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Abstract

Given t(> 2) cycles C, of length n > 3, each with a fixed vertex vj,
i=12,..,¢ let C denote the graph obtained from the union of
the ¢ cycles by identifying the ¢ fixed vertices(vj = v = ... = vf).
Koh et al. conjectured that CS is graceful if and only if nt = 0,3
(mod 4). The conjecture has been shown true for n = 3,6,4k. In
this paper, the conjecture is shown to be true for n = 5.
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Let G = (V,E) be a simple graph with |V| vertices and |E| edges.
Let f : V = {0,1,...,|E|} be an injective mapping. Define an induced
function g : E — {1,2,...,|E|} by setting g(p,q) = |f(p) — f(q)| for all
(p,q) € E. If g maps E onto {1,2,...,|E|}, then f is said to be a graceful
labelling of G. A graph is graceful if it has a graceful labelling.

A necessary condition for an Eulerian graph with m edges to be graceful
is that m = 0 or 3 (mod 4) (11, Hence a necessary condition for C& to
be graceful is that nt = 0 or 3 (mod 4). Koh et al. conjectured that ()
is graceful if and only if nt = 0,3 (mod 4) 3], The conjecture has been
shown true for n = 3 (2. 3], = 4 (6] and n = 6,4k 5], For the literature
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Figure 1: The graph Cé").

on graceful graphs, we refer to [4] and the relevant references given in it.
In this paper, the conjecture is shown to be true for n = 5.

Let v} = v for all i. The graph of 05(4) is shown in Figure 1.

Theorem 1 Cét) is graceful if t = 0,3 (mod 4).

Proof

Case 1. ¢ =0 (mod 4), say t = 4k.
We define a vertex labelling f as follows.

flv) = 0,
f) = st+1-i, 1<i<t,
; 2t+i 1<i<t/2
k3 — 3 — - ’
fw) = {i, t2+l1<i<t,
F) = Tt/2+2—4, 1<i<t,
, 1, 1<i<t/2,
fi) = ¢ 3t+1+i, t/2+1<i<tandimod2=1,
t—1+14, t/2+1<i<tandimod2=0.

Now we prove that f is a graceful labelling of Cé“’.
Let

Si = {f¥)1<i<t}, 0<j<a
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Then

So = {0},
S1 = {4t+1,4t+2,...,5t},
Sa = 53 USx
= {t/2+1,t/2+2,...,t}u{2t+1,2t+2,...,5t/2},
Ss = {5t/2+2,5t/2+3,...,7t/2+1},
S = SaUSs2U Sa3

{1,2,...,t/2} U {3t/2+1,3t/2+3,...,2t - 1}
U{7t/2+2,7t/2 +4,...,4t}.

Hence

SoUS1USUS3US;, SoUS) US2 USa3US3U 841 USs2U 843
(SoU Sq1 U521) USi2USUS3US4;3U 8
{0,1,...,t, 3t/2+1,3t/2+3,...,2t—-1,
2t+1,2t4+2,...,5t/2,
5t/2+2,5¢/2+3,...,Tt/2+1,
/242,724 4,...,4t,
4t + 1,4t +2,...,5¢t}.

It is obvious that the labels of the vertices are different, and
Maz{f(v})|1 <i <t} =5t=|E|

Let
D; = {g(v},v:j_‘_l) mod 5)I 1<i<t}, 0<j<4;and

i

Then

Dy = {4t+1,4t+2,...,5t},
D, = {2t+1,2t+3,...,4t—1},
Dy = {t/2+2,t/2+4,...,5t/2},
D3 = D3 UDs,
= {t/2+1,¢/2+3,...,3t/2 - 1} U {5¢/2 + 2,5t/2 + 4,...,7t/2},
Dy = D4y UDygaU Dy

1,2,...,t/2}
u{3t/2 + 1,3t/2+3,...,2t - 1}
U{7t/2+2,7t/2+4,...,4t},and
DouDyU...UDy = DoUD; UD2U D3 U Dso D4y UDys U Dy3
= D4y U (D31 UDys uD))uU (D2 U D3 UDy3)U Dg
= {1,2,...,t/2}
U{t/2+ 1,t/2+3,...,4t — 1}
U{t/2+2,t/2+4,...,4t}
U{4t+ 1,4t +2,...,5t)}
= {1,2,...,5t}.
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It is obvious that the labels of the edges are different. We thus conclude
that Cé“‘) is graceful.

Case 2. t =3 (mod 4),sayt =4k — 1.
We define a vertex labelling f as follows.

flv) =0,

fw}) = 4t+i, 1<i<t,

Ffi) = 3gt+1-i, 1<i<(t+1)/2,

L (6t-1)/2+2-4, (t+3)/2<Li<Lt,

f@5) = (t-1)/2+i, 1<i<t,
4t +1—1i, 1<i<(t+1)/2,

fi)) = ¢ t+1-4, (t+3)/2<i<tandimod2=1,
3t +1—i, (t+3)/2<i<tandimod2=0.

Similar to the proof in Case 1, it can be shown that this assignment
provides a graceful labelling of C§4k_1). O

In Figure 2 we show our graceful labellings for Cés) and C’g).
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Figure 2: A graceful labelling of 05(8) and Cé7).
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