THE QUOTIENTS OF G3,11,924

T. Maqsood and Q. Mushtaq Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan.

The groups $G^{k,l,m}$ have been extensively studied by H. S. M. Coxeter. They are symmetric groups of the maps $\{k,l\}_m$ which are constructed from the tessellations $\{k,l\}$ of the hyperbolic plane by identifying two points, at a distance m apart, along a Petrie path. It is known that PSL(2,q) is a quotient group of the Coxeter groups $G^{k,l,m}$ if -1 is a quadratic residue in the Galois field F_q , where q is a prime power. G. Higman has posed the question that for which values of k,l,m, all but finitely many alternating groups A_n and symmetric groups S_n are quotients of $G^{k,l,m}$. In this paper we have answered this question by showing that for k=3,l=11, all but finitely many A_n and S_n are quotients of $G^{3,11,m}$, where m has turned out to be 924.

1. Introduction

The group $G^{k,l,m}$ has been defined by H.S.M. Coxeter in his famous paper [2] as a group with presentation $< X, Y, Z : X^k = Y^l = Z^m = (XY)^2 = (YZ)^2 = (ZX)^2 = (XYZ)^2 = 1 > .$ If we let x = XY, y = X and t = YZ, then the group $G^{k,l,m}$ has the presentation $< x, y, t : x^2 = y^k = t^2 = (xy)^l = (xt)^2 = (yt)^2 = (xyt)^m = 1 > .$ He has shown that $G^{k,l,m}$ is finite when $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} > 1$, and infinite when $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} \leq 1$. The exceptions to this inequality being the spherical triangle groups, which are finite, or the Euclidean triangle groups, which are soluble.

 $G^{k,l,m}$ groups are symmetric groups of the regular maps $\{k,l\}_m$. Let k and l be two points, at a distance m apart along a Petrie path. Then the map $\{k,l\}_m$ is constructed from the tessellation $\{k,l\}$ of the hyperbolic plane by identifying these points. Let q be a power of a prime p. Then H.S.M. Coxeter has shown also that $G^{k,l,m}$ is isomorphic to either PGL(2,q) or PSL(2,q) for some small values of k, l

Mathematics Subject Classification 2000: Primary 20F05, Secondary 20G40 Keywords: Coxeter groups, Alternating and symmetric groups, Coxet diagrams,

Spherical triangle groups, Euclidean triangle groups, and Soluble groups.

E-mail: qmushtaq@isb.apollo.net.pk

and m. S.E. Wilson [13] has proved that PSL(2,q) is a quotient of $G^{k,l,m}$ if -1 is a quadratic residue in F_q and PGL(2,q) is a quotient of $G^{k,l,m}$ otherwise.

G. Higma 1 posed the question that for which values of k, l, m, all but finitely many alternating groups A_n and symmetric groups S_n are factor groups of $G^{k,l,m}$. He has shown that all but finitely many alternating groups A_n of finite degree are homomorphic images of the triangle group $\Delta(2,3,7)$. He has described in [3] that for k=3, l=7, and m=19, A_n is a homomorphic images of $G^{k,l,m}$. Note that PSL(2,113) is another homomorphic image of $G^{3,7,19}$.

In [5,7,8,9], Higman's question has been answered for the triplets (k,l,m)=(3,8,720), (5,7,84), (4,5,276), (5,6,36). The authors of this paper have answered Higman's question for k=4, l=5 and m=120 in [1]. Recently, the Higman's question has been answered in [10] for the triplet (k,l,m)=(5,5,24) where n is congruent to 2 or 11 modulus 20.

Information about $G^{3,11,8}$ is known in [2]. It seem, there is no information available for the groups $G^{3,11,m}$ where m > 8. In this paper we have taken k = 3, l = 11 and answered Higman's question for minimum values of m by using a diagrammatic argument as in [6]. That is, we have shown that all but finitely many positive integers n, both A_n and S_n occur as homomorphic images of $G^{3,11,924}$.

If $\Delta(2,3,11) = \langle x,y : x^2 = y^3 = (xy)^{11} = 1 > \text{ then it is of index } 1 \text{ or } 2 \text{ in } G^{3,11,m}$ and is isomorphic to the group $\Delta(2,3,11;s) = \langle x,y : x^2 = y^3 = (xy)^{11} = (x^{-1}y^{-1}xy)^s = 1 > \text{where } s = m \text{ if } m \text{ is odd and } s = \frac{m}{2} \text{ if } m \text{ is even. It is mentioned in } [2] \text{ that } LF(2,23) \cong \Delta(2,3,11;4) \text{ which is of order } 6072 \text{ and } G^{3,11,8} \text{ is isomorphic to } PGL(2,23) \text{ which is of order } 12144.$

2. Coset Diagrams for $G^{3,11,m}$ and their Composition

We shall use coset diagrams, attributed to G. Higman, to prove our result. These coset diagrams depict an action of $G = \langle x, y, t : x^2 = y^3 = t^2 = (xy)^{11} = (xt)^2 = (yt)^2 = 1 > \text{ on a finite set (or space)}$ and are defined as follows.

The 3-cycles of y are represented by triangles whose vertices are permuted counter-clockwise by y. Any two vertices which are interchanged by an involution x, is represented by an edge. Every vertex of the diagram is fixed by $(xy)^{11}$. The action of t is represented by reflection about a vertical line of axis. Fixed points of x and y are denoted by heavy dots. This graph can be interpreted as a coset diagram, with the vertices identified with the cosets of tab(v), the stabilizer of some vertex v of the graph, or as 1-skeleton of the cover of the fundamental complex of the presentation which corresponds to the subgroup tab(v). By table D(n) we shall mean a coset diagram with table n vertices satisfying the relation table n vertices table n and table n vertices satisfying the relation table n vertices table n vertices satisfying the relation table n vertices table n vertices satisfying the relation table n vertices table n vertices satisfying the relation table n vertices table n vertices satisfying the relation table n vertices ta

For example, the following coset diagram depicts a transitive representation of the group $\langle x,y,t:x^2=y^3=t^2=(xy)^8=(xt)^2=(yt)^2=1 \rangle$ of degree 16. Here x acts as:(1 8)(2 5)(3 4)(6 12)(10 11)(13 14),

y acts as: $(1\ 2\ 3)(5\ 6\ 7)(8\ 9\ 10)(11\ 12\ 13)(14\ 15\ 16)$, and t acts as: $(1\ 2)(5\ 8)(6\ 10)(7\ 9)(11\ 12)(15\ 16)$.

Fig-3

We will need to join together two, or more, coset diagrams. The technique of joining coset diagrams together has been given by W.W. Stothers [11]. Two diagrams can be joined together provided they contain a pair of a fragment of a special type called a 3-handle. By a 3-handle $3h_a^b$ in an arbitrary permutation representation of $G = \langle x, y, t : x^2 = y^3 = t^2 = (xy)^{11} = (xt)^2 = (yt)^2 = 1 \rangle$, we mean a fragment of a coset diagram in which two vertices a, b are both fixed by x, and are interchanged by t, and also lie in the same cycle of $(xy)^3$. Diagrammatically it means:

Fig-4

Given two coset diagrams P and Q with 3-handles $3h_a^b$ and $3h_{a'}^{b'}$ respectively, we can construct a new coset diagram P+Q by placing the two diagrams on a common vertical axis of symmetry, one above the other, and joining a to a' and b to b' by x-edges as follows.

Fig-5

In this way, we can join any number of coset diagrams. The resulting diagram will again be a coset diagram for the action of G on a larger set. That is, the relations $x^2 = y^3 = (xy)^{11} = t^2 = (xt)^2 = (yt)^2 = 1$ are still satisfied. Also if $(\lambda, a_1, ..., a_{j-1}, \mu, a_j, ..., a_{q-2})$ and $(\sigma, b_1, ..., b_{j-1}, \tau, b_j, ..., b_{q-2})$ are the cycles of xy in the representation of G depicted by the two diagrams, then in the representation we see that $(\lambda, b_1, ..., b_{j-1}, \tau, a_j, ..., a_{q-2})$ and $(\sigma, a_1, ..., a_{j-1}, \mu, b_j, ..., b_{q-2})$ are two new cycles of the element xy in the resulting diagram. Other cycles of xy are unchanged, so xy still has order 11. Hence the new coset diagram is a coset diagram for G.

The required information from a coset diagram is written in a specific way. Each of the coset diagram is given a specification, consisting of the degree of the corresponding permutation representation of the group which is acting on a set of n elements, the number of 3-handles that will be used, the parity of the action of t, and the cycle structure of xvt and xv^2t .

We describe these as follows.

- By D(n) we shall mean a diagram with n vertices satisfying the given properties, namely, $x^2 = y^3 = t^2 = (xy)^{11} = (xt)^2 = (yt)^2 = 1$.
- By $3h_a^b$, we mean the 3-handle with vertices a and b.
- By $xyt : (a \ \lambda)(b \ \mu)$, we mean that the vertices a and b lie in the cycles of xyt having lengths $\lambda + 1$ and $\mu + 1$ respectively.

3. Quotients of $G^{3,11,924}$

Theorem 3.1. (Theorem 13.9, page 39, [12]) Let p be a prime and G a primitive group of degree n = p + k with $k \ge 3$. If G contains an element of degree and order p then G is either alternating or symmetric.

Now that the essential information, terminology, and mechanism has been set, we state and prove our main result.

Theorem 3.2. All but finitely many A_n and S_n are quotients of $G^{3,11,924}$.

Proof. We use coset diagrams for the group $G^{3,11,924}$ depicting a transitive permutation representation of $G^{3,11,924}$ of arbitrarily large degree.

The cycles of the permutation(s) induced by xy^2t are affected in the same sort of way: provided a' and b' lie in distinct cycles of xy^2t . The cycles ending in a and a' will be juxtaposed to form a single cycle, and those ending in b and b' will be similarly combined.

We will need two basic diagrams which we join together to form the required one. Each of these diagrams is given a specification discussed earlier.

Consider the vertices labelled α, β and γ in the diagram D(24). Note that these three vertices lie in the same cycle of xy^2t having prime length.

Fig-6

D(33) Three (3) -handles, t is odd, $xyt = (a\ 3)(b\ 6)(c\ 3)(d\ 6)(e\ 3)(f\ 6)$, and $xy^2t = (a\ 6)(b\ 3)(c\ 6)(d\ 3)(e\ 6)(f\ 3)$.

Fig-7

```
D(24)
Two (3) -handles, t is even,
xyt = (a \ 6)(b \ 1 \ d \ 1)(c \ 6) \ 6, and
xy^2t = (a \ 1 \ c \ 1)(b \ 6)(d \ 6) \ 6.
```

Take u numbers of D(33) and v numbers of D(24) diagrams and connect them together in a specific order: D(33)u + D(24)v, We cannot join D(33) with D(33) or D(24) with D(24). The resulting diagram D(n) will have n vertices and it will be a diagram for the group $G^{3,11,924}$. The reflection t acts as an even or odd permutation, depending upon the values of t. For instance, if t is an odd number then t is odd and if t is an even number then t is even.

Also, the length of every cycle of xyt will be a divisor of 924 and so the diagram D(n) will give a permutation representation of the group $G^{3,11,924}$.

Note that the cycles of xy^2t are all of length d = 4, 6, 7, or 11. With the exception of 7, d is a divisor of 132. Thus the element $(xy^2t)^{132}$ yields a power of the cycle, fixing the remaining vertices.

Next we show that the representation of $G^{3,11,924}$ is primitive on the n vertices of D(n). Suppose that the representation is imprimitive. This means that the seven vertices of the cycle must lie in the same block, say B, of imprimitivity as $(xy^2t)^{132}$ fixes these vertices. Now α , β and γ belong to B and $\alpha x = \beta$, $\gamma y = \beta$ and $\beta t = \beta$. This means that B is preserved by the three generators x, y and t. This implies that B has n vertices or the representation is transitive. This contradicts the fact that D(n) has n vertices. Thus the representation is primitive. Since the group $G^{3,11,924}$ is primitive on n vertices and there exists a cycle of prime length, namely 7-cycle, we can use theorem 1 to conclude that the permutations x, y and t generate A_n or S_n .

Since y and xy are of odd orders, they evolve even permutations and therefore so does x. The permutation t is even or odd depends upon the value of n. Therefore, if n is an odd number then t is an odd permutation and so yields S_n as a quotient of $G^{3,11,924}$. Similarly, if n is an even number then t is an even permutation and yields A_n as a quotient of $G^{3,11,924}$.

Note that if $N = \langle x, y \rangle$, then N has index 1 or 2 in $G^{3,11,924}$ and is isomorphic to the group $\Delta(2,3,11;462) = \langle x,y: x^2 = y^3 = (xy)^{11} = (x^{-1}y^{-1}xy)^{462} = 1 \rangle$. The triangle group $\Delta(2,3,11)$, of which $\Delta(2,3,11;462)$ is a quotient and acts as a discontinuous group of conformal homeomorphisms of a simple connected Riemann surface [4].

Corollary 3.3. For all but finitely many positive integers n, A_n has the presentation $(x, y) : x^2 = y^3 = (xy)^{11} = (x^{-1}y^{-1}xy)^{462} = 1$.

ACKNOWLEDGEMENT

The authors are grateful to the referee for his valuable suggestions and comments.

REFERENCES

- M. Ashiq, Q. Mushtaq, T. Maqsood and M. Aslam, The Quotients of G^{4,5,120}, Europ. J. Combinatorics, 22, 2001, 905 909.
- 2. H.S.M. Coxeter, The Abstract Group $G^{m,n,q}$, Trans. Amer. Math. Soc., 45(1939), 73 150.
- 3. G. Higman, Construction of simple groups from character tables, Finite Simple Groups, Eds. M. B. Powell and G. Higman, Academic Press London, 1971, 205 214.
- 4. G.A. Jones and D. Singerman, Theory of Maps on Orientable Surfaces, Proc. London Math. Soc., 3, 37(1978), 273 307.
- 5. Q. Mushtaq, M. Ashiq, and T. Maqsood, The Symmetric Group as a Quotient of $G^{3,8,720}$, Math. Japonica, 1, 37(1992), 9 16.
- Q. Mushtaq and H. Servatius, Permutation Representations of the Symmetry Groups of Regular Hyperbolic Tessellations, J. London Math. Soc., 2, 48(1993), 77 – 86.
- 7. Q. Mushtaq, M. Ashiq, and T. Maqsood, The Quotient of $G^{5.7.84}$, Math. Japonica, 2, 40(1994), 340 353.
- 8. Q. Mushtaq, T. Maqsood, and M. Ashiq, On the Group $G^{4,5,276}$, Kobe J. Math., 12(1995), 1-7.
- 9. Q. Mushtaq, and N.A. Zafar, Alternating and Symmetric Groups as Quotients of $G^{5,6,36}$, Proc. Inter. Conf. Groups-Korea' 94(degruyter, Berlin), 1995, 241 247.
- 10. Q. Mushtaq, M. Ashiq, T. Maqsood, and M. Aslam, The Coxeter Group $G^{5,5,24}$, Comm. Algebra, 5, 30(2002), 2175 2182.
- 11. W.W. Stothers, Subgroups of the (2,3,7) Triangle Group, Manuscripta Math., 20(1997), 323 334.
- 12. H. Wielandt, Finite Permutation Groups, Academic Press, London, 1964.
- 13. S.E. Wilson, Refinements and Applications of Vince's Construction, Geom.Ded., 2, 48(1993), 231 242.