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Abstract

A decomposition of optimal linear block codes with minimum
distance d = 4 and length 4L into two subcodes is given such that one
of the subcodes is an optimal length L code with minimum Hamming
distance 4 and the other is a quasi-cyclic code of index 4. It is shown
that the L-section minimal trellis diagram of the code is the product
of the minimal trellis diagrams of the subcodes.

1 Introduction

In (3], the state complexity of the trellis diagram of a linear block code was
analysed via atomic codewords. This approach was exploited in [1] and
[2] to investigate the trellis complexity of quasi-cyclic and general linear
block codes, respectively. In this paper, we apply the concepts presented in
these papers to obtain a decomposition of optimal [4L, k,4], L > 2, binary
linear block codes C into two subcodes Cy and C- such that under a, given
coordinate ordering the minimal trellis diagram (MTD) of C is the product
of the MTDs of C; and C,. It turns out that C; is an optimal code of length
L and minimum Hamming distance d = 4, and C; is a quasi-cyclic code
of index 4 except for L = 2 for which C» is of index 2. Some background
material which is required to obtain this decomposition is now presented.

Let C be an [n, k] binary linear block code over F> (C is a subspace
of F7'). The span of a nonzero codeword ¢ = (cy,...,¢,) € C is defined
to be the smallest interval [i,j], 1 < i < j < n, containing all nonzero
components of c. The positions ¢ and j are called the origin and terminus
of ¢, respectively. A codeword ¢ with span [(,7] is called active in the
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interval [i, 7 — 1] and the number j — i + 1 is referred to as the span length
of ¢. A codeword is nowhere active il 7 = j.

Definition 1 (Atomic Codeword [3]) A codeword ¢ € C is said to be
an atomic codeword if it cannot be expressed as a linear combination of
codewords of C with span lengths strictly smaller than that of ¢. The set
of all atomic codewords with the same span is called an atomic class.

A linear block code C with a given coordinate ordering can be rep-
resented by a trellis diagram. A trellis representing C is an edge-labeled
directed graph T with unique initial and final vertices v, and v,, such that
every vertex lies on a path connecting vp to v, and

1. each directed path connecting vp and v, has length n and its edge-
label sequence is a codeword of C;

2. the number of paths connecting vg and v, is the numnber of codewords
of C.

A trellis T representing C in a given ordering of coordinates is called mini-
mal if the number of vertices of T at distancez,1 < i < n—1, from v is the
minimum possible. The vertices of T at distance i, 0 < i < n, from vy are
called the states at time index i. The number S := max {Sp, S1,---,Sn} is
called the state complexity of a length n trellis T where 25 is the number
of vertices of T at time index i.

The product of two trellises T and T, denoted T x T", is defined in [3].
It is shown in [3] that if T3, 1 < ¢ < k, is the MTD of atomic codeword
a®, where the a{") are from k distinct atomic classes of an [n, k] linear
block code C, then the trellis T := T} x Ts x ... x T}, is the MTD of C.
Accordingly, any k x n generator matrix of an [n, k] linear block code C
whose rows are the representatives of the k distinct atomic classes of C is
referred to as a trellis oriented generator matrix (TOGM) of C. It is shown
in [3] that a generator matrix M of C is a TOGM iff no two spans of the
rows of M either start or end in the same positions.

Let M be a generator matrix for a k-dimensional vector space V =
l'[;;l V; over a field F where the V;s are vector spaces over the same
field. Let M; (resp. M?) denote the k x ¢ submatrix of M consisting
of the first (resp. last) columns of M. It has been shown in [2] that
M is a minimal generator matrix, in the sense that the sum of the span
lengths of the rows of M is minimal, if the nonzero rows of each element of
{My, M, ---, My, M', M? --., M"} are linearly independent. As a
result this characterises the TOGM of mixed codes and of the generators
representing the m-section MTD of linear block codes. As an example, the
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matrix
© 1111 0000 0000 QOO0 A
0000 1111 0000 GGOO
0000 6000 1111 GCGOD
0000 ©0C00 000D 1111
1100 1100 0G0 0000
M= o000 1100 1100 coo0 | v (1)
0000 0000 11060 1100
1010 1010 0060 0000
0000 1010 1010 000D
| coco 0000 1010 1010

considered as a 10 x 4 generator matrix over Fyg, is minimal since the
nonzero rows of each element of {M;, M2, M, My, M, M?, M3, M*}
are linearly independent. As a generator matrix over Fy, (1) is a TOGM
for the 4-section MTD of the corresponding [16, 10] binary code.

A linear block code C of length n is called gquasi-cyclic [4, 5] if it is invari-
ant under A™, a cyclic shift of m positions, where m < n and A is the cyclic
shift operator acting on the n-tuple (c1,ca,---,cp) by Aler,eo,---,6,) =
(ensc1,€2,+ -+, ¢n-1). The smallest positive such m is called the index of C.
It turns out that m is a divisor of n and the code is cyclic ilf m = 1. The
direct sum of two codes C; and C. is defined by C, + C, = {e1+e2: ¢ €
Cl and c; € Cz}

2 Optimal d = 4 linear block codes

The binary Hamming code Ha(r) is a [27 ~ 1,2" — r — 1,3] code. The
columns of the parity check matrix H} of this code are precisely the 2" — 1
distinct nonzero binary vectors of length r. A shortened Hamming code
by i coordinates, denoted s;Ha(r), is a 2" —i-1,2" -7 —i—1,3] code.
Thus adding an overall parity check bit to s;Ha(r) we obtain the [27 —
1,2" —r —i—1, 4] extended linear code s;Ha(r). Examples of the resulting
(16,11,4] and [13,8,4] codes with v = 11101101001, u = 11101101 and
M(C) denotes a generator matrix for C are

100000001111111 100000001111
4 _ | 010001110001111 | _ 4 _ | 010001110001 | _
30H2 — | 001010110110011 ] = [I4A]’ 337“2 = | oo1o10110110 | <= [I4B] ’
000111011010101 000111011010

M(soH2(4)) = [A'T;yv']  and  M(ssHa(4)) = [B'Isu']

respectively. The redundancy of these two codes R = 16—11 = 13—8 = 5 is
equal. In general, optimal d = 4 linear block codes are shortened Hamming
codes with an overall parity bit, and the redundancy of an [n, kmqz, 4] linear
code with 2! < n < 2 is R =1n — kpmaz =1 + 1.
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3 Optimal d = 4 codes of length a multiple of
4

A linear block code C of length n and minimum Hamming distance d
is called optimal if it has maximum dimension among all codes of the
same length and distance. In this section, we shall precisely describe the
relationship between optimal linear block codes of length 4L and L with
d = 4. In the sequel C(n, 4) stands for an optimal linear block code of length
n and minimum Hamming distance d = 4. For n < 4 define C(n,4) := {0},
the zero sequence of length =.

We shall show that there are subcodes C; and C> of C(4L,4), L > 2,
such that C(4L,4) is the direct sum of C) and Cs; and

1. Ignoring the coordinates in which all codewords of C, are zero, C,
is an optimal code C(L,4). The subcode C» is a quasi-cyclic code of
index 4.

2. Under a given coordinate ordering, the MTD of C(4L, 4) is the prod-
uct of the MTDs of C; and Cs.

Let ¢;, cq, and c3 be binary words of weight 4 and length 4L such that
the first 4 bits of ¢, are nonzero; the first, second, fifth, and sixth bits of
c2 are nonzero; and the first, third, fifth, and seventh positions of c3 are
nonzero.

Define A7 (c) as the cyclic shift of the word ¢ by j positions to the right.
Consider the matrix G (1,2) with rows consisting of the 4L-tuples A% (¢, ),
0<i<L-1,and A%(c;),0<i<L-2,j=2and 3. For instance, the
matrix M given by (1) represents G4(1,2).

The code with generator matrix G (1,2) is denoted by Rr(1,2). In
fact we have R(1,2) = (L, L,1)®(4,1,4) + (L, L-1,2)®(1100] + (L, L -
1,2) ® [1100] where ® stands for the Kronecker product operation. It is
easy to see that R2(1,2) is a quasi-cyclic code of index 2 while Rr(1,2) is
a quasi-cyclic code of index 4 for L > 3.

Lemma 1 R.(1,2) is a [4L, 3L — 2, 4] linear code.

Proof Consider G1(1,2) as a (3L — 2) x L matrix with entries from
F}. For agiveni, 1 < i < L, let B; denote the set of nonzero entries
that are in the ith column such that each is the first nonzero element of a
row of G1(1,2). B; is given by the independent set {1111,1100, 1010} for
1<i<L-1,and By = {1111}. Since Y&, |B;| = 3L — 2, the rows of
G1(1,2) are independent and hence R(1,2) has dimension 3L — 2.

The row space of each column of Gr(1,2), viewed as a (3L —2) x L
matrix over Fj, is the set of all words of weights 0, 2, and 4. Let c be a
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nonzero codeword of R (1,2), with ¢; and ¢; as the first and last nonzero
components, where 1 < i < j < L. If i # j, then both ¢; and ¢; are of
weight at least two and hence ¢ has weight at least four. Suppose i = j.
This implies that all rows of G(1,2) involved in the formation of ¢ are
nonzero only at their jth components. This means that ¢; = 1111, and ¢
has weight four. Therefore, R (1,2) has minimum distance four. m

Let kmaz(n,4) denote the dimension of C(n,4). Define Cp 4 := C(n,4) ®
[1000]. Note that R;(1,2)(Cr4 = {0}, where 0 denotes the all zero
codeword.

Lemma 2 R.(1,2) +Cr 4 has minimum distance four.

Proof The statement trivially holds for L < 4 since by definition C (L,4) =
{0} for L < 4. Suppose L > 4. Let ¢ and ¢’ be nonzero codewords in
Rr(1,2) and Cp 4, respectively. Denote the first four nonzero block compo-
nents of ¢’ by ¢}, ¢}, ¢4, and ¢}. Let ¢;, 1 < i < 4, be the block components
of ¢ corresponding to ¢}. Since ¢; is in the row space of {1111,1100, 1010},
it has even weight, implying that ¢; + ¢} has odd weight and therefore is a
nonzero block. It follows that ¢ + ¢’ has weight at least four. m

Theorem 1 Suppose T, T', and T” are the m-section, m < L, MTDs of
C(4L,4), Rr(1,2), and Cy, 4, respectively, considered as linear codes over
Fj. Then

C(4L,4) =R(1,2)+Crs and T =T xT".

Proof If 2! < 4L < 2' then 4L — kmax(4L,4) = { + 1 and L —
kmax(L,4) = | — 1. Hence kmax(4L,4) — kmax(L,4) = 3L — 2. This
equality and Lemma 2 result in C(4L,4) = R1(1,2) + Cp 4. Assume that
M' and M" are the TOGMs of the given m—section MTDs of Rr(1,2)
and Cp 4, respectively. The set consisting of the distinct nonzero entries
of M' and M", considered as matrices over F3, is a linearly independent
set. Therefore it follows from Theorem 4 in (2] that matrix M consisting
of the rows of M’ and M" is a TOGM of the m—section MTD of C(4L, 4),
implying that T =T'xT". m

Example 1 The doubly even self-orthogonal code specified by the fol-
lowing generator matrix is C(6, 4)

w3 r el
Therefore, the following is a TOGM for the 6-section MTD of the 18-
dimensional linear code
C(241 4) = Re(1, 2) + CG,4
= {(6,6,1) ® (4,1,4) + (6,5, 2) ® [1100] + (6, 5, 2) © [1010]}
+{(3,2,2) ® (2,1, 2) ® [1000]},
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with generator matrix

1111 0000 0000 00CO 0000 G0CO "
0000 1111 06000 0000 GCO0  G0CO
0000 0600 1111 0000 0000 0000
0000 0000 0000 1111 0CCO 0O0CO
0000 0000 €000 ©0CO 1111 0000
0000 0000 0©0C0 0000 0000 1111
1160 1100 0000 0000 ©COO0 CGCO
0000 1100 1100 0000 0000 0000
Mn _ 0000 0000 1100 11060 0000 0000
- 0000 0000 0000 1160 1100 0000
0000 0000 0000 0000 1100 1100
1010 1010 6000 0000 0000 0000
0000 1010 1010 0©0CO 0000 GCCO
0000 0000 1010 1010 0000 0CCOD
0600 (0000 0000 1010 1010 0000
0000 0000 0000 0000 1010 1010
1600 1000 1000 1000 0000 GCCO
L 0000 0600 1000 1000 1000 1000

For L > 3 each section of the L-section MTD of R.(1,2) is a complete
bipartite graph and except for the initial and final indices the trellis has
4 states at each time index. As a result Rp(1,2) has state complexity 2.
Thus S(4L) = S(L) + 2, where S(4L) and S(L) are the state complexities
of C(4L,4) and C(L,4), respectively.

It follows from the structure of the trellis diagram of R(1,2) that
for L > 4, the number of parallel subtrellises in the L—section MTD of
C(4L,4), denoted by t(C(4L,4)), is at most two and is equal to that of
C(L,4). Furthermore, if ¢(C(L,4)) = 2 then kmax(L,4) = 1 + kmax(L —
2,4), which is true if L = 2! + 1. Figure 1 presents the trellis structure of
C(24,4).
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