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The groups G**" have been extensively studied by H. S. M. Coxeter. They are
symmetric groups of the maps {k,/} » which are constructed from the tessellations
{k,I} of the hyperbolic plane by identifying two points, at a distance m apart, along
a Petrie path. It is known that PSL(2,q) is a quotient group of the Coxeter groups
G*hm if —1 is a quadratic residue in the Galois field F,, where g is a prime power.
G. Higman has posed the question that for which values of &,/,m, all but finitely
many alternating groups 4, and symmetric groups S, are quotients of G*/_ In this
paper we have answered this question by showing that for k = 3,/ = 11, all but
finitely many A, and S, are quotients of G>!!"", where m has turned out to be 924.

1. Introduction

The group G*"" has been defined by H.S.M. Coxeter in his famous paper [2]
as a group with presentation < X,Y,Z : Xk=VY =2" = (XY)? = (Y2)* =
(ZX)? = (XYZ)2 = 1 > . If weletx = XY, y = Xand t = YZ, then the group G*/"
has the presentation <xyt:x2=y == = @) =0N* =
(xy)™ = 1 > . He has shown that G* is finite when % + 4+ 4 > 1, and
infinite when + + 1+ < 1. The exceptions to this inequality being the
spherical triangle groups, which are finite, or the Euclidean triangle groups, which
are soluble.

Gk groups are symmetric groups of the regular maps {k,/}». Let k and / be
two points, at a distance m apart along a Petrie path. Then the map {k,/}m is
constructed from the tessellation {,/} of the hyperbolic plane by identifying these
points. Let ¢ be a power of a prime p. Then H.S.M. Coxeter has shown also that
G*m is isomorphic to either PGL(2,q) or PSL(2,q) for some small values of &, /
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and m. S.E. Wilson [13] has proved that PSL(2, q) is a quotient of G/ if —1

is a quadratic residue in Fy and PGL(2,q) is a quotient of G otherwise.

G. Higma posed the question that for which values of k,/,m, all but finitely
many alternating groups A4, and symmetric groups S, are factor groups of Ghlm,
He has shown that all but finitely many alternating groups 4, of finite degree are
homomorphic images of the triangle group A(2,3,7). He has described in [3] that
for k=3,/=7, and m = 19, 4, is a homomorphic images of G*/. Note that
PSL(2,113) is another homomorphic image of G>7-1°.

In [5,7,8,9], Higman’s question has been answered for the triplets
(k,I,m) = (3,8,720), (5,7,84), (4,5,276), (5,6,36). The authors of this paper
have answered Higman’s question for k = 4, / = 5 and m = 120 in [1]. Recently,
the Higman’s question has been answered in [10] for the triplet (k,/,m) = (5,5,24)
where n is congruent to 2 or 11 modulus 20.

Information about G383 is known in [2). It seem, there is no information
available for the groups G>!''*" where m > 8. In this paper we have taken k = 3,
/=11 and answered Higman’s question for minimum values of m by using a
diagrammatic argument as in [6]. That is, we have shown that all but finitely many
positive integers n, both A4, and S, occur as homomorphic images of G>1:924,

If A(2,3,11) =< x,y : x2 =y3 = (xy)!! =1 > then it is of index 1 or 2 in
G*'' and is isomorphic to the group A(2,3,11;5) =< x,y : x> = y* = (x)'! =
(x7'y~'xy)* = 1 > where s = m if mis odd and s = £ if m is even. It is mentioned
in [2] that LF(2,23) = A(2,3,11;4) which is of order 6072 and G3'# js
isomorphic to PGL(2,23) which is of order 12144.

2. Coset Diagrams for g3 and their Composition

We shall use coset diagrams, attributed to G. Higman, to prove our result.
These coset diagrams depict an action of
G=<xyt:xt=p3=02 =) =)t =(N?=1> on a finite set (or
space) and are defined as follows.

The 3-cycles of y are represented by triangles whose vertices are permuted
counter-clockwise by y. Any two vertices which are interchanged by an involution
x, is represented by an edge. Every vertex of the diagram is fixed by (xy)''. The
action of ¢ is represented by reflection about a vertical line of axis. Fixed points of
x and y are denoted by heavy dots. This graph can be interpreted as a coset
diagram, with the vertices identified with the cosets of stab(v), the stabilizer of
some vertex v of the graph, or as l-skeleton of the cover of the fundamental
complex of the presentation which corresponds to the subgroup stab(v). By D(n)
we shall mean a coset diagram with n vertices satisfying the relation
== =) =)= =1

For example, the following coset diagram depicts a transitive representation of
the group < x,y,1 : x2 = 33 = 12 = (xp)® = (x£)? = ()2 = 1 > of degree 16. Here

x acts as:(1 8)(2 5)(3 4)(6 12)(10 11)(13 14),

yactsas:(1 23)(567)(8910)(11 1213)(14 15 16), and

tacts as:(1 2)(5 8)(6 10)(7 9)(11 12)(15 16).
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We will need to join together two, or more, coset diagrams. The technique of
joining coset diagrams together has been given by W.W. Stothers [11]. Two
diagrams can be joined together provided they contain a pair of a fragment of a
special type called a 3-handle. By a 3-handle 34% in an arbitrary permutation
representation of G =< x,y,t:x2 =y =2 = () = ()2 = ()2 = 1 >, we
mean a fragment of a coset diagram in which two vertices a, b are both fixed by x,
and are interchanged by ¢ and also lie in the same cycle of )3,
Diagrammatically it means:

b a

AN AN

Y

Fig-4
Given two coset diagrams P and Q with 3-handles 3A% and 3h", respectively,
we can construct a new coset diagram P + Q by placing the two diagrams on a
common vertical axis of symmetry, one above the other, and joining a to @' and &
to b’ by x-edges as follows.
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Fig-5

In this way, we can join any number of coset diagrams. The resulting diagram
will again be a coset diagram for the action of G on a larger set. That is, the
relations x2 = 3 = (xp)'' =12 = (x)® = (1)? = 1 are still satisfied. Also if
(A,ar,...aj_1,p,a,...,a42) and (0, by, ...,b,-1,7, b}, ..., b4-2) are the cycles of xy in
the representation of G depicted by the two diagrams, then in the representation we
see that (4,b1,...,6,11,7,4,..,a42) and (0,41, ...,a;-1, i1,b), ...,b4-2) are two new
cycles of the element xy in the resulting diagram. Other cycles of xy are unchanged,
so xy still has order 11. Hence the new coset diagram is a coset diagram for G.

The required information from a coset diagram is written in a specific way.
Each of the coset diagram is given a specification, consisting of the degree of the
corresponding permutation representation of the group which is acting on a set of n
elements, the number of 3-handles that will be used, the parity of the action of ¢,
and the cycle structure of xy and xy?1.

We describe these as follows.

@ By D(n) we shall mean a diagram with 7 vertices satisfying the given
properties, namely, x> = y* = 2 = (xp)"! = (xt)? = ()* = 1.
@ By 345, we mean the 3-handle with vertices a and b.

® Byxyr:(a A)(b p), we mean that the vertices @ and b lie in the cycles
of xyt having lengths A + 1 and it + 1 respectively.

3. Quotients of g1
Theorem 3.1. (Theorem 13.9, page 39, [12]) Let p be a prime

and G a primitive group of degree n = p + k with k > 3. If G contains an element
of degree and order p then G is either alternating or symmetric.

Now that the essential information, terminology, and mechanism has been set,
we state and prove our main result.

Theorem 3.2. Ailbut finitely many 4, and S,, are quotients of G>'!:924,
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Proof. we use coset diagrams for the group G2 depicting a transitive
permutation representation of G>'724 of arbitrarily large degree.

The cycles of the permutation(s) induced by x)?1 are affected in the same sort
of way: provided @' and &' lie in distinct cycles of xy?1. The cycles ending in a and
a' will be juxtaposed to form a single cycle, and those ending in & and b’ will be
similarly combined.

We will need two basic diagrams which we join together to form the required
one. Each of these diagrams is given a specification discussed earlier.

Consider the vertices labelled a, 8 and 7 in the diagram D(24). Note that these
three vertices lie in the same cycle of xy*¢ having prime length.

yaN
N N

a b

>

/]
N \d/ N
AN
N NS

e f

Fig-6
D(33)
Three (3) —handles, ¢ is odd,
xyt = (a 3)(b 6)(c 3)(d 6)(e 3)(f6), and
xy*t = (a 6)(b 3)(c 6)(d 3)(e 6)(f3).

Fig-7
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D(24)

Two (3) —handles, ¢ is even,
xyt=(a6)(b1dl)c6)6, and
xp¥t=(al c 1)b 6)d 6)6.

Take u numbers of D(33) and v numbers of D(24) diagrams and connect them
together in a specific order: D(33)u + D(24)v, We cannot join D(33) with D(33)
or D(24) with D(24) . The resulting diagram D(n) will have » vertices and it will
be a diagram for the group G*>!'924. The reflection ¢ acts as an even or odd
permutation, depending upon the values of » . For instance, if » is an odd number
then ¢ is odd and if » is an even number then / is even .

Also, the length of every cycle of xyt will be a divisor of 924 and so the
diagram D(n) will give a permutation representation of the group G>!'!924,

Note that the cycles of xy%t are all of length d =4,6,7, or 11. With the
exception of 7, d is a divisor of 132. Thus the element (xyzt)132 yields a power of
the cycle, fixing the remaining vertices.

Next we show that the representation of G>!'-92 is primitive on the n vertices
of D(n). Suppose that the representation is imprimitive. This means that the seven
vertices of the cycle must lie in the same block, say B, of imprimitivity as (xy?() 132
fixes these vertices. Now a, 8 and y belong to B and ax = f8, yy = B and Bt = f.
This means that B is preserved by the three generators x, y and ¢. This implies that
B has n vertices or the representation is transitive. This contradicts the fact that
D(n) has n vertices. Thus the representation is primitive. Since the group G>!1:924
is primitive on » vertices and there exists a cycle of prime length, namely 7-cycle,
we can use theorem 1 to conclude that the permutations x, y and ¢ generate 4,, or
Sn.

Since y and xy are of odd orders, they evolve even permutations and therefore
so does x. The permutation ¢ is even or odd depends upon the value of #. Therefore,
if nis an odd number then 1 is an odd permutation and so yields S, as a quotient of
G31924_Similarly, if n is an even number then ¢ is an even permutation and yields
An as a quotient of G311:924,

Note that if N =< x,y >, then N has index 1 or 2 in G*'!24 and is isomorphic
to the group A(2,3,11;462) = <x,y: x> =3 = () = ¢y xp)*? =1 5.
The triangle group A(2,3, 11), of which A(2,3,11;462) is a quotient and acts as a
discontinuous group of conformal homeomorphisms of a simple connected
Riemann surface [4)].

Corollary 3.3. For all but finitely many positive integers n, A, has the
presentation < x, y :x2 = y3 = (xy)'' = (x7'y7'xy)*2 = 1 >,
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