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1 Abstract

A connected dominating set D of a graph G has the property that not only
does D dominate the graph but the subgraph induced by the vertices of
D is also connected. We generalize this concept by allowing the subgraph
induced by D to contain at most k components and examine the minimum
possible order of such a set. In the case of trees we provide lower and upper
bounds and a characterization for those trees which achieve the former.
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2 Introduction

Given a graph G, a connected dominating set [5] is a set D of vertices such
that D is a dominating set, i.e., every vertex in G — D has at least one
neighbour in D and, furthermore, the subgraph induced by D is connected.
Although, to facilitate communication, it may be desirable that all of the
vertices of the dominating set form only one component, there could well be
situations in which it might be desirable to relax this condition somewhat;
variations are given in (1, 2]; here we focus on the condition that the number
of components induced by the dominating set should not be too large.

Given a graph G with at most k components, we define an at most k-
component dominating set to be a subset D of the vertices G with the
property that every vertex of G — D is adjacent to at least one vertex of
D and, furthermore, the subgraph induced by the set D has at most k
components. We call an at most k-component dominating set of minimum
possible order a vk -set for the graph G and denote its ca.rdma.hty by v%(G)
or simply +¥ if the graph is clear. Observe that for k = 1, }(G) = 7:(G),
the connected domination number.

In what follows we shall use the term leaf to refer to a vertex of degree one
and stem to refer to a vertex that is adjacent to at least one leaf. We let
L(G) = L and §(G) = S denote the leaves and stems in G, respectively.
As usual y(G) will denote the order of a minimum dominating set of the
graph G. A strong matching is a matching M = {ey, e,...,e;} where no
end of e; is adjacent to an end of ¢;,1 < i #j < L.

3 Some Bounds and Observations
We begin with two very easy bounds.

Lemma 1 For any positive integer k and any graph G with at most k
components, v(G) < v¥(G).

Proof: This follows immediately from the fact that any v%-set of a given
graph G must be a dominating set (although not necessarily minimum). O

Lemma 2 For any positive integer k and any connected graph G, v%(G) <
¥e(G)-
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Proof: Any <.-set dominates and has precisely one and thus at most %
components. (]

Although the following observation is immediate it will be useful and so we
refer to it in the form of a lemma.

Lemma 3 For any positive integer k and any connected graph G, a vertex

whose deletion results in at least k + 1 components must belong to every
k

Y2(G)-set.

Proof: Any ~¥-set has at most k components and so the result follows
directly. m]

Corollary 3.1 Let k > 1. All vertices of degree at least k + 1 must be
included in any vE-set of a tree.

It is also straightforward to note the following bound.

Lemma 4 For any positive integer k and a connected graph G we have
7e(G) = 2(k — 1) < 74(G).

Proof: Let D be a v¥(G)-set. Since G is connected and each vertex in G—D
has a neighbour in D, it follows that a component of D contains at least
one vertex that is within distance three from some other component. Thus
one can reduce the number of components by adding at most two more
vertices (along the path between these two components). Hence one can
find, by continuing in this fashion k& — 1 times a superset D of D such that
D is connected, dominates and has at most 2(k — 1) additional vertices. O

Restricting our attention to trees T', we characterize those which achieve
the lower bound of v, — 2(k — 1) = ¥*. We remind the reader that in the
case of a tree T, there is a unique connected dominating set V(T) — L(T)
consisting of every vertex that is not a leaf.

Theorem 1 Let k be a positive integer. Consider a tree T and let I, be the
subset of vertices of T that have degree two and have no leaf as a neighbour.
The tree T has a y¥-set of cardinality v.(T) — 2(k — 1) if and only if there
exists a strong matching of k — 1 edges in the subgraph induced by I.
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Proof: First assume there exists a strong matching, say M, of k — 1 edges
in the subgraph induced by I5. Then (V(T') — L(T)) — V(M) dominates T,
has k components and . — 2(k — 1) vertices and hence is a y*-set.

Conversely, consider the situation where T has a y%-set D of cardinality
Ye(T)—2(k—1). We may assume, without loss of generality, that D contains
all of the stems but none of the leaves, since a leaf in D could be replaced
by its adjacent stem. Hence the v.(T") —2(k—1) vertices in D are all chosen
from the vertices that are not leaves. Let U be the 2(k — 1) vertices deleted
from the ~y.-set in order to form D. Since the vertices of U are neither
stems nor leaves, U € V(T) — (LU S). Consider the subgraph H induced
in T by the set U. Let m; be the number of components of order 1 in H
and myy the number of components of order > 2 in H. Since no vertex
of H was a leaf or stem in T, there must be at least two edges from each
singleton in H to D. Also observe that each vertex of any component of
order two or more of H must have at least one edge to D since D dominates
G. Hence there are at least 2m; + (2(k — 1) —m, ) edges between H and D.
Thus, since T is a tree, the number of H-components plus the number of
D-components total at least (2my + 2(k — 1) — my) + 1. That is, there are
at least (my + 2k — 1) — (my + m>2) components in D. As D has at most
k components that implies £ — 1 < m>3. Since each component that is
counted in m>; contains at least two vertices and there are only a total of
2(k — 1) vertices in U, it follows that the only possibility is that U consists
of exactly k — 1 pairs of vertices which induce k — 1 isolated edges. In
addition the vertices of U must be of degree two, else their deletion would
create more than & components. ]

In certain instances we can improve the lower bound given by Lemma 4.

Theorem 2 Let k > 2 be an integer and T a tree such that all vertices
which are neither leaves nor stems have degree at least d where d > 3.
Then 7§(T) > 7.(T) — 4=3.

Proof: Let D be a v¥-set of T. As before we may assume that all stems
of T' belong to D but no leaves do. Let U = V(T') — L(T) — D be the set
of vertices, other than leaves, that do not belong to D. By the hypothesis,
the minimum degree in T of the vertices of U is at least d > 3. Consider
the subgraph H induced by the set U. Say there are r components in H
and m; vertices in component 7,1 < ¢ < r. Since each component is a tree
and each vertex is of degree at least d in the original tree T, there must be
at least m;d — 2(m; — 1) edges from the ith component to the vertices of
D. Hence the deletion of U must create at least
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Figure 2: A graph where the 42-set is not contained in any ~.-set.

In light of these remarks we note that the characterization of Theorem 1
gives us the means to easily determine 2 for a tree. Recall that a v.-set of
a tree is simply all vertices other than the leaves. From Lemma 2 we have
that ¥2(T') > v.—2(2—1) = 7. —2. So the only possibilities are ~,, 7. —1 and
Ye—2. Hence first determine the degrees of all vertices of T. Let I be the set
of vertices of T that are neither leaves nor stems. Let I, be those vertices
in I that are of degree two. By Theorem 1, ¥2(T') = .(T) — 2 if and only
if there exists an edge in the subgraph induced by I,. If v2(T) # 7.(T) — 2
it follows (Corollary 3.1) that ¥2(T') = v.(T) — 1 only if I, is not empty.

We also observe that, with more work, one could check for 42 by examining
the subgraph induced by those vertices, other than the stems, that are of
degree 2 and 3.

5 An improved upper bound for trees

For trees one can improve the upper bound of Lemma 2 as follows.

Theorem 3 For any positive integer k and a tree T with n vertices where
n > 2k+ 1 we have v¥(T) <n—k-1.

Proof: For k =1, y}(T) = v.(T) and since the v.-set for a tree consists of
all vertices that are not leaves and since any tree has at least two leaves, we
have 7} (T") < n—2. Assume the result holds for all values less than or equal
to k—1 and consider k. Let T be an arbitrary tree and let v;,vs,...,v, be
a longest path in T If the degree of v, is two let 7/ = T — {v;,v2}. Then by
the induction hypothesis v¥¥~1(T") < (n—2)-(k—1)-1=n—k—2. But
using the vertex v as wellin T we get Y¥(T) < (n—k—2)+1=n—k—1.
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(mid-2(my — 1))+ (mad-2(mz —1) = 1) + (m3zd - 2(m3z - 1) - 1)+... =
(Bioymi)d — 8. mi) +2r— (r=1)=(d-2)S_ym;+7+1
components in D. As £I_;m; = |U| and r > 1 we obtain

(d-2)|U|+2< number of components in D < k

giving |U| < 222 and thus

|D| = &(T) = IV(T|—IL(T)I—IUI=%(T)—IUIZ%(T)—%- o

If ';“2 is an integer, it is straightforward to verify that the trees T satisfying

Y(T) = 7(T) — £=2 are precisely those with the following two properties:
(i) the vertices, that are not leaves nor stems, are of degree at least d and
(ii) there is at least one subtree w1th Z vertices, each of degree exactly d
in T and each having at least one nelghbour not in the subtree.

4 Some Algorithmic Considerations

Given the bound of Lemma 1 and the question of determining v* for a tree,
one might be tempted to modify the linear algorithm for finding a y-set on
a tree as it would seem reasonable to suppose that one might be able to
enlarge a y-set to form a v¥-set. That some care must be taken is shown by
the example in Fig. 1 as the given tree has a y2-set that does not include
any vy-set.

Figure 1: A tree in which the y2-set does not contain a y-set.

Note that any y-set of the tree in Fig. 1 must include either a or b as well
as four more vertices (without loss of generality, the four stems) but any
v2-set must include both z and y as well as the four stems.

On the other hand, in light of Lemma 2 one might try to delete vertices
from a ~y.-set for a graph in order to determine a ~¥-set.While this is fine
for a tree it is not necessarily possible even with just one cycle in the graph
(Fig. 2). The only 2-set consists of the vertices x and y while no ~.-set
contains x.
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If the degree of v, is three or more , v, is still a stem in T/ = T — {v}
and hence may be assumed to be included in a y*~!-set of T". Since 7" has
n—12> 2k > 2(k — 1) + 1 vertices, we have by the induction hypothesis
that ¥¥~1(T") < (n~1) - (k—1)— 1 =n—~k — 1. But the v5~-set of T" is
also a y¥~1-set of T and, thus, a y%-set of T as required. Hence the result
follows. ]
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