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Abstract

Let v,k, A and n be positive integers. (21,zg,...,2x) is defined to be
{(zi,z5) 11 # 4,4,5 = 1,2,...,k}, in which the ordered pair (z;,z;) is called
(j —1)-apart for 7 < j and (k+j—1)-apart for i > j, and is called a cyclically
ordered k-subset of {z;, 23, ..., Tk }-

A perfect Mendelsohn design, denoted by (v, k, A)-PMD is a pair (X, B),
where X is a v-set (of points), and B is a collection of cyclically ordered
k-subsets of X ( called blocks), such that every ordered pair of points of X
appears t-apart in exactly A blocks of B for any ¢, where 1 <t < k- 1.

If the blocks of a (v, k, A)-PMD for which v =0 (mod k) can be par-
titioned into A(v — 1) sets each containing v/k blocks which are pairwise
disjoint, the (v, k,1)-PMD is called resolvable, denoted by (v, k, A)-RPMD.

In the paper [14], we have showed that a (v,4,1)-RPMD exists for all
v=0 (mod 4) except for 4,8 and with at most 49 possible exceptions of
which the largest is 336.

In this article, we shall show that a (v,4,1)-RPMD for all v = 0
(mod 4) except for 4,8, 12 and with at most 27 possible exceptions of which
the largest is 188.
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1 Introduction

Let v,k and X be positive integers. (z1,z2,...,Zx) is defined to be
{(zi,z5) : i # 4,4,j = 1,2,...,k}, in which the ordered pair (z;,z;) is
called (j — 7)-apart for i < j and (k + j — i)-apart for ¢ > 7, and is called a
cyclically ordered k-subset of {z1,z2,...,zx}. A holey perfect Mendelsohn
design, denoted by (v, k, A)-HPMD ( k-HPMD if A = 1) is a triple (X, G, A)
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which satisfies the following properties:

(i) X is a v-set (of points);

(ii) G is a partition of X into groups;

(iii) A is a collection of cyclically ordered k-subsets of X ( called blocks)
each of which intersects each group in at most one point;

(iv) Every ordered pair (z,y) from distinct groups appears t-apart in ex-
actly A blocksof A fort=1,2,...,k—1.

If G = {G;:1< 1< h},|Gi| = gi, we say that (g1, 92, ...,9n) is the type
of the HPMD.

A (v,n,k, A)-IPMD can be viewed as an HPMD with the type of
(n,1,1,...,1) and a (v, k, A\)-PMD can be viewed as an IPMD with n = 1.

Definition 1.1. If the blocks of a (v, k, A)-PMD for which v =1

(mod k) can be partitioned into Av sets each containing (v — 1)/k blocks
which are pairwise disjoint (as sets), we say that the (v, k, A\)-PMD is
called resolvable, (briefly (v,k, \)-RPMD) and each set of (v — 1)/k
pairwise disjoint blocks will be called a parallel class.

Definition 1.2. If the blocks of a (v, k, A)-PMD for which v =0

(mod k) can be partitioned into A(v — 1) sets each containing v/k blocks
which are pairwise disjoint (as sets), we say that the (v, k, A\)-PMD is
called resolvable, (briefly (v, %, A)-RPMD) and each set of v/k pairwise
disjoint blocks will be called a parallel class.

A resolvable PMD and parallel classes by Definition 1.1 are usually
called an almost resolvable PMD and almost parallel classes. For conve-
nience, we use Definition 1.1 in this article.

Definition 1.3. Suppose that X is a set of n players.

A directed whist table, denoted (z,y; 2,1, ), is a set of four players with
the pairs {z,y} and {z,t}, known as partners and with the ordered pairs
(2,1), (£,), (3 2), (2,) known as opponents.

A directed whist round is a set of directed whist tables such that each
player occurs at exactly one directed whist table, except possibly for one
player not at any directed whist table.

A directed whist tournament for n players, denoted DWh|n] is a set of

directed whist rounds such that any two player are partners at exactly one
directed whist table and any ordered pair of player are opponents at one
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directed whist table.

It is easy to see that the existence of a (v,4,1)-RPMD for v = 4n is
equivalent to that of a DWhn].

For more details on the above terminology, the reader is referred to
(4,7,15].

The following theorem was proved in [5,6].

Theorem 1.4 A (v,3,1)-RPMD exists if and only if v = 0,1
(mod 3),v # 6.

From Baker and Wilson (1}, Bennett [2], and Lamken, Mills, and
Wilson (9], we have

Theorem 1.5 A (v,4,1)-RPMD exists for all positive integer v = 1
(mod 4). There exists (40,4, 1)-RPMD, and hence infinitely many
(v,4,1-RPMD forv=0 (mod 4).

Furthermore, the author obtained the following results {14].

Theorem 1.6 A (v,4,1)-RPMD exists for all integers v > 4 where v =0
(mod 4), except for v = 4,8, and with 49 possible exceptions as follows :

v E

{12,16,20, 24, 28, 32, 36, 44, 48, 52, 56, 64, 68, 76, 84, 88, 92, 96, 104, 108, 116,
120,124,132, 136,148, 152, 156, 172, 184, 188, 204, 212, 216, 228, 232, 236, 244,
268, 276, 284, 292, 304, 308, 312, 316, 328, 332, 336.}

In this article, we will construct a (28,4, 1)-RPMD using 7 base blocks
under a non-abelian group, and furthermorc show that A (v,4,1)-RPMD
exists for all integers v > 4 where v =0 (mod 4), except for v = 4, 8,12,
and with 27 possible exceptions as follows:

v € {16, 20, 24, 32, 36, 44, 48, 52, 56, 64, 68, 76, 84, 88, 92,
96, 104, 108, 116, 124,132, 148, 152, 156, 172, 184, 188. }

We assume that the reader is familiar with the basic concepts in de-
sign theory, such as pairwise balanced design (PBD), group divisible design
(GDD), transversal design (TD), and resolvable transversal design (RTD).
For convenience, the reader can be referred to [7].
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2 (28,4,1)-RPMD

A direct construction using groups below is a variation of the method us-
ing difference sets in the construction of BIBDs. Instead of listing all of the
blocks of a design, it suffices to give the group acting on a set of base blocks.

Let G be a group, H a subgroup of G. Let B = (b;, b, b3,b4) be a block
of G, and B’ = (00, by, b3, bs) a block of G U {c0}. By developing the base
block B or B’ under H, we can obtain a set of blocks, that is,

dev B = {gB = (gb1, gb2, gbs, gbs) : g € H} or

dev B' = {gBI = (ooagb2$gb3vgb4) ‘g€ H}‘

When H = G, we define their t-apart difference sets B(t), B’(t) for
t=1,2 as follows:

B(1) = (b7 'ba, by 1ba, b3 by, b7 1),

B(2) = (b7 'bs, by 'ba, b3 b1, b7 1by),

B'(1) = (b 'bs, b3 'bs),
B'(2) = (b3 g, b7 by).

Lemma 2.1 There exists a (28,4, 1)-RPMD.

Proof. Let G be the non-abelian group of order 27 in which a® = 4% = ¢
and ab = ba®. Develop the following 7 base blocks under G.

(00, e,a8,a%), (b%a7,a?,ba%,a"), (ba®, b2a®, a4, b2a®), (ba8, b2a, a3, b2a3),
(a,ba®,ba’,a®), (bat, b%a?, b2a®, ba), (b, b2, b2a?, ba3).

It is readily checked that the union of the t-apart difference sets of the 7
base blocks is G — {e} for t = 1,2.

3 Nearly-IRPMD and Nearly-RPMD

The following definitions were first introduced in [14].
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Definition 3.1. Let (X,Y, AU B) be a (v,n,k,1)-IPMD for which v =0
(mod k) and n=1 (mod k). If A can be partitioned into v — n parallel
classes of X, and B can be partitioned into n partial parallel classes of
X\Y: Bj,j=1,2,..,n. The (v,n,k,1)-IPMD is called nearly resolvable,
denoted by (v, n, k,1)-nearly-IRPMD.

Let Bj be the set of all points of X \ Y not appearing in B;. Let b;
be the number of points of the set Bf. The vector (by,ba,...,b,) is called
complement type of the (v,n, k, 1)-nearly-IRPMD. It is easy to see that
Bf,j=1,2,..,n partition X \ 'Y, and hence b; + by + ... + bp = v —n.

Definition 3.2. Let (X, AUE) be a (v, k,1)-PMD for which v =0
(mod k). If A can be partitioned into v — n parallel classes of X, and &£
can be partitioned into n partial parallel classes of X : £;,7 =1,2,...,n,
then the (v, k,1)-PMD is called nearly resolvable, denoted by

(v, k,1)-nearly-RPMD.

Let E7 be the set of all points of X not appearing in £;. Let e; be the
number of points of the set Ef. The vector (ej, e, ...,en) is called com-
plement type of the (v, k, 1)-nearly-RPMD It is easy to see that E,j =
1,2,..,n partntlon X, and hencee; +e2+...+e, =v,¢; =0 (mod k) ji=
1,2,.

By filling in holes, we have

Lemma 3.3 If there exist a (n,k,1)-RPMD and a

(v,n, k,1)-necarly-IRPMD with complement type (b, b, ..., b, ), then there
exists a (v, 4, 1)-nearly-RPMD with complement type

(i +1L,ba+1,...,b,+1), wherev=0 (mod k) andn=1 (mod k).

Lemma 3.4 There exist (v, n,4, 1)-nearly-IRPMDs for the following
(v,n) with complement type (b1, ba, ..., b,) .
(i) (v,n) = (44,5) with complement type (7,7,7,7,11);

(ii) (v,n) = (52,9) with complement type (3,3,3,3,3,7,7,7,7);
(iii) (v, n) = (64,9) with complement type (3,3,7,7,7,7,7,7,7);
(iv) (v,n) = (68,9) with complement type (3,7,7,7,7,7,7,7,7).

Proof. For each case, we take Y = {00; : 1 <4 < ntand X =2, _,UY,
and present n partial parallel classes B; and a set of base blocks F which
is a parallel class, and develop the base blocks under Z,_, to form v — n
parallel classes.

(i) (v,n) = (44,5) with complement type (7,7,7,7,11);
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B, ={(0,1,3,2) +4i:i=0,1,..,7}

By ={(0,1,3,2) + 4i : i = 8,9,...15}

Bs ={(0,1,3,2) + 4i : i = 16,17, ...,23}

By ={(0,1,3,2) + 4i : i = 24,25,...,31}

Bs = {(0,1,3,2) + 4i : i = 32,33, ..., 38}

F={(0,16,23,5), (4,17,22,26), (35, 15, 18,9), (19, 7,27, 33),
(11,8,1,32),(25,37,13,3), (001,34, 30, 14), (002, 2, 12, 6),

(003,28, 36, 21), (004, 38, 10, 24), (00s, 31, 20, 29)}.

(ii) (v,n) = (52,9) with complement type (3,3,3,3,3,7,7,7,7);
B, ={(0,1,3,2) +i:i=0,4,8,...,36}

By ={(0,1,3,2) +14:i=40,1,5,...,33}

Bs = {(0,1,3,2) +14:i = 37,41,2, ..., 30}

By ={(0,1,3,2) +4:i = 34,38,42, ..., 27}

Bs = {(0,4,12,8) + 45 : j = 5,9,13,17,21, 25,30, 34, 38, 42}
Bs = {(0,4,12,8) + 45 : j = 3,7,16,20, 24, 28, 32, 36, 40}
Bz = {(0,4,12,8) + 4; : j = 1,6,10, 14,18, 27, 31, 35, 39}

Bs = {(0,4,12,8) +4j : j = 2,8,12,19, 23,29, 33,37,41}

By = {(0,1,3,2) +4:i=31,35,39}U

{(0,4,12,8) + 45 : j = 0,4,11,15,22,26}

F={(0,12,5,28), (1,11, 14,20), (4, 37, 26,9), (2,7, 38, 17)

(001, 22,33, 24), (002, 29, 6, 35), (003, 32, 3, 21), (004, 13, 40, 27),
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(c0s, 25, 34, 8), (006, 41, 19, 16), (co7, 42, 36, 18), (c0g, 10, 23, 30),

(009, 39, 15,31)}.

(iii) (v,n) = (64, 9) with complement type (3,3,7,7,7,7,7,7,7);
By ={(0,1,3,2) +i:i=0,4,8,..,48}

Bz ={(0,1,3,2) +i:4=>521,5,...,45}

B3 ={(0,1,3,2) +i:i=49,53,2,...,38}

By = {(0,1,3,2) +1i : i = 42,46,50, ..., 31}

Bs = {(0,4,12,8) +4j : j = 6,10,15,19,23,27, 31,35, 39, 44, 48, 52}
Bs = {(0,4,12,8) + 45 : j = 8,12, 16, 20, 24, 33, 37,41, 45,49, 53, 2}
By = {(0,4,12,8) +4j : j = 22,26, 30,34, 38,43,47,51,1,5,9, 13}
Bs = {(0,4,12,8) +4j : j = 3,7,11,17,21, 25,29, 36, 40, 46, 50, 54}
Bo = {(0,1,3,2) +i : i = 35,39,43,47,51}U

{(0,4,12,8) + 45 : j = 0,4, 14, 18,28,32,42}

F={(0,12,5,20), (3,13, 19,22), (1,46, 35,6), (2, 7, 39, 27)

(50,37, 23,43), (14, 28,44, 17), (31, 25,9, 49)

(001,30,41,4), (002, 16, 29, 48), (003, 45, 54, 26), (004, 53, 36, 15),
(c0s, 24,47, 38), (006, 52, 18, 42), (007, 10, 32, 8), (c0s, 34, 51, 21),

(c0s,33,11,40)}.

(iv) (v,n) = (68,9) with complement type (3,7,7,7,7,7,7,7,7);

By ={(0,1,3,2) +i:i=0,4,8,..,52}
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By ={(0,1,3,2) +i:i=>56,1,5,...,45}

Bs = {(0,1,3,2) +i: i = 49,53,57, ..., 38}

Bs = {(0,1,3,2) + i : i = 42,46,50, ..., 31}

Bs = {(0,4,12,8) + 45 : j = 6,10,15,19,23,27, 31, 35, 39, 44, 48, 52, 56}
Bs = {(0,4,12,8) + 43 : j = 8,12,16, 20, 24, 33,37, 41,45, 49,53, 57, 2}
Br = {(0,4,12,8) + 43 : j = 22,26,30,34, 38,43,47,51,55,1,5,9, 13}
Bs = {(0,4,12,8) + 45 : j = 3,7,11,17, 21,25, 29, 36, 40, 46, 50, 54, 58}
By = {(0,1,3,2) +1i: i = 35,39,43,47,51,55}U

{(0,4,12,8) + 45 : j = 0,4,15,19, 30, 34, 45}

F={(0,32,46,37), (2,38,18,21), (1,28,7,54), (5, 39,49, 8),

(30,42, 3,19), (4,57, 33,20), (13, 44, 53, 24), (48, 15, 10, 23)

(001, 16,6,50), (002, 12,17, 36), (003, 11, 35, 52), (004, 26, 47, 40),

(005, 14,43, 25), (006, 9, 51, 58), (007, 22,45, 31), (008, 27, 55, 29),

(009,41, 56,34)}.

The complement type (b, bs,...,b,) for a (v,k,n,1)-nearly-IRPMD is

called standard if (b; < by < ... < b,) and b, — by < k. Similarly, the com-
plement type (e, ez, ...,e,) for a (v, k,1)-nearly-RPMD is called standard
if(ej<ex<..<e;)ande, —e; <k

Similarly, we have

Lemma 3.5 If there exist a (n, k,1)-RPMD and a

(v,n, k, 1)-nearly-IRPMD with standard complement type (b1, b2, ..., bp),
then there exist a (v, 4, 1)-nearly-RPMD with standard complement type
(b +1,bp+1,...,0, + 1),wherev=0 (mod k) andn=1 (mod k).

From Lemma 3.4, and Lemmas 4.1, 4.2 and 4.3 in [14], we have
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Theorem 3.6 There exist (v,n,4, 1)-nearly-IRPMDs with standard
complement type for (v,n) € {(20,5), (24,5), (28,5), (32,5), (36,5),
(40,5), (44,5), (60, 5), (36,9), (40, 9), (44,9), (52, 9), (64,9), (68,9),(72,9),
(52,13), (56, 13), (60, 13), (68, 17), (132, 33)}.

From Lemma 3.5 and Theorem 1.5 we have

Theorem 3.7 There exist (v,4,1)-nearly-RPMDs with standard
complement type (e, eg, ..., €,) for

(v,m) € {(20,5), (24,5), (28,5), (32, 5), (36, 5),

(40,5), (44,5), (60, 5), (36,9), (40, 9), (44,9), (52, 9), (64,9), (68,9),(72,9),
(52,13), (56,13), (60, 13), (68,17), (132, 33)}.

4 k-HRPMD of type A" and A" lm!

If the blocks of a k—HPMD of type h™, where hn = 0 (mod k), can be
partitioned into h(n — 1) parallel classes, the k-HPMD is called resolvable,
denoted by k-HRPMD.

If the blocks of a k-HPMD of type hA"~!m!, where hin—-1) = 0
(mod k),m =0 (mod k), m > h, can be partitioned into h(n — 1) parallel
classes and . — h partial parallel classes each covering every group of size
h and not intersecting the group of size m, the k—HPMD is also called
resolvable, denoted by k-HRPMD.

Theorem 4.1 There exist 4-RHPMDs of type 4" for n =4,5,6,7,8.

Proof. A 4-RHPMD of type 4% comes from Lemma 3.16 in (13], and a
4-RHPMD of type 4% comes from Lemma 4.5 in [14]. For each case of
n=3,0,7, let Y = {00y,002,003,004.}, X = Zyn-1yUY, and
Go=Y,Gina={i+(n-1)j:j=0, 1,2,3},i=0,1,...,n — 2. We present
a set of base blocks which is a parallel class, and develop the base blocks
under Zy(,_) to form the blocks of the 4-RHPMD.

(i) n =5,

(0,1,15,10)(001, 13,12, 3), (002,2,7,4), (c03, 5,14, 8), (c04, 6, 9, 11).

(i) n =86,

(0,1,19,7),(9,12,11,15), (001, 14,3, 10), (003, 16, 18, 4), (003, 8, 5, 17),
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(004,6,2,13).

Nyn=1,
(0,1,9,4),(12, 15,22, 20), (19, 21,6,5),

(c01,11,8,13), (c0z, 10,23, 3), (003, 14,7, 18), (004, 16,2, 17)

Theorem 4.2 There exist 4-HRPMDs of type 4"8! for n =6,7.
Proof. Let Y = {001,002, ...,008}, X = Z4n UY, and
Go=Y,Gihy=i4nj:5=0,1,2,3,:=0,1,...,n— 1.

We present a set of base blocks (a parallel class) which forms 4n parallel
classes of X, and present 4 parallel classes of X \' Y.

(i) n =6,
(001,0,8,1), (c02,3,18,23), (003, 10,14, 12), (004, 2,11, 21),
(005, 20,16,13), (00g, 15,4, 7), (007,19, 6, 5), (008, 22,17, 9),

{(0,1,3,10) +4j +i:j=0,1,..,5},i =0,1,2,3.

Hn=71,
(0,2, 24,22) (001, 6, 16, 7), (002, 10,9, 12), (003, 26, 18, 1), (004, 8, 25, 13),
(0057 14, 11, 23), (0067 21, 17, 4)) (007, 19, 27a 3)’ (0087 20: 15: 5),

{(0,1,6,19) + 4 +:5=0,1,..,6},i =0,1,2,3.

5 Construction methods

When we start with an (h,k,1)-PMD and replace each block with a
TD(k,m) we can obtain an (hm, k, 1)-HPMD of type m", this is the idea of
Theorem 2.2 in [12]; similarly, when we start with a TD(h, m) and replace
each block with an (h, k,1)-PMD, we also can obtain an (hm, k,1)-HPMD
of type m”, this is the idea of Theorem 2.4 in [12]. Based on these ideas
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and the Wilson’s fundamental constructions for GDD (see {7]), we have the
following constructions.

Let s be a function from X to non-negative integers with s(z). If
A= {z,,Zs,...,2,} C X, then we denote s4 = s(z) + s(z2) + ... + s(z,).

Let S be a mapping from X to the set of all subsets of {(z,%) : z €
X,i >0} by S(z) = {(,i) : 1 <1 < s(x)}. If A= {z1,23,...,2,} C X,
then we denote S4 = s(z;) U s(zz) U ... U s(z,). '
Construction 5.1 Suppose (X, G, A) is a GDD with A = 1 and for every
block A € A, we have a (s4, k,1)-HPMD of type {s(z) : = € A}. Then
(Sx,{Sc:G€G}{Sa: A€ A})is a (sx,k,1)-HPMD of type
{s¢:G € G}

Construction 5.2 Suppose (X, G, A) is a (v,k,1)-HPMD, and for every
block A € A, we have a (s4,k,1)-GDD of type {s(z) : z € A}. Then
(Sx,{Sc:G €G},{Ss: A€ A}) is a (sx,k,1)-HPMD of type

{s¢:G €G}.

Theorem 5.3 (Filling in groups). Suppose that the following designs
exist:

(i) a (v, k,1)-HPMD of type (91,92, ---» 9h);

(i1) a (gi,k,1)-PMD, for 1 < i < h.

Then there exists a (v, k,1)-PMD.

Theorem 5.4 (Filling in groups). Suppose that the following designs
exist:

(i) a (v, k,1)-HPMD of type (g1,92,..-,91);

(ii) a (g: + a,a,k,1)-IPMD, for 1 <i < h—1;

(iii) a (gn + @, k, 1)-PMD.

Then there exists a (v + a, k, 1)-PMD.

The following is Theorem 2.5 in [14].

Theorem 5.5 Let u=0 (mod k),n,p=1 (mod k). Suppose that
(i) there exists a (u, k,1)-RPMD;

(ii) there exists a (u,n, k, 1)-nearly-IRPMD;

(iii) there exists a (p, k, 1)-RPMD;

(iv) there exists a RTD(k,u ~ n).

Then there exists a ((z — n)p + n, k, 1)-RPMD.

Lemma 5.6 There exist (v,4,1)-RPMDs for v = 120, 136, 212, 244, 304.
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Proof. Apply Theorem 5.5 with u =28,n =5,k =4,p =5,9,13 to obtain
(v,4,1)-RPMDs for v = 120,212, 304; and apply Theorem 5.5 with
u=28,n=7,k=4,p=25,9 to obtain (v,4,1)-RPMDs for v = 136, 244.

Theorem 5.7 Let h < m < 2h. Suppose that

(i) there exists a RTD (n + 1, h);

(ii) there exists a k—HRPMD of type k™! if m < 2h;
(iii) there exists a k—HRPMD of type k™(2k)® if m > h.
Then there exists a k—HRPMD of type (kh)"™(km)!.

Proof. Let {z1,%2,...,zx} be one group of the RTD(n + 1, k), and take
s(z) = 2k for = € {z1,Z2,...,Zm—-n} and s(z) = k for other points.
Applying Construction 5.1 we obtain a big k~-HPMD. It is easy to see that
a parallel class of the RTD(n + 1, k) yields kn parallel classes of the big
k—HPMD; all blocks of the RTD containing z;,1 <1 <m — h, yield k&
partial parallel classes of the big k—HPMD each covering every groups of
size kh and not intersecting the group of size km. Hence we obtain a

k—HRPMD of type (kh)"(km)!.

Theorem 5.8 Let w=1 (mod k),h < m < 2h. Suppose that

(i) there exists a (kh, k,1)-nearly-RPMD with standard complement type
(cla €2y 400y cw);

(ii) there exists a (km, k, 1)-nearly-RPMD with standard complement
type (f11f2a seey fw):

(iii) there exists a (v, k, 1)-HRPMD of type (kh)™(km)! with the following
property;

(iv) there is a parallel class which can be partitioned w parts such that
the jth part cover f; points of the group of size km and ¢; points of each
group of size kh.

Then there exists a (k(nh + m), k,1)-RPMD.

Proof. By Theorem 5.3 we can obtain a (k(nh + m), k,1)-PMD. The

k(m — h) partial parallel classes of the k-HRPMD and k(m — h) parallel
classes of the group of size km yield k(m — h) parallel classes of the PMD;
kh — w parallel classes of each group yield kh — w parallel classes of the
PMD; knh — 1 parallel classes of the &-HRPMD are knh — 1 parallel
classes of the PMD; finally w partial parallel classes of each group and a
parallel class of the k-HRPMD with the property (iv) form w parallel
classes of the PMD. Hence the PMD is resolvable.

Theorem 5.9 Let w=1 (mod k), h < m < 2h. Suppose that

(i) there exists a (kh, k, 1)-nearly-RPMD with standard complement type
(c1, €2, ey Cuw);

(ii) there exists a (km, k,1)-RPMD;
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(iii) there exists a (v, k,1)-HRPMD of type (kn)”(km)! with the following
property;

(iv) there is a partial parallel class which can be partitioned w parts, such
that the jth part covers c; points of each group of size kh.

Then there exists a (k(nh + m), k, 1)-RPMD.

Proof. The proof is similar to that of Theorem 5.8

From Theorem 1.5, Theorem 3.7 and Theorems 4.1 and 4.2, we can
show the following results.

Lemma 5.10 There exist (v,4,1)-RPMDs for
v = 204, 216, 228, 232, 236, 268, 276, 284, 292, 308, 312, 316, 328, 332, 336.

Proof. Apply Theorem 5.7 with k£ = 4 and the following (n, h,m) to
obtain a 4-HRPMD of type (4h)"(4m)*. Since each parallel class of the
4-HRPMD is composed of m — h parts each being a parallel class of a
4-HRPMD of type 48! and 2h — m parts each being a parallel class of a
4-HRPMD of type 4™*1, it is easy to see the 4-HRPMD satisfy the
property (iv) of Theorem 5.8 for the following (n, h,m,w). Therefore we
can apply Theorem 5.8 to obtain the required results.

(i) n=56m=h=9,w=>5 tov=216;

(i)n=5,m=h=13,w =9 to v = 312;

(i) n="7,h =9, = 10,w = 5 to v = 292;
(ivyn=6,h=7,m=9,w=>5tov=204;

(V) n=6,h=8,m=09,10,11,w = 5 to v = 228, 232, 236;
(vi)n=6,h=9,m=13,17,w = 9 to v = 268, 284;

(vii) n=6,h = 11,m = 11,13,16,17,18,w = 9 to

v = 308, 316, 328, 332, 336.

Apply Theorem 5.7 with k = 4,n = 06,h = 9,m = 15 to obtain a
4-HRPMD of type (36)8(60)!. Since each partial parallel class of the
4-HRPMD is composed of 9 parts each being a partial parallel class of a
4-HRPMD of type 48!, it is easy to see the 4-HRPMD satisfy the
property (iv) of Theorem 5.9 for w = 9. Therefore we can apply Theorem
5.9 to obtain a (276, 4, 1)-RPMD.

It is easy to see that the existence of a (v,4,1)-RPMD implies the exis-
tence of a (v, 4,3)-RBIBD. Harri Haanpaa and Patric Ostergard (8] proved
the non-existence of (12,4,1)-RPMD by using the results of [11].

Hence we have the following theorem.

Theorem 5.11 A (v,4,1)-RPMD exists for all integers v > 4 where v =0
(mod 4), except for v = 4, 8,12, and with 27 possible exceptions as follows:
v € {16, 20, 24, 32, 36, 44, 48, 52, 56, 64, 68, 76, 84, 88,92, 96, 104, 108, 116,
124,132,148,152,156,172, 184, 188. }
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