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Abstract

Let G be a finite abelian group of exponent m. By s(G)
we denote the smallest integer ¢ such that, every sequence of
t elements in G contains a zero-sum subsequence of length
m. Among other results, we prove that, let p be a prime,
and let H = Cpey @© --- @ Cpet be a p-group. Suppose that
1+ 2.—1@":‘ -1) = p" for some positive integer k. Then,
4p* -3<s(Cp @ H)<4p*-2.

1 Introduction

Let G be a finite abelian group. We call S = (a,,---,ax) a sequence
inGifalla; € G. Wecall S a zero-sum sequence if the sum 3°%_, a; =
0. We call S a zero-free sequence if S contains no nonempty zero-sum
subsequence. Let m be the exponent of G, i.e., the maximal order of
an element in G. We call a zero-sum sequence S in G a short zero-sum
sequence if 1 < |S| < m. In this paper we will study the following
invariants on short zero-sum sequences which play important roles
in zero-sum problems ([3], [9]).

Definition 1.1 Define p(G) to be the smallest integer t such that
every sequence S in G with |S| > t contains a short zero-sum subse-
quence.
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Definition 1.2 Define s(G) to be the smallest integer t such that

every sequence S in G with |S| > t contains a zero-sum subsequence
of length m.

Definition 1.3 Define D(G) to be the smallest integer d such that
every sequence S in G with |S| > d contains a nonempty zero-sum
subseguence.

Let m, k be positive integers. By Cy, we denote the finite cyclic group
of m elements, and by CkX, we denote the direct sum of k copies of
Cm. So far, many studies have been made on p(G) and s(G). Here
we list some known results on them.

Theorem 1.4 Let p be a prime, and let G be a finite abelian group
of exponent m. Then,

1. s(Cm) =2m —1. [4]

2. p(G) < |G| [8]

8 s(G) L|G]|+m—1. [10]

4. s(Ck) < c(k)m, where c(k) < 256(klog, k)*. [2]
5. 8(G) 2 p(G) +m —1. [§]

6. 3(CL) < 4p* - 2. [3]

7. 5(C%) < $m. [14]

8. s(C%) = 4m—3 provided that m = 2°3%5°7%n andn < 3(2°3%5°74)1/2,
(6], [7], [12])

9. s(C3) =19. [12)

10. s(C%$) = 41. 12]

11. s(C¥) = p(Ck¥) + 2. [7]

12. 5(Ck;) =2%(2¢ — 1) + 1. [11]

Let G be a finite abelian group with |G} > 1. It is well known that
G =Cn® --@Ch, withl < ny|-:-|n,. Set M(G) = 14+Yi_;(ni—1).
Let p be a prime. We call G a finite abelian p-group if |G| is a
power of p. It seems difficult to determine p(G) (s(G)) for further
G, especially for the case that » > 3 and n, is not a power of two.
In this paper we prove the following.
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Theorem 1.5 Letp be a prime, and H a finite abelian p-group. Let
k be a positive integer with p* > M(H). Set G = H & Cpx. Then,

1. p(G) > p* +2M(H) - 2.
2. 3(G) > 2p* +2M(H) - 3.
3. If p* = M(H) then 4p* — 3 < s(G) < 4p* - 2.

We will show Theorem 1.5 by improving the method used in [5] and
we need some preliminaries.

Let G be a finite abelian group. By A we denote the empty sequence
and adopt the convention that A is a zero-sum sequence. T C S
means that T is a subsequence of S. By fg(S) (fo(S)) we denote
the number of zero-sum subsequences T of S with 2||T| (2 A|T)).

Clearly, fe(S) 2 fe(A) =1.

Lemma 1.6 [13] Let p be a prime, and G a finite abelian p-group.
Let S be a sequence in G. Suppose that |S| > M(G). Then, fg(S) =
fo(S)( mod p).

Lemma 1.7 Let p be a prime, and H a finite abelian p-group. Let
k be a positive integer with p* > M(H). Set G=H®Cp. IfSisa
zero-sum sequence of 3p* elements in G then S contains a zero-sum
subsequence of length p*.

Proof. Suppose S = (ay,- -, k) witha; € Gfori=1,---,3pk—2.
Set ¢; = (1,a;) with 1 € Cpx fori =1,---,3p*—2. Then, ¢; € C,x®G.
Put U = (c1, -, capr_3). Note that D(Cprx @ G) = M(Cpr ©G) =
M(H)+p*—1+4p*—1 < 3p*¥—2. Therefore, there is a nonempty zero-
sum subsequence V of U. By the definition of U we have p*||V|. Since
V| < |U| = 3pk -2, |V| = p* or 2p*. Let T be the subsequence of S
correspond to V. Then, either T or S\ T is a zero sum subsequence
of length p*. m]

Let T be a sequence in G. By r(T") we denote the number of zero-sum
subsequences W of T' with |W| = 2p*.

Lemma 1.8 With the same assumption on G, H,p and k as in Lemma
1.7 let T be a sequence in G with 3p* — 2 < |T| < 4p* — 1. Sup-
pose that T' contains no zero-sum subsequence of length p*. Then,
r(T) = —1( mod p).
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Proof. Sett = |T|. Suppose T = (by,---,b). Set ¢; = (1,b;) with
1eCpxfori=1,---,t. Then, ¢ € Cok ®G. Put U = (c1,-++,c1).
Let V be a zero-sum subsequence of U. We clearly have, p¥||V|. Since
V] < |T] < 4p* — 1, |V| = p*, 2p* or 3p*. Since T contains no zero-
sum subsequence of length p*, by Lemma 1.7 we get |V| = 2p%. It
follows from Lemma 1.6 that »(T)+1 = fg(T) = fo(T) = 0( mod p).
Therefore, r(T) = —1( mod p). O

Let W = (wy,--,w,) and @ = (g1, --,¢:) be two sequences in G,
by WQ we denote the sequence (wy,: -, wy,q1, -+, q). Sometimes
we also write W = []i_; wi.

Proof of Theorem 1.5. 1. Let a1, - -, @psr)—1 be a zero-free sequence
in H. Let § = (0, )"~ T (a5, 1) 1725 (s, 0) with 0 €

Cpx, 1 € Cpx and Op is the identity of H. Then, S is a sequence in G.
It is easy to check that S contains no short zero-sum subsequence.
This shows that p(G) > |S| +1 = p* + 2M(H) — 2.

2. Since we have already proved that p(G) > p* + 2M(H) — 2. It
follows from 5. of Theorem 1.4 that s(G) > 2p* +2M(H) — 3.

3. By 2., 4p* —3 = 2p* + 2M(H) — 3 < s(G). So, it remains to prove
the upper bound. Assume to the contrary that, there is a sequence
S in G with |S| = 4p* — 2 and S contains no zero -sum subsequence
of length p*. By Lemma 1.8 we have

(T) = —1( mod p)

holds for every subsequence T of S with |T| > 3p* — 2.
We clearly have

4p* — 2 — 2pF
TCS,|T|=3pk-2

Therefore,

> (D= ( - ) (~1)(mod p).
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This gives that

4p* — 2 2p* — 2
(3§k_2)5< p_2 )(modp).
Therefore,

g = (-2 \_ (-2 _ (22
= pk = 3pk_2 = pk_2
k_

(2ppk2)51(modp),

a contradiction. Now the proof is completed. m]

Corollary 1.9 With the same assumptions as in Theorem 1.5 we
have, 2p* + 2M(H) — 3 < s(G) < 4p* - 2.

Proof. Suppose H = Cpey @---@® Cpar. Then, p*¥ =1+ (% -
k ] .
R N )
) +(p-1)E s D g N = HeC, . Then,
p* = M(N). 1t follows from Theorem 1.5 that s(Cpx ® N) < 4pF —2.
Note that the exponent of G is p*. We have, 2p* + 2M(H) — 3 <
8(G) < 8(Cpr ®N) < 4p* -2. =]

From the proof of Corollary 1.9 we see that

Corollary 1.10 Let p be a prime and k a positive integer. Let H
be a finite abelian p-group with M(H) < p*. Then, there is a finite
abelian p-group N such that 4p* —3 < s(H @ N ® Cp) < 4p* - 2.

Remark 1.11 Taking H = Cpx in Theorem 1.5 we get 5. of Theo-
rem 1.4. Let G be a finite abelian group of exponent m, H a subgroup
of G. It is easy to see that, if the exponent of H ism or H is a direct
summand of G then s(H) < s(G). The following example shows that
H is a subgroup of G is not enough to ensure that s(H) < s(G).

=1

a B2
Note that p* = (p — 1)E=¢ +1, let H =Cy”~" . Then, M(H) = p*.
By Theorem 1.5, 4p* —3 < s(G) < 4p* -2, where G =Cpx ®H. On

k_
the other hand, it is easy to see that s(H) > 2’}:_—'}(;; —-1)+1 ([11],
[1]). So, if k > 2 and p > 3, we have s(H) > s(G).
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2 Concluding remarks and open problems

The problem to determine s(G) and p(G) remains widely open. In
[1] it is suggested

Conjecture 2.1 s(C%) < c%n holds for some absolute constant n.

Propositipn 2.2 If n,k are positive integers then p(C%) > n +
TS (s(Ch) - 1)

Proof. For every 1 < i < d -1, set s; = s(Ci) — 1, and let

(@i1, -, ais;) be a sequence in C} which contains no zero-sum sub-
sequence of length n. Set b = (0,--+,0,1) € C¢, and set b;; =
d-1

(0,---,0,1,a;;) € Cd for j = 1,--+,85,4 = 1,---,d — 1. Let S =
d—i-1

pn-t f;ll. j-1bij. Then, S is a sequence in C2 with |S|=n -1+

Zf__?ll(s(C,',) —1). We clearly have, S contains no short zero-sum

subsequence. Therefore, p(C3) > 1+ |S| =n+ Y} (s(CL) - 1). O

From Proposition 2.2 we see that, Conjecture 2.1 is equivalent to

Conjecture 2.3 p(C%) < c?n holds for some absolute constant c.

Let p be a prime, we can regard Cg as a vector space over Fy, the
p-element field. For every 1 < k < d, by I(p,d, k) we denote the
smallest integer ¢ such that every subset A of C,‘,‘ with |A| > ¢ contains
some k distinct elements which are linearly dependent.

Proposition 2.4 s(C%) < 2I(3,d +1,3) — 1.

Proof. By g(C¢) we denote the smallest integer ¢ such that, every
subset B of C§ with |B| > ¢ contains three distinct elements with
zero-sum. It is proved that s(C§) = 2¢9(C$) — 1 in [12]. Let C be
a subset of C§ such that |C| = g(C%) — 1 and such that C contains
no three distinct elements with sum zero. Suppose C = (¢y,- -+, ¢;),
where r = g(C§) — 1. Set ¢; = (1,¢;) with1 € Cafori = 1,---, 7.
Set A =(ay,---,a,). We assert that

A contains no three distinct elements which are linearly dependent.
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Assume to the contrary that A contains three distinct elements which
are linearly dependent. With rearranging the subscripts we may
assume that aj,as,a3 are linearly dependent. That is, there are
three elements [y, f2, f3 € F3 such that fia;+ feas+ fzas =0 € Cg"'l
and at least one of fi, fo, f3 is not zero. By the definition of a; we
infer that fi1 + f2 + fs3 = 0. Therefore, {f1, f2, fa} = {0,1,-1} or
N1 = fa= fa #0. If {1, fa, fa} = {0,1,—1}, we infer that ¢; = ¢z,
or ¢; = ¢3, Or c3 = c3, a contradiction. If fi = fo = fa # 0, we derive
that ¢; +co +¢3 = 0, also a contradiction. This proves the assertion.
Thus, g(C$) — 1 = r < I(3,d + 1,3). Hence, g(C§) < 1(3,d+1,3).
Therefore, s(C§) = 29(C$) —1 < 2l(3,d+1,3) — 1. m]

Proposition 2.4 suggests that
Conjecture 2.5 s(C§) < 24+3.

Conjecture 2.6 [7] Let G be a finite abelian group of exponent m.
Then, s(G) = p(G) + m — 1.

Although several authors (see [1], [5], [6], [14]) have made consider-
able progress on the following conjecture, it remains open in general,

Conjecture 2.7 [12] s(C2) = 4m—3 holds for every positive integer
m.
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