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1. Introduction

Define

and

Sp=A+---+ A%, p>1.
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Hirschhorn(3] showed
8, = (n+2)2n-1

2
Sy =(n+2)2>"1-1n ( :)

Ss = (n+2)28%1 _ 3 x 272, (2:) .

In general, he obtained recurrence relations
Syp = (11’) 2" Sap1 — (’2’) 22n Gy gt
+-t (B) a5, + (-1,
s = (1) 75 (3) 75
+(-1)? (ﬁ) 2P Sp11 + (—1)P2*"1P,,

where P, = Y71 AP AP

m=0 n—1-m-*
Earlier, Calkin[1] obtained the third identity in a somewhat indirect

manner.
Zhang|6] discussed the following sum:
Ry = Ay - AT+ +(-1)"4]

and obtained

Ry = (-1)"2n!, (1)
92n-1 if n is even,
Be = _gon-1 (g ("2;1) if  is odd, @
2

Ry = (<12 1_3x2l(-1)"F ("_,,_:_11) ifn isodd. (3)
2

In general, he obtained recurrence relations
P

D1 (7) 2Ry (-17Qs @

i=1

Ry

P
Royprn = ) (-1)* (f) 2" Rypi1-i + (—1)PQpi1p,  (5)

i=1
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and in particular, if n is odd,
p . p .
Ry = ) (-1 (z) 2" Ropr1-i + (-1)P2"7'Qpp  (6)
=1

where Q, 4 = 3" (—1)™ AP, A?

m=0 -1l-m:

In this note, we shall give combinatorial proofs of (1)-(6).

2. Combinatorial Proofs

For any positive integers m and n with m < n, put [m,n} = {m,m +
1,...,n}. Let B, be the Boolean algebra, i.e. the lattice of subsets of
{1,7] ordered by inclusion. For any T € B,, T° denotes the complement

of T in [1,n).
2.1 Proof of (1)

Let Ry be the collection of subsets of [1, n] such that |T| is even for all
T € R1, Rf the complement of R, in By, and C(n, k) the set of k-subsets
of [1,n]. It is well known that [R,| = |[R§| = 2", and |C(n, k)| = (Z)
It is clear that Ay — Agx_; is the cardinality of C(n, k).

If n is even, then

n

R, = Z(—l)"‘Am = (An—An-1)+(An-2—Ap-3)+ - +(A2—-A1)+ Ao

m=0

is the cardinality of R;.

If n is odd, then
—Ri= ) (~1)™*'Ap = (An— An-1)+(An-2— An-3)+- -+ (A1 — Ao)

m=0

is the cardinality of RS.
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Hence R, = (—1)"2"~1. o
2.2 Proof of (2)

Consider the Cartesian product: B, X By, . A pair (U;,Us) € B, x B,
is said to be even or odd according to the parity of max{|U,|,|U2|} .
Let
R2 = {(U1,U2) € By, x By, : (U, Us) is even},

RS = {(U1,U2) € Bp x By : (U, Uz) is odd}.

It is easy to see that A2 — A2_, counts the number of pairs (U;,Uz) €
B, x B, with ma.x{lUll, |U2I} = k.

Hence

R, = i(—l)"‘Az _f IR2| ifniseven,
2- m =\ —[Rg| ifn isodd.

m=0

Now define a map

11)2 M Bn X Bn — Bn X Bn
UUz) — (T1,To)

o U,\{n} if nel; .
whereT,—{ U;u{n} if ngUi, 1=1,2.

Then 1), is an involution, i.e. 2 is an identity map. It is easy
to see that 1, changes the parity of pairs (Uy,Uz) € Bp x By, unless
U] = |U2| + L,n € Uy,n g Uz or |Us| = |Uh| + 1,n € Uz,n & U Let

S={({Uh,U2):|[Ui| = U2l +L,neUy,ngUsor Uy =|Uh|+1,n €
Ua,n &€ Uy }.

Then 1, induces an 1-1 correspondence between Ry \ R2 NS and

RS\ R5 NS which means
|R3| — IR2| = |RZN S| — [R2N S| (7)
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Now we count the number of elements of R, NS and R§ NS respec-
tively. In fact, R2 NS is the set of pairs (U1, U;) such that (U;,Us,) is
even and either |[Uy| = |Us|+1,n € Up,n g Uz or |Up| = Uy +1,n €

Uz,n & Us. It is easy to establish a bijection from the set
{(U1,U2) € By, x By : |Uy] = |Uz| + 1,n € Uy,n & Uy, |Uy | is even}
to the set
{(U1,U2) € Bu—y X Bu—y : Uy = Up \ {n}, |U]| = |Uz] is odd}.
Hence
[ReNS| = 2|{(U1,Uz2) € Br x By :
[U1| = |Uz2| + 1,n € Ur,n & Uy, |Uy| is even}|
= 2|{(U{,U2) € B,_1 x B, -1
Uy = Ui\ {n},|U]| = |Us] is odd}|
2 [ZE_; (2k+ 1)] if n is even,
£-3 e
2[2/:;0 <2Ic+1)] if » is odd.
Just as we did above, we obtain
n—2 n— 2
. 2 Z;;—o( ok )] if n is even,
RENS| = ost o 1072 (9)
2 [Ek—f& ( ok ] if n is odd.
Comparing (7),(8) and (9), we obtain

-2 (5 (75) -5 (231)) o

k=0

—

if n is even, and

- = 2|2 () K (50)]



ast n_1\?
— —1\¢ -
- Fen(e)
=0
= 2 x the coefficient of "' in (1 - t)*"1(1 +¢)*!

= (1-p)t
= 2(-1)"*F (nn_:ll) (10)

2

if n is odd. On the other hand,

|RS] + |Ra| = |Bn x By| = 22"

Hence

|Ra| = 2271 if n is even,
Ry =

~|Rg| = —22n-1 — (—1)"F* (",,:11) if n is odd.

2

2.3 Proof of (3)

We shall complete the proof in a similar way to that used in the

section 2.2.
Consider the Cartesian product: B, x B, x B, = B2 . A triple

(U1,U2,U;) € B2 is said to be even or odd according to the parity of
max{|U1],|Us|, |Us|}.
Let n be odd,

Ra = {(Ul,Uz,Ua) S Bﬁ : (Ul,Uz,Us) is even},

Rg = {(Ul, Uz, U3) (S Bi : (Ul, Ug,Ua) is Odd}.

Then —R3 = A3 — A3_| + ... + A} — A} is the number of elements in

RS.
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Define a map

PY3: BpXByxB, — B, xB,xDB,
(U1, U3, Us) — (N,T2,T3)

_J Ui\{n} ifnel;, ,_
WhereT’_{U,-U{n} ifn ¢ U, i=1,2,3.

Then %3 is an involution, i.e. 42 is an identity map. Let 7 denote the
set of triples (Uy, Uz, Us) such that either |[U;| = |U;| +1,|U;| > |Ukl,n €
Ui,n ¢ Uj or |U;| = |Ux| = |Uj| + 1,n € U; N Uk, n & U;, where i, j, k are
distinct numbers from one to three. It is easy to see that 13 changes the
parity of (Uy, Us, Us) if and only if (U1, Uz, Us) € T. Hence 13 induces a
bijection from R3\ R3N 7T to R§ \ R§ N T which implies that

[R5l — [Rs| = IR5NT| - [R3 N T|. (11)

Now we count the number of elements of R§N7 and R3N7 respectively.
In fact, R§ N 7T is the set of (Uy,Uz,Us) such that (Uy,Us,Us) is odd
and either |U;| = |Uj| + 1,|U;| > |Ukl,n € Ui,n € Uj or |Ui| = |U| =
|U;| +1,n € U; N Uy, n & Uj, where i, j, k are distinct numbers from one

to three.

Let W; = {(U1,Uz2,Us) €e RENT : |U;] = max{|U1|,|U2|,|U3|}},i =
1,2,3. Then

RENT =W UWo UWs.

We count the number of the elements in W,.

Observe that
Wi = Wi U Wi U Wiz U Wy,

where
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Wi = {U eEW : |U1l = |U2| + 1,|U|| > |U3|,n elUy,n ¢ Uz},
Wia = {U EW, : |Uh] = |U3| =|Us|+1,nel) NUsz,n € Uz},
Wiz = {U EW,:|Uh] = |U3| +1, |U1| > |Uz],n € Uy,n & U3},
Wig = {U e W : lU1| = lel = |U3| +1,nelUyNUsz,n ¢ Us},
U= (U17U27U3)’

Through reasoning similar to that used in the section 2.2 for counting

|R2 N S}, we obtain

25t 1\3
il =i =3 (")
k=0
= 3
(Wi N Was| = Z (né;cl) )
k=0

(Wi N Wizg| = [Wh O Wyy| = [Wha N Whg|

= |W12 nWMl = |W13 nWMl =0.

By the inclusion-exclusion principle,
n—1 n-1
e fn_1\2 2%k I n_1\®
wi=2 (3 (") (S (5)) 2 (')
k=0 3=0 k=0
It can be seen that

Wi = [Wa| = [Wsl,

n—1

2 _1 3
Wi W = [Wa Wl = W3 n W] =3 (n% ) !
k=0

[Wi N W, N Ws| = 0.

By the inclusion-exclusion principle,

IR T| = [W, UWa UWs| = 6 (go ("2;1)2) (i (’J‘)) .
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Similarly, we can obtain

mon=o($(331)) (£ ()

Comparing (11) yields

IRS| — |Rs| = [R§NT| - |Rs N T|
-y n—1 2 (& n

- o1 (") (30)
k=0 j=0

- 2R



x Z(ZZ;) 2( 1)‘( ‘1)

2 i (Tl—l)
j=i+1 i= J
2
n— n—1
= 6[2 1)
-1

() -Som
< 20 >+§;<1>=(‘>§("J)
= o= (i) S (1)
S5 B (TR0
= o[ ()] isoao

On the other hand,

IRS| + |Ra| = |Ba x B, x B| = 2°",

SO

Rs = —|R§| = (-1)"2**" -3 x 2*~}(-1)*F ("n_ill) .
2

2.4 Proofs of (4)-(6)

Let
E, = AB+AL+---= > AP,
0<m<n, 2lm
0, = A+A5+--= > AR,
o<m<n, 2 X"‘
Wpe = ASAi’._l + A’z’Az—a t-= Z AR Ag;—l ms
0<m<n-—1, 2|m
Vou = AJAL L+ AJAL ,+--= Z ALAL -

0<m<n-1, 2 /rm
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Then
Rp = Ep - O,,,

Qp,q =Wp,q— Vg

First , we consider the set

A= U {(m7T17°'-,Tpan+1,-.-,T2p):
0<m<n,2im
T:’s in B, with |T.,| <m,j= ]_’2’.“’1,}

It is clear that

A= ) AR =2"E,
0<m<n,2lm
For1 <i<p,let
'Ai= U {(m,Tla"'an7Tp+l7"'7T2p)eA:lTp'l-il Sm}.
o<m<n,2lm

Then

I‘Ail = 2(p—l)nEp+ly i=12,...,p
AN A =2y, i # 55 4,5 =1,2,...,p,

......

[A1N---NAp| = Egp.
Denote the complement of A; in A by Af,i=1,2,...,p. Then
Ain---nA = {(m,Thye o, Tpy Tpry -+, Top) € A

0<m<n—1,2}m
ITP+iI >m,i=1,... 7p}'

Hence

MENAS--nAS|= D ABAR =W,
0<m<n—1,2m
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By the inclusion-exclusion principle,
Wpp = 2"Ep — (117> 2(p_l)nEP+1 + o+ (F1PEy,
50,
Eyp=(?)2"Eypor +--- + (-1)P1 (P ) 27" E, + (—1)PW,
P 1 2p-1 p P p.p-
Similarly,
Oz = (P )270pp_y +---+ (=1)P"1 P} 270, + (-1)?V,
P 1 2p—-1 P P P,p-

Observing that R, = E, — Op and Qp,q = Wy g — V,, 4, we obtain

Ryp = (’1’) 2" Ropy + -+ + (=1)P~! (z) 2" R, + (~1)°Qp -

Next, just as we did for Ry,, we consider the set

C= U {(m,Tl,...,Tp,Tp+1,...,T2p+1):

0<m<n,2|m

Ti’sin By, with [Tyl <m,j=1,...,p+1}
which provides |C| = 2P"E, ;. For 1 <i < p, let

G= U {mT,....TpTpe1,-.., Tops1) €C: T3] < m).
0<m<n,2|m

Then
Ict' = 2(p—l)uEp+29 t=1, 2) EERY )
IC:NC;| =2P~DmEy 8, i34 4,5=1,2,...,p,

......

ICLN - NCp| = Eapyr.
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Denote the complement of C; in C by Cf,i = 1,2,...,p. It is clear

that
Cfn.ﬂcg: U {(m;Tl:"'1Tp3Tp+la""T2P+l)Ec:
0<m<n—-1,2|m
|Ti| > m,i=1,...,p}.
Hence

csnes---ncgl= Y. ARTAD =

n—1-m p+l,p-
0<m<n—-12|m

By the inclusion-exclusion principle,
Wpi1p = 27" Epsr1 — (?) 2P Ep g+ 4 (1) (g) Ezpt1,
)
Eypy1 = (’l’) 2" By — (’2’) vk SN
7 () 2 By 4 (1 Wi

Similarly,

I

(Il)) 2"0O2p — (12)) 22n02p_1 + .-

e (Z) 2" 0pr1 + (1) Vpr1,p-

02p+1

Observing that R, = E, — Op and Qp,q = Wp g — V3 4, We obtain

R2p+l = (i’) 2nR2p_ (12)) 22"R2p—1+'“
+ 0 (2) 2 By 4 (1P Qi

which is (5).
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In particular, if n is odd, then m,n — 1 — m have the same parity,

y _ p+1 AP
')VP-H'P - Z Am An-l—m
0<m<n-1,2|m
1
= 5( Z A?n+lA$z—1—m+ Z Af:-ll—mAfn)
0<m<n—-1,2|m 0<m<n—1,2|m

1
= Slegran + ARTLAD) (45T AL, + ALTLAD) 4
+(ARELAD AR AT )]
1
= 5 [ABAL 1 (Ao + An1) + ABAT o(Az + Anog) + -+
+ Az_lAg(An—l + Ao)]
= 2‘"—1 Z Aanz—l—m
0<m<n—1,2im
= 2" 'W,,.
Similarly, Vp41,, = 2771V, ,. Hence
Qp+1p =Wpt1p — Vopr1p = 2n—l(Wp,p = Vop) = 2n_lQP,p
which implies
R2p+1 = (1;) 2nR2p_ (127) 22“R2p—1+'“
+ 0 (2) Ry + (<192 1Qy

The proof of (6) is complete.

3. Conclusion

In 1994, Calkin obtained a curious identity of sums of 3-powers of
the partial sum of binomial coefficients [1]. In 1996, Hirschhorn supplied

the identities involving 1 and 2-powers of the partial sum of binomial
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coefficients and some recurrence relations [3]. In 1999, Zhang considered
the alternative sums [6]. In view of the fundamentality of combinatorial
interpretation for a combinatorial identity on enumerative combinatorics
(4], recently, in [2] we show the combinatorial proofs of identities of Calkin
and Hirschhorn. In this paper, we give combinatorial interpretations
of some binomial identities involving the alternative sums. Finally, by
applying our same method we expect to obtain the combinatorial proofs

of this kind of curious identity was extended by J. Wang and Z. Zhang

[5]-
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