18 &—2
M@6t+1,3t)=| 15t+1 6t+1 12¢+1
Gt =6t—1 9141
This matrix fullfills conditions (2): From ged(3t,6¢ + 1) = ged(3t,1) = 1,
we have d; = 1. The 9 2 x 2 minors of M (6t + 1,3t) are 126t + 33t + 2,

63t* + 18t + 1, —126t> — 27t — 1, —54¢2 — 15t — 1, 13562 + 15¢, —54t2 — Ot,
180¢% + 48t + 3, 306t> + 51t + 2 and —72t2 — 18¢ — 1. From

ged(126t% + 33t + 2,63t + 18t + 1, —126t2 — 27¢ — 1,135t + 15t,
—72t* - 18t - 1) =
= ged(6t + 1, —9t%, —126¢% — 27t — 1,135¢% + 15¢, —72t> — 18t — 1) =
= ged(6t + 1, —9¢2,9¢% — 12t — 1,135t + 15¢, —72t> — 18t — 1) =
= ged(6t + 1, —9¢%, —12t — 1,135¢% + 15t, —72t> — 18t — 1) =
= ged(6t + 1, —9¢%,1,135¢% + 15¢, —72t> — 18t — 1) = 1,

we have dy = 1.

So we can define the isomorphism ¢ of Section 2.3 and G(M (6 + 1, 3t)) is
isomorphic to some TLN. By Proposition 1 this TLN has N(6¢ + 1,3t) =
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2268t3 + 666t2 + 54¢ + 1 vertices and its diameter is at most

D(6t + 1,3t) = max{30t — 2, 30¢t, 30t + 2} = 30t + 2.

The corresponding Smith normal form of M (6t + 1,3t) is
S(t) = diag(1,1, N(6t + 1, 3t))
and its related unimodular matrices V (¢) and U(t) are given by

1 13+78t—378t> 4+ 50t+30t%—756¢3

0 —-5—63t -2 -31t-126¢
0 -3 -6t—-1
and
-3 1 -1
1+7¢ -3t 4t

—2142¢% — 144t — 2 — 79384% 54t2(63t+8) 1-—4536¢° — 57612

respectively. So, the steps are the stated ones.
Finally, from N(t) = 2268t% + O(t?) and D(t) < 30t + 2, we have

N(t) _ 2268t2 + O(t?) _ 2268 t3
D@3 = (30t+2)3 ~ 303 (t+2/30)3

+0()

which tends to 2288 = 0.084 when ¢ — 00.00

This family has better density than the one given by Fiduccia, Forcade and
Zito in [6], however this density is far from the bound (1).
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