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1. Introduction

Let there be bpg experimental units which are grouped into b blocks
each comprising a p x ¢ arrangement of plots (units) where both p and ¢
are greater than 1. A design for v treatments for these units is said to be
connected if it permits all elementary treatment contrasts to be estimated
under a standard linear model for the design. For given v, b, p, g, we denote
the class of all such connected designs by D(v, b,p, q).

The problems of optimality and construction of designs in D(v,b,p, q)
when observations within blocks are correlated have been addressed by
several researchers, see [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 20,
21], for example. In these papers, universally optimal and highly efficient
two dimensional designs have been determined and constructed for some
design parameters under certain error processes in conjunction with sim-
plifying model assumptions. The present paper addresses the optimality
and construction problems under the following block effects model with the
autonormal error process

Yo=Xyr+ZB+¢, cov(e) =5, (1.1)

where Yy is the response vector, 7 is the vector of treatment effects, Xq4
is an bpg x v plot-treatment design matrix that defines the allocation of
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treatments to units, S is the b x 1 vector of fixed block effects, and Z =
I, ® Jpgx1 is the plot-block incidence matrix. Note that the model has no
parameters for rows and/or columns within blocks. The error covariance
matrix ¥ considered here is given by

0*’S ! = I, ® (Ipg — a1 (I, ® Hy) — ao(Hp ® Iy) — as(H, ® Hy)).

Here the error covariance matrix parameters a;, a;, and a3 are assumed
positive. Note that the error correlations arising from units within each
block are functions of these parameters. Furthermore, for T to be positive
definite, a1, asg, and a3 must satisfy

s m ™ T 1
+ a3c08—— + 2308 ———CO0S

COS —_— -,
1 g+ 1 P+l g+l 2

The square matrices H, and H, of orders p and g, respectively, are

1, if(@—1)==1,

1, if(l=0I) =,
(Hp)ur = { (-t , and (Ho)u = {0, otherwise.

0, otherwise,

The generalized least squares information matrix Cy for estimation of
treatment contrasts under (1.1) is

Ca= XX - X'57 122’2712y~ 2's7' X, (1.2)

where (Z'S71Z)~ denotes a generalized inverse of Z’£~1Z. To simplify
Cy for an arbitrary design d, we introduce the following notations:
c;i = replication of treatment i in the four corner plots of block 7, the
~ plots (1,1),(1, g), (p, 1), (p, g) being the corner plots in a p x g block,
€); = replication of treatment i in the 2(q — 2) edge plots of the first and
last rows of block j, these edge plots being the plots (1,«) and (p,u)
- foru=23,...,9—-1inap x g block,
€); = replication of treatment 7 in the 2(p — 2) edge plots of the first and
last columns of block j, these edge plots being the plots (u',1) and
(u',q) for ' =2,3,...,p—1 in a p x q block,
my, = replication of treatment ¢ in the (p — 2)(g — 2) interior plots of block
7, the plots (v',u) forw' =2,3,...,p—1,u=2,3,...,9 — 1 being the
_ interior plots,
rJ; = replication of treatment 7 in block j,
n;;» = the number of times that treatments ¢ and 7’ occur as row neighbors
in the b blocks,
ng;,;, = the number of times that treatments 1 and ¢’ occur as column neigh-
bors in the b blocks,
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n% = the number of times that treatments i and i’ occur as diagonal
neighbors in the b blocks,

w = pq —2p(q — Doy — 2q(p — 1)az — 4(p - 1)(g - 1)as,
:l,[‘7 = (1 -1 —Qn —a3)c5‘+(1 201 —an —2&3) +(1-a;—2as —203)8
+(1 - 2a) — 2a9 — 4a3)md,..
With these notations, the (%, i')-th element cgy;¢ of the matrix Cy given
by (1.2) simplifies as follows:

dri

>

b
. 1
Caii = Z’"Zti — 2a31ng;; — 209mg; — 203“555 " E yﬂz. ’ (1.3)
j=1 =
Caii? = —Q1 Mgy — QNG — a3ndu DN z(yzh (yit' , iFE (1.4)

It follows from Proposition 1 of Kiefer’s [3] that, under model (1.1)
with ¥ as specified, a design d* is universally optimal in D(v, b, p, q) if
(i) trace(Cga.) > trace(Cy) for all d € D and
(ii) Cg. is completely symmetric with the diagonal elements all equal and
the off-diagonal elements all equal.

Using equations (1.3) and (1.4) in conjunction with Kiefer’s [3] sufficient
conditions (i) and (i), we state the following theorem.

Theorem 1.1. A design d* is universally optimal in D(v,b,p,q) for gen-

eralized least squares estimation of treatment contrasts under (1.1) if

(a) Zz—l(alnd‘u + aong.;; + a3nd‘u) < Zz—l(alndu + agng; + a3n5u)
for all d € D(v,b,p, q),

() Zj:l Zi:l(yioi)z < 2_,-:1 Yio1(yk)? for all d € D(v, b, p, q),

(c) forall i # 4/, njuys = A, MGuiyr = Ae, n8i = A,

(d) E§=l(yﬁ.i)(yﬂ.,~,) =y, a constant, for all i # i'. &

The conditions (a) and (b) are needed for the maximal trace condition
(?) above, and (c) and (d) give the complete symmetry condition (iz). We
refer to conditions (a) and (c) as neighbor conditions and conditions (b)
and (d) as replication conditions. For the purpose of constructions, the
optimality conditions (a) — (d) need to be expressed more simply. For
v > 4, condition (a) is satisfied if no treatment is neighbored by itself in
rows, in columns, and in diagonals. For all v > 2, condition (b) is satisfied
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if, for all 1 # 7/,
?/i'i = '.'?

i=1 j=1
= (1 — 2a; — 203 — 4a3)pg/v(cy + 2a3)2p/v
+ (a2 + 203)2q/v - (4/v)as
=w/v.

For all i and j, the value yf;.i can be made exactly equal to 7 if v = 2,4, and
p =0 (mod v/2), ¢ =0 (mod v/2). These two special cases are considered
in Section 2. )

For all other p, q, and v, the value y); cannot be made exactly equal
to g for all 4 and 7. Then, expressing the replication conditions even more
simply and constructing universally optimal designs are hardly possible
without some restrictions on the design parameters and/or on the class of
competing designs. We address this problem in section 3.

2. Optimal designs for v =2 and v =4

Consider first the class D(v = 4, b,p = 2m, ¢ = 2n) where m and n are
any positive integers. Then condition (a) of Theorem 1.1 is satisfied by a
design d if
() nhy; =nG; =nd; =0 for all 4,
and condition (b) with y%; = § (hence (d) too) is satisfied if
(f) (,&irelinmi) = Q,n—1,m—1,(m - 1)(n—1)) for all 5 and j.
Hence we state

Theorem 2.1. Let m > 1 and n > 1 be integers. A design d* is univer-
sally optimal in D(v = 4,b,p = 2m,q = 2n) for generalized least squares
estimation of treatment contrasts under (1.1), with X as specified, if d*
satisfles (c), (e) and (f). O

Universally optimal designs of Theorem 2.1 are given below with b= 3
blocks. Define

0 o© e
(l 2), if 1 is odd

A= Jnx1® (A1, Ag, ..., A,) where A; = 1 o
( ) , if1iis even.
0 o
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Then by inspection one may verify that the following three blocks (with oo
as an invariant under addition)

A A+ ngxgn(mod 3), A+ 2J2,,.x2,.(mod 3),
give a universally optimal design in D{4, 3, 2m, 2n) for every pair of integers
m > 1, n > 1. If necessary, one may use multiple copies of these blocks to
increase the number of error degrees of freedom.

Example 1. Theorem 2.1 designs for some m and n.

For m = n = 1, the three blocks are

0 oo 1 2 o
1 2/'\2 0/)’\0 1)
For m = 1, n = 2, the three blocks are
0 0o 1 2 1 0o 2 0 2 0o 0 1
1 2 0 0/’ \2 0 1 00/’ \0 1 2 o}
For m =1, n = 3, the three blocks are
0
1 2
2 oo
0 1

For m = 2, n = 2, the three blocks are

2
co
1

NO O

o0

oNn ~ O
-8
~—

0 c0o 1 2 1 c0o 2 O 2 co 0 1
1 2 0 o 2 0 1 0 1 2 o
0 o1 2} 1 0o 2 0}° 2 0o 0 T
1 2 0 o 2 0 1 o© 01 2

For v = 2, no connected design can have nj,; = ng,; = n%; = 0 for all
i. Hence to satisfy the condition (a) of Theorem 1.1, it is necessary to know
which of the three a’s is equal to min{a,, a3, a3}. For the second order
conditional auto-normal error covariance process considered in this paper,
the conditional expectation of any observation given all other observations
is a linear combination of the neighboring observations where the weights of
row, column, and diagonal neighbor(s) are a;, a2, and a3 respectively (see
[2]). Hence it is not unreasonable, especially in agricultural field trials, to
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assume that both o) and a3 are greater than as. Under this assumption,
condition (a) of Theorem 1.1 is satisfied if

and condition (b) is satisfied if
(&€ €hinmd) = (2,4 — 2,0 — 2,(p — 2)(g — 2)) for all i and j. (2.2).

This last condition (2.2) implies that 4}, = § for all i and j and hence
that condition (d) is satisfied. However, (2.1) and (2.2) cannot be achieved
simultaneously if both p and ¢ are odd. Hence

Theorem 2.2. Let p > 2 and q > 2 be integers at least one of which is
even. A design d* is universally optimal in D(v = 2,b,p, q) for generalized
least squares estimation of treatment contrasts under (1.1) with oy, > a3,
uw=1,2 if (2.1) and (2.2) are satisfied. 20,

Each block of a universally optimal design {rom Theorem 2.2 has the fol-
lowing property:

(#47) no treatment is neighbored by itself in rows and in columns.

The condition (2.1) follows immediately, and condition (2.2) from the
restriction that at least one of p and ¢ is even.

As noted above, the conditions (2.1) and (2.2) cannot be met simulta-
neously if both p and ¢ are odd. In this case, we have failed to show that
the design d* having the property (7ii) is optimal for all «;, a2 and as.
However, we offer the following result.

Theorem 2.3. Let p > 3 and q > 3 be odd integers. The design d* having
the property (iii) is universally optimal in D(v = 2, b, p, ¢) under (1.1) with
a;>a3,t=12ifay+ay—az > -4-1,;

Proof: It is sufficient to prove the theorem just for » =1 and so ignore the
superscript j. For the design d*, we have

T — c —
Tgeii = Tiges; = 0,

ng'ii = 2(p - l)(q - 1)! 1= 112)

w+1 .
yd°l=_2_s (23)
_w—l
Yd=2 = 2
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Using (2.3), we obtain trace(Cys) =pg —4(p — 1)(g — 1)az — ﬂ.;—;ﬁl

Now let d € D be any design with neighbor properties different from
those of d* described in (2.3). Then d must have ng;; <2(p—1)(¢—1) -1,
nl,; = 1 for least one i, and ng;; > 1 for at least one i. Since v = 2, a
decrease in n;; by 1 results in an increase of at least 1 for each of nj;; and
nS;;. This implies that anj; +aonS;; + asnd; > 204 +2a2+2(2(p—1)(g—
1) — Das. Thus

trace(Cy) < pg —2a; — 200 — 2(2(p ~ 1)(g — 1) = Nz —w/2

<trace(Cg) if oy + g —a3 > —.
4w

This completes the proof. ¢

Combining Theorems 2.2 and 2.3, we see that if max(a;,a2) > Z%u"
then d* is universally optimal for all p and q. As we have assumed o; > a3
and a; > asz, our Theorem 2.3 does not cover values of a;, aj, and oy, if
any, for which a;+a2—a3 € (max(ay, a2), £ ). It is this set of a’s for which
we have failed to determine a universally optimal design in D(v, b, p, ¢) when

both p and q are odd.
3. Neighbor balanced designs forv=3 and v > 5

For v = 3 and v > 5, it is hardly possible to construct designs that sat-
isfy all four optimality conditions of Theorem 1. By relaxing the replication
condition, various classes of designs that are highly efficient with respect
to the universally optimal designs have been introduced in the literature,
see {17, 18, 19]. Here we introduce the following class of neighbor balanced
designs.

Definition 1. Neighbor Balanced Design. A design d* € D(v,b,p, q)

is said to be a neighbor balanced design, henceforth referred to as an

NBD(v,b,p, q), if it satisfies the neighbor conditions (a) and (c) of Theorem

(1.1) and the following condition:

(e) d* is a balanced block design for v treatments in b blocks each of size
k = pq.

To construct an NBD for v = 3, denote the three treatments by 0, 1,
2. Construct a p x g block satisfying the condition in (2.1) such that the
three treatments appear equally or as nearly equally as possible. Call this
block A. Then the three blocks A, A+ 1 (mod 3), A + 2 (mod 3) give an
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NBD(v=3,b=3,p,q). As an example, the following three blocks give an
NBD(3,3,4,4):

N O N -
o= OoON
N = O
o= OoON
o= OoON
N = O
O N
- N = O
N = O
N O N
O = OoON
DO N -

For » > 5, we concentrate only on the construction of designs with
binary blocks for which condition (a) of Definition 1 is satisfied with no
treatment neighboring itself in rows, in columns, and in diagonals. For the
purpose of our constructions, we let Fy(z) = {0,z°% z!,...,z*"2} denote the
finite field of order s with primitive root z, where s is an odd prime power.
Also, we use the notation BBD(v, b, k) for a balanced block design for v
treatments in b blocks of size k each. A BBD(v,b,k) is a BIBD(v, b, k)
whenever k < v. Furthermore, we use the convention that co + z = oo for
all finite z.

We utilize the method of differences (see {14], Chapter 2), to construct
an NBD with binary blocks. Using this technique, one needs to construct.
a set of initial blocks such that the differences arising from the elements of
these initial blocks satisfy some conditions. If v = 2m + 1 is a prime or a
prime power, then m initial binary blocks of an NBD(v,b = muv, p,q) can
always be constructed for all p > 2 and g > 2 such that pg < v. We state
this result in the following lemma.

Lemma 1. Let v =2m+1 (m > 2) be a prime or prime power. Let A be
a p x g block of pq distinct elements of F,(x). Then the blocks A; = z*~' A,
i=1,2,...,m, are the m initial blocks of an NBD(v,b = v(v — 1)/2,p,q)
with A, =p(g—1), Ac = q(p — 1), and da = 2(p — 1)(g - 1). ¢

Neighbor balanced designs for some non-prime power numbers of treat-
ments in 2 x v/2 complete blocks can be found in [13]. Neighbor balanced
designs in 2 x 2 blocks are balanced incomplete block designs with nested
rows and columns and are constructed in [15]. Here we offer a method for
constructing NBDs for v = s+ 1 treatments in p x ¢ blocks for some other
values of p and ¢ where s is an odd prime power. We describe our method
in the following theorem.

Theorem 3.1. Let s be an odd prime or prime power. Let m,, u, p, and
q be positive integers such that m,(s+1) = upq. Suppose that p x q blocks
Ay, Ao, ..., Ay of the elements of {Fg(x)Uoo} can be constructed satisfying
the following conditions:

(iv) each block is an arrangement of pq distinct elements of {F;(z) U oo},

282



(v) The symbol co appears in exactly m; blocks where 1 < m; < u,
(vi) the symmetric differences arising from the finite elements of all blocks
are each nonzero elements of Fy(z) exactly A = m(pg — 1) times.
(vii) the symmetric finite row, column, and diagonal neighbor differences
arising from all u blocks are, respectively, A, = 2up(q — 1)/(s + 1),
Ae =2u(p — 1)g/(s+ 1), and A\g = 4u(p — 1)(¢g — 1)/(s + 1) copies of
the nonzero elements of F,(z).
(viiz) The symbol oo is neighbored by A, A;, and A4 finite elements in rows,
columns, and diagonals, respectively.
Then the following ws blocks A5, 1 =1,2,...,u, j =1,2,...,s, form
an NBD for v = s + 1 treatments in b = us binary blocks each of size
pPXq.

Aii = A;, )
U A+ 27 Vg,
Here we use the convention that co + z7~! = oo for all j.

Proof: By construction. The conditions (iv) — (vi) imply that blocks
A, Aa, ..., A, are initial blocks of the BIB design with A = m;(pg — 1).
The conditions (vii) and (viii) guarantee that the design is balanced for
nearest row, column, and diagonal neighbors. O

As an application of the above theorem, we have the following corollary.

Corollary 1. Let s=4m+ 1 (m > 2) be a prime or prime power. Define
2m + 1 blocks each of size 2 x 3 as follows.

A1=(°° 1 1+x’"), Am+1=(°° z™ :t:"‘(l-l—x”‘)),

2 g™ 1-z™ 2z™ 3™ z™(1 - z™

z2m o0 ISm
Azmsr = 1 0 zm™ )°

0 1 1 ™ i . .
Aipr = (2 £2m lizm)z', i=1,...,2m -1, i # m.
Then the blocks Ay, A,,...,2m+1 are initial blocks of an NBD(s+1, s(s+
1)/2,2,3) with A\, =4, A\ =3, and \g = 4. ¢

Proof: Denote the s+ 1 treatments by the s+ 1 elements of {F,(z) U co}.
We first show that the blocks Ay, A, ..., Aom41 are initial blocks of a BIB
design. More specifically, we must show that the symmetric differences
arising from the finite elements of the 2m + 1 initial blocks are 15 copies of
the nonzero elements of F,(z). To see this, first consider the initial blocks
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A; and App41. Replace the symbol co by zero in A; and A4y and
denote the resulting blocks by B; and B,,,, respectively. Then, utilizing
z?™ = —1 = s — 1, the symmetric differences arising from within-block
elements of By, Az, ..., Am, Bm+1, Am+2,- - -, Aom are

+{1,2,s-1,1+z™,1-2z™,5~-1,2,z™,z™,3,1 —z™, 1+ z™, 2™ + 2,
2 —z™ 2z} @ {z%, =, 22,..., 2?1}

which are each nonzero element of F,(z) exactly 15 times. Hence the sym-
metric differences arising from within-block finite elements of initial blocks
Ay, Ag, ..., Aoy are
(15 copies of the nonzero elements of F,(z)) except
+{1,2,s-1,(1+z™),(1 —z™),z™,2z™,z™, (1 —z™),1 + z™)}.
The symmetric differences arising from the finite elements of the last initial
block Ay are

+{1,2,s-1,1+z™,1~-z",z™,2z",z™,1 —z™, 1 +z™}.

So the differences arising from within-block finite elements of initial blocks
Ay, Ag,. .., Aam41 are 15 copies of the nonzero elements of F;(z), and hence
A = 15 for pairs of finite elements. As co appears in 3 blocks, which have
15 finite elements between them, every pair of the form (oo, f), f € F,(z)
also appears 15 times. Thus the BIB design condition is satisfied.

Similarly, we see that the row, column, and diagonal neighbor differ-
ences arising from finite elements of Ay, Az,..., Aomt1 are A, =4, \c =3
and Aq = 4 copies, respectively, of the nonzero elements of F;(z). Thus
the neighbor balanced condition is satisfied, as the symbol co is neighbored
by A, = 4 finite elements in rows, A\, = 3 finite elements in columns, and
Aq = 4 finite elements in diagonals. Hence the design generated from the
initial blocks Ay, A,, ..., Agmy is an NBD design. &

Example 2. Corollary 1 design for v = 14 in 2 x 3 blocks.
Here s = 13, m = 3. The 7 initial blocks each of size 2 x 3 are as
follows.

o 1 9 co 8 7 12 oo 5 0 2 5
2 12 6/°"\3 5 9/'\'1 0 8/'\4 11 12)°
0 4 10 0 3 1 0 6 2
8 9 11/'\6 10 5/ \12 7 10/
The design constructed in corollary 1 is in fact universally optimal un-

der the block effects model (1.1) for at least two error covariance processes;
doubly geometric and conditional autonormal error processes {19]. One may
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verify that the corner design (whose blocks consist of four corner plots) and
the edge design (whose blocks consist of two edge plots) of this series of
designs are BIB designs. Hence all the universal optimality conditions of
Theorems 2.1 and 2.2 given in [19] are satisfied. Corollary 1 designs are
therefore universally optimal under the conditions stated in [19].

Theorem 2.1 reduces the construction problem of our NBDs to con-
struction of u initial blocks. However, this latter construction is tedious
and challenging. We offer designs in 2 x 3 blocks in our corollary 1. Even
blocks of size 2x ¢, 4 < ¢ < v/2, are not known for many design parameters.
However, the initial blocks of Lemma 1 can be utilized, in some cases, to
construct initial blocks of Theorem 2.1. This is illustrated in the following
example.

Example 3. s=11,v=12,p=2,g=4.

For s = 11 treatments, take the five 2 x 4 initial blocks of Lemma 1 as
follows.
01 3 2 0 2 6 4 0 41 8
56 9 4/°\10 1 7 8/°\9 2 3 5)'

0 8 2 5 0 5 4 10

(74610)’ 3 81 9)'
These are the initial blocks of an NBD(11, 55, 2, 4). To illustrate how these
initial blocks for 11 treatments can be used to construct initial blocks of an
NBD for 12 treatments in 2 x 4 blocks, denote the 12th treatment by co
and choose m; = 4 and u = 6. Replace four elements in four of the above
initial blocks by oo in such a way that the symbol oo is neighbored by A,,
¢, and A finite elements in rows, columns, and diagonals, respectively. The
resulting initial blocks are

co 1 3 2 o 2 6 4 0 oo 1 8
5 6 9 4/’ \10 1 7 8/ \9 2 3 5/’

0 8 o0 5 0 5 4 10

7 4 6 10/’ \3 8 1 9/°
Insertion of co in some units that had finite elements upsets the row, col-
umn, and diagonal neighbor difference counts of finite elements. Also the
BIB design difference counts are now unbalanced. All these lost differ-

ences can be recovered using an extra 2 x 4 block with eight finite elements.
This extra block can be constructed using a computer program. We used
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SAS PROC IML (SAS Interactive Matrix Language Procedure) program
to obtain the block

016 9

2 57 3/

The six blocks together satisfy all conditions of our Theorem 3.1. This
theorem does not give initial blocks of an N BD; it gives only a general
description of our initial blocks. The above example illustrates how these
initial blocks can be constructed utilizing initial blocks from Lemma 1. The
procedure works well for designs in 2 x g binary blocks for small v. Some
designs in 2 x 4, 2 x 5 blocks constructed this way can be found in [16}.

4. Efficiency of Neighbor balanced Designs.

Here we consider the A-efficiency under (1.1), with £ as specified, of the
neighbor balanced designs considered in this paper. Let ugy, ..., Hd(v-1)
be the v — 1 nonzero eigenroots of the information matrix Cy of a design
d € D(v,b,p,q). A hypothetical universally optimal design d* would have
Bde1 = Bde2 = ... = fige(y—1) = trace (Cy)/(v —1). Then a lower bound of
the A-efficiency under (1.1), with I as specified, of a design d with respect
to the hypothetical universally optimal design d* is given by

(v -1)/ T2l ()

-effici > .
A-efficiency > trace(Ca-)/(w — 1)

The lower bound of this A-efficiency of the design from example 3 is dis-
played in Table 1 for some combinations of a;, as and a3. Table 2 shows
this lower bound for the N BD(3, 3,4,4) presented in the beginning of sec-
tion 3. Similar numerical efficiency results can be found in [13,16] for some
other NBDs. Note that most of these efficiencies in Tables 1 and 2 are
more than 95%.
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Table 1. A-efficiency Lower bound of the design of example 3.

a1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2

a2
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.1
0.2
0.2
0.2
0.3
0.3
0.3

asz
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.10
0.15
0.05
0.10
0.15

A-Efficiency

0.969
0.973
0.977
0.981
0.985
0.988
0.987
0.973
0.976
0.976
0.974
0.979
0.977
0.970

i
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.3
0.3
0.3
0.3
0.3
04
04

a2
04
04
04
0.5
0.5
0.1
0.2
0.2
0.2
0.3
0.3
04
0.1
0.2

a3
0.05
0.10
0.15
0.05
0.10
0.05
0.05
0.10
0.15
0.05
0.10
0.05
0.05
0.05

A-Efficiency
0.981
0.974
0.945
0.978
0.941
0.973
0.974
0.966
0.943
0.970
0.945
0.945
0.961
0.943

Table 2. A-efficiency Lower bound of NBD(3,3,4,4).

(23]
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.3
0.3
0.4

a2
0.1
0.2
0.3
0.4
0.1
0.2
0.2
0.3
0.1
0.2
0.1

a3
0.05
0.05
0.05
0.05
0.05
0.05

0.1
0.05
0.05
0.05
0.05
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A-Efficiency

0.949
0.952
0.954
0.952
0.952
0.954
0.909
0.952
0.954
0.952
0.952
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