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Abstract. Lot o(K,,4,n) denote the smallest even integer such that
every ni-termn graphic scquence # = (dy,da, ..., dy,) with term sum o (7)) =
di +da + - +d,. > 0(Kry,n) has a realization G containing K-y as a
subgraph, where K., is the 7 x s complete bipartite graph. In this paper,
we determine o(Kag,n) for n > 5. In addition, we also determine the
values (K2 ,,n) ors > 4andn > 2 ("—'4‘)1 +5.
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1. Introduction

An n-term non-increasing sequence 7 = (dy, dy, ..., dy) of nonnegative
integers is said to be graphic il it is the degree sequence ol a simple graph
G on n vertices, and such a graph ¢ is refereed 1o as a realization of
@. For a nonnegative integer sequence © = (dy, dy, ..., dy), denote o(w) =
di+dy+- - -+d,. Foragiven graph /1, a graphic scquence © is polentially 11-
graphic if there exists a realization of 7 containing 1 as a subgraph. Gould
et al. [2] considered the following variation of the classical Turdn-type
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extremal problems: determine the smallest even integer a(//, ) such that
every m-term graphic sequence 7 = (dy, do, ..., dy) with a(w) > a{ll,n)
has a realization ¢ containing /1 as a subgraph. Il /1 = K., the complete
graph on r vertices, this problem was considered by 1rdés ot al. [1] where
they showed that a(Ky,n) = 2n for n > 6 and conjectured that (K, n) =
(r = 2)(2n — r + 1) + 2 for sulficiently large n. Gould et al. [2] and Li
and Song [1] proved independently that the conjecture holds for r = 4 and
n 2> 8. Recently, Li et al. [5,6] showed thal the conjecture is true for r = 5
andn > 10and for 7 > 6 andn > (75 ") +3. Tor Il = K, ,, Could ¢t al. [2]
proved that o(Ka2,m) = 2 [2%] for n > 4. Yin and Li [7] determined the
values of o(Kzg,n) for o > 6 and a(K, 4, n) for n > 8. They [8] further
determined the values o(K, r,n) for even r(> 1) and n > 472 — r — 6 and
for odd r(> 3) and 7 > 472 4+ 3r — 8. A natural problem is Lo consider
the general case, i.c., to determine the values o (K q,n) for s > 7 > 1. In
[9], Yin, Li and Chen determined the vahies o(Krg,n) for s > 7 > 3 and
sufficiently large . The purpose of the paper is to determine the values of
o(Kis,n)forn>s+1, a(Kyg,n) for n> 5 and o(Kys,n) for s > 1 and
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n>2 [gi,lg)—] + 5. In order Lo prove our main results, we also need the
following nolations and results.
Let m = (dy,d, ..., dy) be a non-increasing sequence of nonnegative
integers, and for a given positive integer k, | <k <n, lot

" { (dy =1, idie = Lde v = 1o dg o = Ldyg 2,000 dy) iFde >
Ty =

Denove m = (dy, dy, ..., d;, ), where ) > dy > - > dj, | is the rear-
rangement of the 72— 1 terms in w. Then 7y is called the residual sequence
obtained by laying off di from 7. [Lis casy 1o sce Lthat il 7 is graphic then
so is 7, since a realization G of @ ¢an be obtained from a realization G’ of
. by adding a new vertex of degree dg and joining it to the vertices whose
degrees are reduced by one in going from 7 to 7. In [act more is true:

Theorem 1.1. [3] Let 7 = (dy,dy,...,dn) be a non-increasing se-
quence of nonnegative integers. Then # is graphic il and only if = is
graphic.

Theorem 1.2, [7,8] Lot 7 = (dy,dy,....d,) be a non-increasing se-
quence of nonnegative integers, where dy < wnand a(#) is even. I there
exists an integer iy < mesuch that d,, > h > 1 and 1y > % [(";",;’—')—2],

then 7 is graphic.
Theorem 1.3. [6] I r > 5, then (K, 1,n) < 2n(r —2) + 8 for
2r+2<n< (:) +3and o(Kry1,n) =0 =-1)2n-r)+2forn > ;) + 3.
Theorem 1.4. [7.8] If 7w ={d,....dr,dry1,. .. dris,drisi1,. .., dn)
is a graphic sequence with dp s > r+s—1and d,, > 7, then 7 is polentially
K, s-graphic.
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Theoremn 1.5. [7,8] Letw = (dy, ..., deydy i1, oo deysyde sy dn)
be a graphic sequence with dy >r4+s -1, dp s <r+s—2and d, 2 7. If
n > (r +2)(s — 1), then 7 is potentially K ;-graphic.

Throughout this paper, GUII denotes the disjointed union of the graphs
G and I, and 7(G) denotes the degree sequence of the graph G(in non-
increasing order).

2. The values of o(K,,,n) for n > s+ 1 and
O'(Kg’;;,'n,) for n > )

We first determine the values o (K s, ) for n > s+ 1. We have
Theorem 2.1. Let s> 1 and n > s+ 1. Then

{ (s—Dn+2 ilsisodd or nis cven,
o(Ky4,m)= i —— . .
(s—=Dn+1 ifsiscven and n is odd.

Proof. Assumc that s is odd or n is even. Clearly, # = ({s — 1)™) is
the degree sequence of any (s — 1)-regular graph ¢ on n vertices, where Lhe
symbol z¥ in a sequence stands for y conscentive Lerms 2, and G contains no
K s as asubgraph. Thus o(K; 4, 1) 2 (%) +2 = (s— 1)n+2. Now assume
that 7 = (dy,dy, ..., d,) is a graphic sequence with a(w) 2 (s — ) + 2.
Clearly, d; > s. Henee any realization of 7 contains Ky as a subgraph. In
other words, 7 is potentially Ky g-graphic. Thus a(K| o, n) < (s = D+ 2.
So a(Kygm)=(s - I)n+2.

Now assurme that s is even and n is odd. Consider the sequence n =
((s = )™ 1 s = 2). Since 7(2 Ky U Ky) = (1™ 1,0), where pKy is the
matching consisted of p edges, 7 is graphic for s = 2. Assume that ¢ > 1
is cven and n > s+ 1 is odd. Then the graph /7 obtained [rom a (s — 1)-
regular graph on n—1 vertices by deleting a matching ’—2"‘K 4 has the degree
sequence w(/1) = ((s — )"+ (5 =2)*"2). Tlence 7 is the degree sequence
of the graph ¢ obtained from /7 by adding a new vertex x and joining x to
s —2 vertices with degree s — 2 in /1. So 7 is graphic. 1t is easy Lo sce that
7 is not potentially Ky s-graphic since the largest term in 7 is s — 1. Hencee
o(Ki4,n) 2 0(m)+2=(s—1)n+1. Nowsupposc that. 7 = (d;,dy, ..., dy,)
is a graphic scquence with o(z) > (s = )+ 1. Clearly, dy > s. Henee
is potentially Ky s-graphic. In other words, a (K 4, n) < (s = D+ 1. So
ag(Kign)=(s—1)n+1. O

We now determine the values a(Kpqg,n) for 5 <n < 9.

Theorem 2.2. (1) o(Kaa,5) = 16;

(2) o(Kazy,6) =22
(3) o(Kuy.7) =26
(/1) (T(I(Q’:;,S) = 28;
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(:)) (I([(g’;;, f)) = 30.

Proof. (1) Let C, be the eycle of length . By adding a new vertex x to
C4U K, and joining it to cach vertex in Cy U Ky, we obtain a graph G with
degree sequence mp = (4,3%,1). In other words, 7, is graphic. Morcover,
it is casy to sce that G is unique realization of 7y, and ¢ contains no
Koz as a subgraph. llence o(K23,5) = o(m)+ 2 = 16. Now assurnc
that m = (dy, dy, ds,ds, ds) is a graphic sequence with o(m) > 16, and ¢
is a realization of . The edge number of ¢ is denoted by ¢(C). Then
8 < e(C) < e(K5) = 10. In other words, any realization G of 7 is obtained
from K5 by deleting at most. two edges. Clearly, ¢ contains Ko 3 as a
subgraph. lence 7 is potentially Ky g-graphic. Thus 6(Ky3,5) < 16. So
U(KQ,:{,S) =16.

(2) Let G be a graph on 6 vertices obtained by adding a new vertex
z to Cy and joining it Lo ecach vertex in Cs. Then the degree sequence of
G is my = (5,3%). Hence my is graphic. 1t is casy 1o sce that ¢ is unique
realization of wy and contains no Ky 4 as a subgraph. In other words, 7y
is not potentially Ky g-graphic. Thus a(Kpz,6) > a(m) + 2 = 22, Now
assume that m = (d;,...,dg) is a graphic scquence with a(w) > 22, I
dg < 3, then the residual sequence 7g = (dY, .. ., dg) obtained by laying ofl
dg [rom 7 satisfics a(mg) = a(7) — 2dg > 22 -2 x 3 = 16. By (1), =g is
polentially Ky 4-graphic, and hence so is 7 by Theorem 1.1, [ dg > 4, then
7w = (5574 4%), where £ s cven and 0 < 4 < 6. I is casy to see that the
graph G obtained [rom Kg by deleting o malching %l('g is unique realization
of 7, and (G contains Ky as a subgraph. In other words, 7 is potentially
Ky g-graphic. Hence a (K, 3,6) < 220 Thus o(Ky g, 6) = 22.

(3) Clearly, 74 = (6,3%) is the degree sequence of G obtained by adding
a new vertex x Lo Cg and joining z 1o cach vertex of Cg. llence wy is
graphic. Assumec that /7 is a realization of 74, where the degree of vertex
z is 6. Then w(/] — z) = (2%). 1L is casy to check that K3 and Kao
bolh are not subgraphs of /1 —xz. Hence 7y is not potentialty Ky 3-graphic.
Thus a(Ky3,7) 2 o(wy) + 2 = 26. Now assumne that 7 = (dy,...,d7) is a
graphic sequence with o(7) > 26, and #7% is the residual sequence obtained
by laying ofl d from =, If d7 < 2, then a(7%) = a(7) — 2d7 > 22. By (2),
w5 is potentially Ky g-graphic, and henee so is w1l dy > 1 and d7 > 3,
then by Theorem 1.4, 7 is potentially Ky 5-pgraphic. Now we may assume
that 7 = (dy, dy, da,ds, 3%), where dy > 4. 11 dy = 6 or dy > 5, then =
is clearly potentially K, s-graphic since the vertex o with degree dy and
the vertex y with degree dy in any realization G of @ have at least three
neighbours in common. lence we may further assume that @ = (5,43, 3%).
The following Figure 1 shows that (5,4%,3%) is potentially Ky 3-graphic.
Thus o(K23,7) < 26. So a(Ka3,7) = 20.
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Figure 1

(1) Suppose that 17 is a graph obtained from the graph & in (3) by
adding a new vertex y and joining y Lo . Clearly, the degree sequence of 1/
is my = (7,35 1). lence @y is graphic. Clearly, the residual sequence of g
obtained by laying ofl ) = 7 is (2%, 0), and any realization of (26, 0) contains
no Kz and Ky as its subgraphs. So 74 is not potentially Ko a-graphic.
Henee a(K24,8) > o(ma) + 2 = 28. Now suppose that 7 = (dy, ..., dg) is
a graphic scquence with a(w) > 280 Il dg < 1, then the residual sequence
7y obtained by laying off dy Irom 7 satisfics o(n) = a(n) — 2dy > 26. By
(8), 7§ and = both are potentially Ko s-graphic. 1T dy >4 and dg > 2, then
by Theorems 1.4 and 1.5, # is potentially Ko a-graphic. So we may assumc
that m = (7,37). Clearly, the graph G obtained from Ky 9 U Cy by adding
a new vertex x and joining it to cach vertex of /2 U Cy is a realization
of 7 and contains Ky as a subgraph. In other words, 7 is potentially
Ky g-graphic. Henee a (K, 3,8) <28, Thus o(Kyy,8) = 28.

(5) Suppose that G is a realization of m, = (7,35 1), where the degree
of vertex z in (G is 7. The graph obtained from G by adding a new vertex
¥ and joining y to z is denoted by H. Clearly, the degree sequence of [/ s
w5 = (8, 3%, 12), in other words, 75 is graphic. Since the residual sequence
of m5 obtained by laying ofl d, = 8 is (2%,0%), and cach realization of
(26,()2) contains no Ky 3 and Ky as its subgraphs, @ is nol potentially
Ky a-graphic. Tlenee o(Kp3,9) 2> o(ws) +2 = 30. Now suppose that
m = (dy,...,dg) is a graphic sequence with () > 30, and =) is the
residual sequence obtained by laying ofl dy from @, 1T dy < 1, then o(wg) =
a(m)—2dy > 28. It [ollows [ror (1) that =) is potentially Ky s-graphie, and
hence sois 7. 10 dy > 1 and dy > 2, then @ is potentially Ky s-graphic by
Theorems 1.4 and 1.5, Hdy < 3 and dy 2 2, then 7 is one of the Jollowing
sequences:

s

(8,3%,2%), (8,3%), (7,87,2), (6,3%).

Let ¢y be the graph oblained from Ky U P4 by adding a new vertex that
is adjacent 1o all vertices of Koo U [, where 1% is the path of lengih €,
Gy be the graph oblained from Ky U Ka by adding a new vertex that,
is adjacent o all vertices of K22 U Kz 2, Gz be the graph obtained from
Kz U Kp9 by adding a new vertex that is adjacent o seven vertices of
Ky 2 U Ky 5 and G4 be the graph obtained from Ky 3U Cy by adding a new
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vertex that is adjacent to all vertices ol Kp g U Cs with degree 2. Clearly,
7(C)) = (8,3%,22), 7(Cy) = (8,3%), #(Ga) = (7,37,2), n(G1) = (6,3%),
and G; contains K94 as a subgraph for 1 <17 < 4. Hence 7 is potentially
K2 s-graphic. Thus o(K23,9) < 30. So 0(K2,3,9)=30. O

Now we further determine the values a( Ky 3,n) for n 2 10.
3n+1 ifnisodd,
In+2 ilfniscven.
In order to prove Theorem 2.3, we need the following Lemmas.

n+1 il nisodd,
Lemma 2.4. [ n > 10, then o(Kyp3,n) 2 { Sm+2 il mis oven.

Proof. Casc 1. nis odd. The graph obtained from Cy U 252 K, U K,
by adding a new vertex x and joining z 1o cach vertex of C3U 2= KoUK s
denoted by G. Clearly, the degree sequence of G is 7 = (n—1,3%,2775 1),
In other words, 7 is graphic. Since the residual sequence of 7 obtained by
laying ofl dy = n— [ is (2%,1™ ®,0), and any realization of (23,1775 0)
contains no Kz and Kyy as its subgraphs, © is not potentially Ky 3-
graphic. Henee o(Kop,n) 2 0(7) +2=3n+ 1.

Case 2. n is even, Clearly, the degree sequence of the graph /1 obtained
from Cy U ".;4 Ky by adding a new vertex » that is adjacent Lo all vertices
ofl Cyu %Kg is 7= (n— 1,321, Ilence 7 is graphic. Clearly, the
residual sequence of 7 obtained by laying off d; = n — 1 is (2%, 1"77), and
cach realization of (2%, 1™71) contains no K4 and K2 as its subgraphs.
Henee 7 is not potentially Ko a-graphic.  This shows that. a(Kp 4. n) >
o(m)+2=38n+2. 0O

Lemma 2.5, Letn > 10and 7 = (dy, dy, . . ., d,;) be a graphic sequence

with &, > 2. If

Theorem 2.3. If n > 10, then o(Kaa,n) =

) > 3n+1  ifnisodd,
a(m) 2 S 4+2 il nis cven,

then @ is potentially Ky s-graphic.

Proof. Il dy > 4, then by Theorems 1.4 and 1.5, 7 is potentially Ky 3-
graphic. Assume that dy < 3. Then m = (dy, 3,271, where dy > 4 and
L >4, I d; =4, then nis odd and 7 = (4,3"71). Let /] be a 3-regular
graph on n — 5 vertices, and f/y be the graph obtained from /% by adding
two new vertices z and i and joining 2 and y to cach vertex of /%, Clearly,
11U Iy is a realization of 7 = (4,3™ 1) and contains Ky 3 as a subgraph.
In other words, (1,377 1) is potentially Ky a-graphic. Now suppose that
dy 25, p=(dy=2,3" 42" “ V1% and p} = (d},...,d), 4)is the residual
sequence oblained by laying off o) — 2 from p. 1L is casy Lo see that o(p)
and o(p}) both arc even, ) < 3 and 0 < d), 4 < 1. I d) 4 =0, then
dy < 2and d;, ; > 1. Clearly, pf is graphic, and hence sois p. 11 d;, 4 =1,
then by SL'I”)_J =6 < n—3 and Theorem 1.2, pf is graphic, and hence
so is p. Let /1 be a realization of p, and ¢ be the graph obtained from /]
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by adding two new vertices =z and y that both are adjacent 10 the vertex
of 1 with degree d) — 2 and also to the two vertices of /I with degree 1.
Clearly, G is a realization of 7 and contains Kg 3 as a subgraph. Tlence 7
is potentially Ko 3-graphic. O

Lemma 2.6, a(Ky3,10) =32 and a(Ky 4, 11) = 34.

Proof. Assume that m = (dy,ds, ..., dy) is a graphic sequence, where
a(m) > 32. I dyy > 2, then by Lemma 2.5, 7 is potentially Ky g-graphic.
If dio £ 1, then o(w]y) = a(m) - 2 2 30, where 7, is the residual scquence
of m obtained by laying ofl dig. By Theorem 2.2(5), w, is potentially
K 3-graphic, and hence so is 7. Thus o(K23,10) < 32. By Lemma 24,
o(K23,10) = 32. Similarly, we can prove that o(Kag,11) =34. 0O

Proof of Theorem 2.3. By Lemma 2.4, it is cnough to prove that
(*): il m = (dy,dy,...,dy) is a graphic scquence with

Im+1  ilnis odd,
m+2 ilniseven,

o(r) > {

then 7 is potentially Ky s-graphic. We use induction on 7. 1L is known
from Lemma 2.6 that () holds for . = 10 and 11. Now assume that ()
holds for n — 1 > 11. We will prove that (%) holds for n. If d,, < 1, then
the residual sequence @), obtained by laying off d,, from 7 satisfics

(n—-1+2 ilnisodd,

II = (59 Mt > . .
o(m) = a(m) = 2y 2 { 3n-=1)4+3 ilniscven.

By the induction hypothesis, =, is potentially Ky s-graphic, and hence so
is . Il dy > 2, then 7 is also potentially Ky g-graphic by Lemma 2.5, O

3. The values of o(Ky,,n) for s > 4 and n >
PRV
2 [!-94;]-;! ] + 5

. s543)2 . . .
For convenicnee, we denote m = [(’—‘,I-L] The main result in this

section is the following
Theorem 3.1, If s >4 and n > 2m 4 5, then

o(Ky.,m) sn=1)+2 il siseven or e is odd,
2,6, TL) = . ip .
240 sn—=1+3 il sisodd and n is cven,

In order Lo prove our main result, we need the ollowing Lemmas.
Lemma 3.2. I s> 4 and 7 > 25 4+ 1, then

sn—=1)+2 ifsis even or nis odd,
s(n—=1)+3 ifsisodd and n is cven.

a(Kye,n) 2 {
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Proof. We consider Lwo cascs as [ollows.

Case 1. s is even or n is odd. Assume that [] is a (s — 2)-regular
graph on 7o — 5 — 2 vertices and G is a (s — 3)-regular graph on s vertices.
Clearly, H and G exist, and #(/ITUG) = ((s —2)""% 2,(s-3)*). The graph
obtained by adding a new vertex u 1o /7 U G and adding cdges from u 1o
s — 1 vertices of G is denoted by /7. Then w(F) = (s —1,(s = 2)" 3, s = 3).
The graph obtained by adding a new vertex » 1o I and joining v 1o cach
vertex of /7 is denoted by Q. Then #(Q) = (n = 1,5, (s — )" %, s — 2).
Hence m = (n — 1,s,(s — 1) %, 5 — 2) is graphic. The residual sequence
obtaincd by laying ofl dy =n — 1 from 7 is n] = (d},d}, ..., d,_|) = (s —
1, (s =2)"=3,5 = 3). If 7 is potentially Ko 4-graphic, then 1 is potentially
Ky,s or Ky, q-graphic. Hence d] > s or dy > s — 1, a contradiction. So 7
is not, potentially Ko g-graphic. Thus o(Ky4,n) 2 o(7) +2 = s(n—1) 4+ 2.

Case 2. s is odd and n is even. Assume that 1/ is a (s — 2)-regular
graph on nn—s—1 vertices and G is a (s —3)-regular graph on s — | vertices.
Clearly, /1 and ¢ exist, and #(//UC) = ((s = 2)" % ', (s = 3)* ). By
adding a new vertex u to /1 U G and adding » 1o cach vertex of G, the
resulting graph is denoted by /. Again, by adding a new vertex » to [
and joining v Lo cach vertex of /7, the resulting graph is denoted by Q.
Then 7(Q) = (n— 1,s,(s = 1)*72). llence 7 = (n— 1,8,(s = )" ?) is
graphic. Since the residual sequence of « obtained by laying ofT dy = n — 1
is T = (s—1,(s—2)"*"2), and any realization of (s —1, (s —2)™"2) contains
no Kis and Ko .1 as its subgraphs, = is not potentially Ko 4-graphic.
Ifenee (Ko g, n) 2 o(n)+2=s(n-1)+3. O

Lemma 3.3. Il s >4 and n =, then

o(Kpe,m) Ss(n—1)+3+ (s —2)(m+5).
Proof. Clearly, n =m = [("4—‘)2] < (”2') +3. Henee by Theorern 1.3,

(Ko gon) <a(Kgpa,n) <2n(s—-1)+8
sn—s+3+(s=2)m+s+5
sn—s+34+(s—2)m+5(s —2)
stn=1)+3+ (s =2)(m+5).

VAN

Lemma 3.4. Let s >4, n > mand 7 = (dy,dy, ..., dy) be a graphic
sequence with d, > 2. M a(7) > s(n — 1) + 3, then 7 is potentially Ky .-
graphic.

Proof. Il d,,;» > s+ 1, then xis potentially Ky g-graphic by Theorem

L aye
14, Hdg o <sand dy > s+ 1, then by n > m = [("—'4‘)—] 2> 1A(s = 1) and
Theorem 1.5, 7 is also potentially K g-graphic. Now assume thal dy < s.
Then o () > s(n—1)+3implics that = = (dy, s%, ds, ..., dyy 1, dy o, dy 11, - .
where dy o 2 3. Denote p = (p1,p2, ...y P 2), Wherepy > py > oo >y, o

220

il



istherearrangement of dy =2, 5—2,ds =2, ..., dy 11=2,ds0—2,dgy 3, . . ., dn,
and let p} = (p},p5, . .., Pl _3) be the residual sequence obtained by laying
off py from p. Clearly, py,..2 = min{dy 2 — 2,d,} > 1.

Supposce that g is graphic and is realized by a graph /] with vertex
set V(H) = {v),uy,...,vn. 9} such that d(v;) = d|, — 2, d(wy) = s — 2,
d(v;) =dipe~2for3<i<sand d(v;) = dj g for s+ 1 < i < n -2, where
d(v) denotes the degree of vertex v in /1. Now form G from /1 by adding
two new vertices z and y that both are adjacent o all of vy, vy, ..., v,.
Clearly, G is a realization of 7 and contains Ky, as a subgraph, i.c., 7 is
potentially Ky ,-graphic.

This proves the result provided that p is graphic. Clearly, o(p) and
a(p}) are even. 1M dy < s+ 2, then py = max{d, — 2,dsy3} < s. By
[(H ‘,,“)2] < [("”;13)2] — 3 < n—2and Theorem 1.2, pis graphic. Assume
dy > s+ 3. Then py = max{d; — 2,dg 3} = dy =2 and p} < & I
dyin 24, then p, o = min{d, 2 — 2,d,} > 2. Clearly, p,, 4 > 1. Since

[gﬂ',"" D < (s *4:{)2] =3 < n=3, p} is graphic by Theorem 1.2, Tlence pis
also graphic. I dy, o =3 and s > 5, then a(m) = dy +3s+dg+---+dy, 1 +
dypo++dy S n—14+5243(n—sx-1) = An+s2=35—1 < sn—s+3 < a(w), a
contradiction. Il d, » =3and s =4, thenn > 12and 7 = (n—1,47, 3" ?).
Thus p = (. —3,3™ 6,22 1). Clearly, p = (n — 3,3" 6,22,1) is the degree
sequence of the graph /17 obtained rom /%, 30 K, by adding a new vertex
z that is adjacent Lo each vertex of P, 35U K. lenee pis graphic. O
Lemma 3.5, lets>4andn=m+1, where 0 <L <m + 5. Then

a(Kys,n) <s(n—1)+ 34+ (s - 2)(rm+5) — (s = 2)L.

Proof. Wo usc induction on t. It is known from Lemma 3.3 that
the result holds for ¢+ = 0. Assume that the result holds for £ —~ 1,0 <
L—=1<m+4 et n =wm+1 and 7 = (d),dy,...,d,) be a graphic
sequence with a(w) > s{n— 1)+ 3 4+ (s = 2)(m + 5) — (s — 2)L. Clearly,
a(m) 2 s(n—1)+ 3 IMd, 2 2, then by Lemma 34, 7 is potentially
Ky 4-graphic. I d,, < 1, then the residual sequence ), obtained by laying
oll dn from 7 salisfics o(n),) = o(n) — 2dy, > s(n — 1)+ 3+ (s = 2)(m +
5) = (s -2 -2=5(n—-2)+3+(s=2)(m+35)—(s=2)(t-1). By
the induction hypothesis, 7;, is potentially Ky (-graphic, and henee so is 7.
Thus 0(Kys,m) < s(r—1)+ 34 (s -~ 2)(mm+5) — (s = 2)4.0

Lemma 3.6, 1T s >4 and n > 2m 45, then o (K g,n) < s(n—1) + 3.

Proof. laot 7 = (di,dy,...,dy) be a graphic sequence with a(x) >
s(n— 1)+ 3. It is enough 10 prove that 7 is potentially Ky g-graphic. I
n = 2+ 5, then by Lemma 3.5, 7 is potentially Ky g-graphic. Now we use
induction on n(> 2m +6). Il dy, 2 2, then 7 is potentially Ky g-graphic by
Lemma 3.4, I1d,, < 1, then the residual sequence 77, obtained by laying ofl
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dy, from 7 salisfics o (7)) = o(n) — 2d,, > s(n — 2) + 3. By the induction
hypothesis, 7, is potentially K ,-graphic, and hence sois . 0O

Proof of Thecorem 3.1. It follows from 2m+35 > 25+ 1 and Lemmas
3.2 and 3.6 that o(Ky 4, n) = s(n— 1) + 3 il s is odd and n is even, and
s(n=1)4+2 < a(Kye,n) < s(n—1)+3il 5 is even or n is odd. Since
a(Ky,4,n) is even, we have o(Ky 4, n) = s(n—1)+2il s is cven or nis odd.
(]
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