Some new bounds and exact results on the
independence number of Cartesian product
graphs

Sandi Klavzar *
Department of Mathematics and Computer Science
PeF, University of Maribor
Koroska 160, SI-2000 Maribor, Slovenia
email: sandi.klavzar@uni-mb.si

Abstract

The independence number of Cartesian product graphs is consid-
ered. An upper bound is presented that covers all previously known
upper bounds. A construction is described that produces a maximal
independent set of a Cartesian product graph and turns out to be
a reasonably good lower bound for the independence number. The
construction defines an invariant of Cartesian product graphs that
is compared with its independence number. Several exact indepen-
dence numbers of products of bipartite graphs are also obtained.

1 Introduction

The independence number a(G) of a graph G is one of the most important
graph invariants, and, as usual, the problem of determining it is NP-hard.
On the other hand, Sabidussi-Vizing’s theorem [15, 16] asserts that every
connected graph has a unique prime factor decomposition with respect to
the Cartesian product. Moreover, the decomposition can be found in almost
linear time [2], cf. also [6, 17]; for more information on the decomposition
and related algorithms see [10]. It is therefore reasonable to investigate the
independence number of Cartesian product graphs as a function of their
factors. The first results in this direction are due to Vizing [16], while
recently several studies on the topic appeared (4, 7, 13, 14], see also [5).
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(For related and conceptually similar studies of the independence number
of the direct product of graphs see [11, 12].) The independence number of
Cartesian product graphs is also the key notion in the investigations of the
so-called chromatic difference sequences of graphs [1, 18, 19] as well as it is
the key notion for the ultimate independence ratio of a graph; for a graph
G the latter is defined as limj—,00 @(G*)/|V(G)|, cf. [8, 9, 20]. For instance,
the independence number of powers of the Petersen graph are computed in
[1].

In the next section a conceptually simple upper bound on the indepen-
dence number of the Cartesian product is given that covers all previously
known upper bounds. Four such upper bounds are obtained as corollar-
ies. We follow with a section containing a construction, called a diagonal
procedure, that always produces a maximal independent set of a Cartesian
product graph. Exact independence numbers of the Cartesian product of a
large class of caterpillars are also obtained. In Section 4 we concentrate on
bipartite graphs. Three typical approaches are described that yield lower
bounds for the independence number: a bipartite approach, a greedy ap-
proach, and an alternative approach. A large class of graphs is described
for which the bipartite approach is optimal. More exact independence
numbers are also obtained and bipartite graphs that attain Vizing’s upper
bound are treated. We follow with a section where the independence num-
ber of products is compared with the invariant induced by the construction
presented in Section 3. We conclude with some open problems.

The size of a largest (or maximum) independent set of vertices of a
graph G is called the independence number of G and denoted a(G). An
independent set S of G with |S| = «(G) is called an a-set of G. An inde-
pendent set is called mazimal if it is not contained in a larger independent
set. Let @(G) = max{a(G \ )}, where the maximum is taken over all
o-sets S of G. With a(G) we will denote the size of a largest k-colorable
subgraph of G, that is, the size of its largest k-independent set. The size
of a largest independent set of edges of a graph G is called the matching
number of G and denoted 7(G).

The Cartesian product GOH of graphs G = (V(G),E(G)) and H =
(V(H),E(H)) is the graph with vertex set V(G) x V(H) where vertex
(@, z) is adjacent to vertex (b,y) whenever ab € E(G) and z =y,ora=1b
and zy € E(H). G™ denotes the Cartesian product of n copies of G. For
a fixed vertex a of G, the vertices {(a,z) | z € V(H)} induce a subgraph
of GOH isomorphic to H. We call it an H-layer and denote it by H®.
Analogously we define G-layers. The Cartesian product is commutative,
associative and K is a unit. Also, GOH is connected if and only if both G
and H are connected. (For more information on the Cartesian product of
graphs see [10).) We may therefore assume that all the graphs considered
are connected, as well as finite undirected graphs without loops or multiple
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edges.

A tree is a called a caterpillar if a path remains after the removal of all
its pendant vertices. This path is called the spine of the caterpillar. Let
U1, U2, ... Ui be the consecutive vertices of the spine of a caterpillar C' and
suppose that u; is adjacent to z; (pendant) vertices not in the spine. Then
we will write C = C(21,22,...,2x). Note that K, ; = C(k).

2 Upper bounds

The main result of this section is the following upper bound on the in-
dependence number of Cartesian product graphs. The result as such is
rather straightforward, however—a bit surprisingly—it implies all previ-
ously known upper bounds, which we demonstrate after. For a graph G
and X C V(G), let {(X) denote the subgraph induced by X.

Theorem 2.1 Let H be a graph and let {V}, V5, ..., Vi} be a partition of
V(H). Then for any graph G,

k
+(GOH) < 3 (GO(V).
i=1
Proof. Set H; = (V;), 1 < i < k, and let I be an a-set of GOH. Then
I; = IN(GOH;) is an independent set of GO H; and hence |[;| < ao(GOH;).
Therefore,

k k
a(GOH) =|I| =) || <) «(GOH;).
i=1

i=1

O

The simplest partition of the vertex set of a graph is the one formed by
its vertices. Then for any vertex u of G, a(GO{{u})) = a(GOK;) = a(G),
hence we get:

Corollary 2.2 ([16, Vizing, 1963]) For any graphs G end H,
a(GOH) < min{a(G) [V(H)|, «(H) [V(G)|}-

This bound was also (independently) observed in [9] in order to show
that the limit in the definition of the ultimate independence ratio of a graph
always exists.

Another special case of Theorem 2.1 is the following. Recall from [3]
that for any graph G, a(GOK}) = ai(G). Then we have:
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Corollary 2.3 Let H be a graph, and let Hy, Ha, ..., H}, be a clique vertez-
cover of H, where |H;| = ¢;. Then for any graph G,

k
«(GOH) < 3" 04, (6).

i=1

Corollary 2.3 is from [5, Theorem 3.1, although its formulation there is
slightly different. The special case of clique vertex-covers is when we cover
H with 7(H) edges and |H| — 27(H) vertices. Then we obtain the following
corollary from [7], where it is stated for the case when H is bipartite.

Corollary 2.4 For any graph G and H,
a(GOH) < 7(H) a2(G) + (JH| - 27(H)) a(G) .

Recently Martin, Powell, and Rall [14, Theorem 4.4] obtained an upper
bound on the Cartesian product of two caterpillars using the following
special partition. Let G = C(z1,...,2x). Then they cover G with (i) the
stars containing vertices of the spine with at least two pendant vertex, (ii)
the edges containing vertices of the spine with precisely one pendant vertex,
and (iii) the remaining paths of G. Using such a cover they showed that
for any H=C(y1,...,9s), vi > 1,

a(GOH) < o(H) Y 2 + |I|&(H) + |J| |H| + E(G, H),
i€l

where I and J are the sets of the spine vertices of G' with at least two
pendant vertices and with one pendant vertex, respectively, and =(G, H)
takes care for the spine vertices with no pendant vertices. For our purposes
the following special case of their result will be useful:

Corollary 2.5 Let G = C(z1,...,2¢), ;s > 2, and H = C(y1,.--,9s),
y;i 2 1. Then
a(GOH) < a(Q) a(H) + 7(G)a(H).

Proof. As 2; > 2, |I| =k, J = 0, and Z(G, H) = 0. In addition, z; > 2
clearly implies that ), ; 2; = a(G). Finally, note that |I| = 7(G). ]
3 Lower bounds from the diagonal procedure

We are going to describe a procedure that yields a maximal independent
set of the Cartesian product of two graphs. It seems that in many in-
stances, especially if the factor graphs are bipartite, the procedure returns
the independence number of the product.
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Let G and H be graphs. Set Gy = G, H; = H, and let A; and B; be
mazimal independent sets of G; and Hj respectively. Continue by setting
G2 = G\ Ay, H, = H\ B, and selecting maximal independent sets A, and
B; of G2 and H,. We continue by the procedure, until we arrive at graphs
G, Hy and sets Ay, By, such that V(Gy) = Ai or V(H;) = By. The set
UX_, (A; x B;) obtained in the above procedure is clearly an independent set
of GOH and will be called a mazimal diagonal set of GOH. The procedure
itself will be called a diagonal procedure.

Let G = C(3,0,0,3,2,0,0,1) and H = C(5,4,5,5). It was shown in
[14] that a(GOH) > 217. Consider now the following maximal diagonal
set of GOH: take maximum independent sets of G and H (of size 11 and
19), then in the remaining graphs again such sets (of size 4 and 2) and
finally do again in the remaining graphs. The obtained independent set is
schematically show in Fig. 1. In this way we improve the bound 217 to:

a(GOH) >11-19+4-2+2-2=221.

A
A\

L 4 I ’LK ¥ L
Figure 1: Maximal diagonal set in C(3,0,0,3,2,0,0,1)0C(5,4, 5, 5) of size
221

Note that the diagonal procedure is nondeterministic as in any step we
may select any maximal independent sets of the remaining graphs. How-
ever, no matter how we make the selection, we have:

Proposition 3.1 A mazimal diagonal set of GOH is a mazimal indepen-
dent set of GOH.

Proof. We have already observed that a maximal diagonal set is an inde-
pendent set of GOH. It remains to show that it is maximal.

Let X = UL, (4; x B;) be a maximal diagonal set of GOH and assume
without loss of generality that V(G) = Ax. Let (u,v) be a vertex of GOH
not in X, where u € A; and v € B;. Clearly, ¢ # j. Assume i > j. Since
Aj is maximal in Gj, u is adjacent to at least one vertex of A;, say z. It
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follows that (u,v) is adjacent to (z,v) € X. Analogously we find a neighbor
of (u,v) in X when ¢ < j. Finally, consider a vertex (if it exists) (u,v) with
u € A; and v € V(Gy) \ By Then as B; is maximal in H;, u is adjacent to
at least one vertex of H;, say y. But then (u,v) is adjacent to (u,y) € X.
a

Proposition 3.1 is proved in [13] for the case when in the diagonal proce-
dure the sets A; and B; are selected as largest independent sets. However,
as pointed out in [14], selecting maximal instead of maximum independent
sets can eventually give larger independent sets in product graphs. Set

ANGOH) = max { 3 |4:l1Bil }

where the maximum is taken over all possible selections of A;’s and B;’s in
the diagonal procedure. Then, by the above, we can state:

Theorem 3.2 For any graphs G and H, a(GOH) > MGOH). m]
The following consequence of Theorem 3.2 is immediate.

Corollary 3.3 ([16, Vizing, 1963]) For any graphs G and H,
- a(GOH) 2 a(G) a(H) + min{|V(G)| — a(G),|V(H)| — a(H)} .

To conclude this section we give an example showing that using the
presented bounds one can exactly compute the independence number.

Proposition 3.4 LetG = C(x1,...,2),2i > 2, and H = C(y1, - - - ,Y25),
y; 2 1. Then

o(GOH) = Z z;) (Z yi) + 2ks .

i=1

Proof. Construct a maximal diagonal set of GOH where in each step we
take maximum independent sets of G and H. In this way we obtain an
independent set of GOH of size

2k 2s
O 2) O ui) +ks+ks.

=1 i=1

On the other hand, by Corollary 2.5,

a(GOH) < o(G) a(H) + 7(G)G(H) = (Zx,) Zy,)+(2k)s

i=1
O

Note that Corollary 2.4 is not strong enough for Proposition 3.4: it
would only give us: a(GOH) < ( Zz=1 ;) (T2 v:) + 4ks.
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4 Exact results on bipartite graphs

In this section we consider products of bipartite graphs and obtain some
exact independence numbers. The main idea is to find good upper and lower
bounds and then to exclude all possibilities but one by a closer inspection
of the structure of largest independence sets. First a notation: Let V(H) =
{21, 22, ..., z,} and let S C V(GOH). Let X; = S NG%. Then we will
write S = (Xl, Xz, cany Xn).

Let us begin with a relatively simple example that indicates the main
ideas that can be used to obtain exact independence numbers. Let G =
C(2,1,0,0,0,0,0,1,2) and H = C(2) = P;. In [14] an independent set of
size 23 is constructed. We show here that o(GOH) is indeed 23. First,
using Corollary 2.4, we find that o(GOH) < 24. Suppose that we have
an independent set of size 24. Then by [7, Lemma 4.1], there is an a-
set of GOH of the form (A, B, A). Setting |A| = a and |B| = b we have
2a+-b = 24. The solutions of this Diophant equation are @ = 8+t, b = 8—2t,
t € Z. Since a + b < 15 and a(G) = 9, the only possible pair for (a,bd) is
(9,6). But since the bipartition of G is unique (and of size 8 + 7), also this
pair is not possible.

For bipartite graphs there are three typical instances of maximal di-
agonal sets. Let G' and H be connected bipartite graph with bipartitions
V(G) = V1 + V5 and V(H) = Wy + Wa, where V3| > |Vz| and |W;| > |Wa|.
As G and H are connected, V; and W, are maximal independent sets of G
and H, respectively. Then the three typical approaches are the following.

(a) Bipartite approach: Returns (V; x W) U (Vo x Wa).

(b) Greedy approach: Returns an independent set obtained by the
diagonal procedure during which largest independent sets are se-
lected in each step.

(c) Alternative approach: Returns an independent set I obtained by
the diagonal procedure, where I is returned neither with the bi-
partite approach nor with the greedy approach.

That the alternative approach can indeed give larger independent sets
than the other two approaches was noticed in [14] and—justifiably—called
it a “counter-intuitive aspect of the Cartesian product.” They considered
C(5,5,5,2,5)0P; and showed that the approaches (a), (b), (c) give in-
dependent sets of size 71, 72, 73, respectively. In fact, the alternative ap-
proach in this case is optimal, which is a particular instance of the following
result.

Theorem 4.1 Let G = C(5,5,5,2,5). Then

Wk+21; 1<k<4,
a(GOPopyy) = { 21k +17; k >5.
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Proof. Let v, ..., us be the consecutive vertices of the spine of G, where u,4
has two pendant vertices. By [7, Lemma 4.1], there is an a-set of GOPagq
of the form (A, B, A, B,...,A). Let |A] =a and |B| = b.

We first consider the case 1 < k < 4. Let I be an independent set of G
containing u4 together with the pendant vertices of the other spine vertices.
Then |I} = 21. In G\ I we have an independent set of size 5. Thus we get
a maximal diagonal set of size 21(k + 1) + 5k = 26k + 21. We next show
that for all k = 1,2,3,4 this is also an upper bound. By Corollary 2.4,
a(GDP2k+1) < 27k + 22.

Let k = 1. Then by the above, 47 < «(GOP3) < 49. Suppose that
we have an independent set of size 48. Then 2a + b = 48. The solutions
of this Diophant equation are a = 20+¢, b = 8 — 2t, t € Z. Since
a+b < |V(G)| = 27 and a,b < a(G) = 22, there are only two feasible
solution pairs (a,b): (21,6) and (22,4). Since 21+ 6 = 27 = |V(G)|,
(a,b) = (21,6) would imply that G has a bipartition with parts of sizes
21 and 6. Since the bipartition of G is unique, we are left with the case
(22, 4). Note that an independence set of G with 22 vertices is unique. But
then if follows immediately that b < 3. Analogously, if there would be an
independent set of size 49, then 2a + b = 49 with solutions a = 20 + ¢,
b=9-2t,t € Z and the only possibility (a,b) = (22,5) does not give a
solution.

Let ¥ = 2. Then by the above, 73 < a(GOPs;) < 76. Suppose
a(GOP;) = 74. Then 3a + 2b = 74 with the solutions 14 + 2t, 16 — 3¢,
t € Z. Again, since a,b < ¢(G) =22 and a + b < |[V(G)| = 27, there are
only two possible pairs for (a,b): (20,7) and (22,4), and as above we see
that they give no solution. If @(GOP;s) = 75, then 3a + 2b = 75 with the
solutions 15 + 2¢, 15 - 3t, ¢ € Z. The conditions a,b < a(G) = 22 and
a+b < |V(G)| = 27 give us a feasible pair (a,bd) = (21,6) which does not
give a solution as G does not contain a bipartition with parts of size 21 and
6. Finally, o(GOP;) = 76 gives 3a + 2b = 76 with the solutions 16 + 2t,
14-3t,t € Z. The only feasible pair is {a, d) = (22,5) which does not yield
a solution either.

Let £k = 3. Then 99 < a(GOP;) < 103. Suppose a(GOP;) = 100.
Then 4a + 3b = 100 with the solutions a =19+ 3¢, b=8 — 4¢t,t € Z. The
conditions a,b < a(G) =22 and a + b < |V(G)| = 27 give us only the pair
(22,5). The cases a(GOP;) = 101,102,103 are treated analogously and
are left to the reader. Let k = 4. Then 125 < o(GDOP;) < 130. We show
similarly as above that values 126, 127, 128, 129, and 130 do not lead to a
solution.

Let k > 5. Then the bipartite approach gives an independent set of size
17(k + 1) + 10k = 27k + 17. We are going to show that this is optimal.
Recall that a(GOPs1) < 27k + 22, so we need to show that the values
27k+18,...,27k+22 do not give a solution. We show this only for 27k +18
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and leave the remaining analogous cases to the reader.

So suppose that we have an independent set of size 27k + 18. In this
case, (k + 1)a + kb = 27k + 18. The solutions of this Diophant equation
area=18+kt,b=9—(k+1)t,t € Z. Since a+ b < |V(G)| = 27 and
a,b < a(G) = 22, there is only one feasible pair (a,b) = (18,9). But this
would yield a bipartition of size 18 + 9 that is not possible and the proof is
complete. O

For k > 12 the upper bound 27k + 17 of Theorem 4.1 also follows from
[7, Theorem 4.2]. Note also that the products with even paths are easy, cf.
[7, Corollary 3.1]. In the above case we have a(GOPa;) = 27k.

From the proof of Theorem 4.1 we see that up to k = 4, the alternative
approach yields an optimal solution, while for & > 5 the bipartite solution
is optimal. The corresponding values up to k& = 5 are collected in Table
1. The first line corresponds to the bipartite approach with the values
17(k + 1) + 10k, 1 < k < 5. The second line is obtained by the greedy
approach. Since G has only one a-set (of size 22), also this approach gives
only one possibility for each k: 22(k + 1) + 3k, 1 < k£ < 5. Finally, the
third line corresponds to the alternative approach. The given values are
21(k + 1) + 5k, 1 < k < 5, and obtained as described in the proof of
Theorem 4.1. The values for 1 < k < 4 are proved to be optimal, while
the last entry (151) is just a lower bound for the alternative approach.
However, we believe that by an exhaustive case by case analysis it would
turn out that the alternative approach does not give an independent set of
size 152.

G Oe P3 P5 P7 Pg Pu
(a) | 44 | 71 | 98| 125 | 152
() |47 [ 72 | 97 | 122 | 147
(c) |47 |73 |99 [ 125 151

Table 1: Values obtained by approaches (a), (b), and (c)

We next present a class of graphs for which the bipartite approach is
optimal. The result is essentially Theorem 2.2 of 18], where the result is
presented in a rather different language and with a different and longer
proof. Hence we include our short proof here. Note also that the result
generalizes Theoremn 3.3 of [14].

Theorem 4.2 Let G and H be bipartite graphs with bipartitions V(G) =
Vi+Va and V(H) = W) + Wa. If a(G) = |Vi| and a(H) = |W,|, then

o(GUH) = [Vi| |W1| + |Va| [We].
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Proof. The bipartite approach gives an independent set of GOH of size
[Vi| W1 + Vo] [W2l.

For the converse we apply Corollary 2.4 and the classical Kénig-Gallai
result asserting that a(H) + 7(H) = |V(H)| holds for bipartite H. Then,

a(GOH) < 7(H)a(G) + (|H| - 27(H)) a(G)
= [Wa|(IVil + [Va]) + (IW1] = [Wa]) [VA]
W[ [Wh] + |Va| [Wa .

O

We conclude this section with some remarks on the bipartite graphs
that attain the bound of Corollary 2.2. Hell, Yu, and Zhou [9] (cf. also
[4]) proved that for graphs G and H this bound is attained if and only if
there is a homomorphism from G to Ind(H) or a homomorphism from H
to Ind(G). Here Ind(H) is the independence graphs of H: its vertices are
the a-sets of H, two vertices being adjacent whenever the corresponding
a-sets are disjoint. For bipartite graphs this yields:

Corollary 4.3 ([4]) Let G and H be connected bipartite graphs. Then
a(GOH) = min{a(G) |V(H)|, a(H)|V(G)|}
if and only if |V(G)| = 2a(G) or |V(H)| = 2a(H).

Proof. As G is bipartite, a(G) > |V(G)|/2, and G4 can have at most one
edge. Moreover, Ind(G) has an edge if and only if the bipartition V; + V>
of G fulfills the conditions [V}| = |Va| = a(G). m]

Similarly we also deduce:

Corollary 4.4 Let G be a connected bipartite graphs. Then for anyn > 1,
a(G™) = a(G) |V(G)|*! if and only if |V (G)| = 2a(G).

The last corollary in particular implies Corollary 3.3 of [7] and Corol-
laries 2.4 and 2.5 of [18]. Analogous result to Corollary 4.4 has been proved
by Zhou [19, Theorem 2.2] for powers of Cayley graphs of Abelian groups.

5 Relation between o(GOH) and A\(GOH)

Recall that for any graphs G and H, a(GOH) > A(GOH), where A\(GOH)
is the size of a largest possible set obtained by the diagonal procedure. To
see that we can have strict inequality consider the products Cor410Cag41,
k > 2. Recall [7] that a(Cok4+10C2x41) = k(2k+1) and let I be an a-set of
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Car4+10Cs;41 - In view of Corollary 2.2, every layer of the product contains
k vertices from I. But a maximal diagonal set would be, in the best case,
of size k-k+k-k+1-1, so an a-set cannot be realized by the diagonal
procedure.

In fact, a(GOH) = A(GOH) need not hold even for bipartite graphs G
and H, although it was more difficult to find a counterexample. For this
sake we consider the following product: C(2,0,1,0,0,2,0,0,0,3)0C(4,2).
In [14] it was proved that its independence number in between 75 and
81. We can compute the exact value and, moreover, show that this is an
example with A < a.

Theorem 5.1 Let G = C(2,0,1,0,0,2,0,0,0,3) and H = C(4,2). Then
78 = MGOH) < o(GOH) =T79.

Proof. Let 2 and y be the vertices of the spine of H, where z has four
pendant vertices. Note that there is an a-set I of GOH of the forin
(A,A,A, A, X,Y,B,B), where A and B correspond to the pendant ver-
tices of z and y. Let |A| = a, |B| = b, |X| = z, and |[Y| = y. We are first
going to show that a(GOH) < 79.

Suppose that ¢ < 11,5 < 10. Sincea+z < |V(G)| =18 and b+y <
[V(G)| = 18, we have

[H|=4da+2b+2+y<4da+20+(18—a)+(18-b)=3a+b+36<79.

The case a < 10,5 < 11 is treated analogously. Suppose next a = b = 11.
Then, as the bipartition of G is unique (and is of size 10+8), we have 2 < 6
and y < 6. But then [J| < 78. Ifa=11and b= 12, thenz < 6,y < 5,
and hence |I| < 79.

For the case ¢ = 12 and b = 11 some more arguments are needed. Let
U1,---,U19 be the vertices of the spine of G, where u; has two pendant
vertices. Note first that an independent set of size 12 of G contains all the
pendant vertices as well as us, u7, and ug. The only selection that we can
make is between u4 and us. On the other hand, any independent set of G
of size 11 contains the pendant vertices of u,, ug, and ujg. Moreover, such
a set contains at least one of the vertices us and ug. We now consider two
subcases.

Suppose u2 € B. Then u» ¢ X,Y, and so there are 10 vertices that can
be selected for X and Y: all the u;’s except uo, and the pendant vertex
of ug. Since ug € A, it follows that ug must belong to Y. Moreover,
ug, U7, Us, Uz must all belong to Y if we wish that | X|+ || = 10. But then
Ug, U7, Us,uz € B in which case |Y| < 11. It follows that |X| + |¥]| < 9
whence [I| < 79.

Suppose ug € B. Then ug ¢ X,Y, and so there are 10 vertices that can
be selected for X and Y: all the u;’s except ug, and the pendant vertex of
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ug. Since u7 € A, it follows that u; must belong to Y, ug to X, and so on,
until we get us € X, which is not possible. So again |X| + |Y| < 9 whence
|I} < 79. This completes the case a = 12, b = 11.

Finally, let @ = 12 and b = 12. Then 4a + 2b = 72. Suppose first that
u4 € A, B. Then, in X and Y, there are only 6 parallel vertices free, so we
cannot get more than 78 independent vertices. And if us € A, us € B, we
have 7 such vertices, so we get at most 79 independent vertices.

We have thus proved that o(GOH) < 79. To see that o(GOH) > 79
consider the a-set of GOH that is schematically shown on Figure 2. More
precisely, the four G layers of the figure present an A set, X set, Y set, and
B set.

L 2 O O L O @ O L
O O @ O O @ O
O L 2 O @ O O O CA
4y A g
O (@]

[ ]
[ ]
[ ]
o
®

/N

To see that A(GOH) < 79, we first observe that in a A-set we must
have A = B. In addition, by the above considerations, a = b < 11 is not
possible, hence @ = b = 12. But then there are only 6 vertices left that
can be used for X and Y, and we can get at most 78 independent vertices.
Finally, it is easy to see that a diagonal set with 12-6+45-1+1-1 vertices
can indeed be constructed, proving that A(GOH) = 78. ]

)

Figure 2: An independent set with 79 vertices

To Theorem 5.1 it is interesting to add that there exists an a-set of
GOH witha=12,b=11,z=3,and y =6.



6 Some problems

There are many questions and problems that one can pose based on the
results presented in this paper. Here are some of them.

1. Characterize the graphs G and H for which o(GOH) = A(GOH). In
particular, for which bipartite graphs G and H we have a¢(GOH) =
AMGOH)?

2. Is it true that for almost any bipartite graphs G and H, o(GOH) =
MGOH)?

3. Characterize bipartite graphs G and H for which a(GOH) can be
realized by the bipartite approach (by the greedy approach). Note
that Theorem 4.2 is a result in this direction.
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