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Abstract A 3-restricted edge cut is an edge cut that disconnects a
graph into at least two components each having order at least 3. The
cardinality A3 of minimum 3-restricted edge cuts is 3-restricted edge con-
nectivity. Let G be a connected k-regular graph of girth g(G) at least 4
and order at least 6. Then A3 < 3k — 4. It is proved in this paper that if
G is a vertex transitive graph then either A\3 = 3k — 4 or A3 is a divisor of
|G| such that 2k —2 < A\3 < 3k—5 unless k =3 and g(G) = 4. If k = 3
and g(G) = 4, then A3 = 4. The extreme cases where A3 = 2k — 2 and
A3 = 3k — 5 are also discussed.
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1 Introduction

All graphs considered in this paper are undirected, connected, finite, sim-
ple, k-regular (k > 3) of order »(G) > 6. An m-restricted edge cut is an
edge cut that disconnects a connected graph into components each having
order at least m. The m-restricted edge connectivity A, is the cardinality
of a minimum m-restricted edge cut. Simplify m-restricted edge cut and m-
restricted edge connectivity as R,,-edge cut and R,,-edge connectivity re-
spectively. These concepts generalize the restricted edge cut and restricted
edge connectivity, proposed first by Harary [1] in 1983 and then studied by
Esfahanian and Hakimi in [2]. As was pointed out in {2], m-restricted edge
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connectivity is a more precise measure for the fault-tolerance and reliability
of networks than the traditional measures such as edge connectivity, and
has been studied in [3-5].

Let X be a subset of V(G) or a subgraph of graph G. Then G\ X
denotes the graph obtained by removing the vertices in X from G, G\ {w}
is simplified as G \ w. Let 8(X) denote the degree of X, namely the
number of edges with one end in X and the other in G\ X. Let &(G) =
min{d(X) : X is a connected vertex-induced subgraph of order 3 }. Then
A3(G) £ &(G). A graph G is called maximal 3-restricted edge connected
if the the last inequality becomes equality. Let g(G) indicate the girth of
graph G, namely the length of the shortest cycle. We present the following
result in this paper.

Theorem 3.1 Let G be a connected k-regular vertex transitive graph
of order at least 6. Then

(1) If g(G) > 5, then G is maximal 3-restricted edge connected.

(2) If g(G) = 4 and k > 4, then either graph G is maximal 3-restricted
edge connected or A\3(G) is a divisor of |G| such that 2k—2 < A3(G) <
3k — 5.

(3) If g(G) = 4 and k = 3, then X3(G) = 4.

Theorem 3.2 gives a necessary and sufficient condition for A3(G) =
2k — 2. In section 3 we also describe a class of graphs with A\3(G) = 3k — 5.
Theorem 3.1 generalize Mader’s result on the edge connectivity of vertex
transitive graphs (6], which states that k-regular connected vertex transitive
graphs are k-edge connected; on the other hand, it also strengthens Xu
Junming’s [8] recent result which states that connected K3-free k-regular
vertex transitive graphs are maximal Rj-edge connected if k > 3.

Before proving these results, we introduce some more notation and ter-
minology. The two components resulting from the removal of a minimum
R3-edge cut S from G are called Rz-fragments or simply fragments of G
corresponding to S, the smaller one (with less vertices) is called normal
fragment. If we denote by X one of the two fragments of G corresponding
to S, then the other one is denoted by X°. We often describe a fragment
by its vertex set. Fragments of smallest order are atoms. It is worth noting
that fragments defined here are connected vertex-induced subgraphs that
correspond to minimum R,,-edge cut and appear in pairs.
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Denote by £(G) the size of graph G. Let A and B be two disjoint subsets
of V(G), then [A, B] represents the set of edges with one end in A and the
other in B, we often simplify {{v}, B} as [v, B] and [4,V(G) — A] as I(A).
The cardinality of set A is denoted by |A|. A k-regular graph G is vertex-
transitive if for any two vertices © and v of G, there is an automorphism 7
in Aut(G) such that 7(u) = v, where Aut(G) is the automorphism group
of graph G. Let S be a subset of E(G), then G — S represents the graph
obtained by removing the edges of S from G but preserving their end points.
For other terminology we follow [7].

2 Auxiliaries

A flower F is a connected graph of order at least 6 that contains a cut
vertex w such that no component of F'\ w has order more than 2. We refer
to the vertex w as its stamen and the components of F \ w as its petals.
It is easy to see that cvery flower has only one stamen and at least three
petals.

Lemma 2.1 Let G be a connected graph with v(G) > 7. If G is not a
flower, then G contains Rz-edge cuts.

Proof Since G is connected, € > v — 1. We prove at first that the
lemma. is true when € = v — 1. In this case G is a tree. Every edge is thus a
bridge. Since G is not a flower, it contains either a path of length at least
5 or at least two vertices of degree 3 each. In the first case, let e = uv be
an edge of the path such that the vertex u and v are at distance at least
2 from the ends of the path. In the second case, let e be an edge on the
path that connects the two vertices of degree at least 3. In either case,
every components of G — e has order at least 3. Therefore edge e forms an
R3-edge cut of G.

Inductively accept the truth of the lemma when &(G) is smaller. When
€(Q) is larger than v — 1, we are going to verify that there is an edge e in
G such that G — e is not any flower. By induction, there is an R3-edge cut
T of G — e such that T'U {e} is an R3-edge cut of G.

If there is no such edge in G, then for any given edge e that is not cut
edge, G — e is a flower with stamen v and petals G;,i=1,2,3,...,p,p > 3.
Edge e must join two petals of G — e, say G and Ga, since G is not a flower
and the union of G, G5 and edge e is the only possible component of G\ v
different from that of {G — e} \ v. Since ¥(Gy) + v(G2) > 3, ¥(G,) < 2
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and v(G2) < 2, at least one equality in the last two inequalities holds, say
v(Gy) = 2. It is not difficult to see that e and v are contained in some
cycle C.

Claim firstly that v has only one neighbor in G; and G2 respectively.
If otherwise G, contains two neighbors @ and b of v, then G — av is not
any flower since no vertex of G is the stamens z (To see this, we need only
understand that either the component of @ = {G —av}\z that contains G3
or the component that contains G; and G has order more than 3), which
is a contraction. Let f be the edge of C joining v to Gy, put G — f = H.
Then H is a flower with stamen w by the hypothesis.

Claim secondly that w must be the unique vertex « in G» that is inci-
dent with v. Since if w is not in Gg, then either the component of H \ w
containing G; and G5 has order at least 3 or the component of H \ w con-
taining G;, 1 # 1, has order at least 3. If w is vertex of G2 not incident with
v, then the component of H \ w containing vertices u,v and subgraph G3
has order at least 3. In either case, H is not any flower, this contradiction
confirm our claim.

Since H is a flower with stamen w = u, (G — e) \ v contains exactly
three components with G3 being an isolated vertex ( since G;,i > 3, are
contained in the same component of H \ w as vertex v). Therefore

Y(G) = ¥(G1) + ¥(Ga) + 1(G3) + 1 S 6 < T < 1(G)

This contraction completes the proof. O

In the rest of this paper we restrict ourselves to k-regular connected
vertex transitive graphs with k > 3 and g(G) > 4. By Lemma 2.1, this
kind of graphs contains Rs-edge cuts. Since every connected subgraph of
order 3 of such graphs is a path of length 2, it follows that £&(G) = 3k — 4.

Lemma 2.2[6] k-regular connected vertex transitive graph is k-edge
connected.

Lemma 2.3[8] For every Ks-free, k-regular, connected, vertex transi-
tive graph with & > 3, A2(G) = 2k — 2.

Lemma 2.4 \(G) < A3(G) < A3(G).

Proof Since every Rz-edge cut is an Rj-edge cut, the first inequality
of lemma 2.4 is true. Let P be a path of G with length 2, and G; be a
component of G \ P. If G, is an isolated vertex or an isolated edge, then
9(G) = 3. This contradiction implies that I(G;) is an Rz-edge cut with
size at most &(P) = £3(G), and the second inequality thus follows. O
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Lemma 2.5 Let X and Y be two fragments of G. X NY is a fragment
if the following two conditions hold:

(1) »(XnY)2>3 (2) AXNY)<X(G)

Proof Let X and X° be the two fragments corresponding to a minimum
R3-edge cut S, Y and Y* be the two fragments corresponding to another
minimum R3-edge cut T'. Define

A=XNY,B=XNY5C=X°NY,D=X°NnY*

Since X° is contained in G \ A, the order of G \ A is not less than 3. In
order to complete the proof, we now need only to prove that both A and
A€ are connected.

(a) A€ is connected.

Since X° and Y are two connected fragments of G, A° is connected if
D is not empty. If D is empty, we claim that [B, C] is not empty, and A° is
thus also connected. Otherwise S = [A4,C],T = [A, B] and I(A) = SUT.
Therefore

3(A) = |S] + T = 22(G) > X3(G),

which is a contradiction to the fact that X NY is a fragment.

(b) A is connected.

Suppose, to the contrary, that A is not connected with components
A;,i=1,2,...,m. Then

m

> 0(A:) = 8(A) < As(G) < 3k —4

i=1
If m > 3, then there is some A; such that 8(4;) < k— 1, and I(A4;) is
an edge cut with size less than k, which contradicts Lemma 2.2. Hence,
m = 2. Since v(A) > 3, A, or Ay, say A;, has order at least 2. Therefore,
I(A,) is a restricted edge cut (Rs-edge cut), from Lemma 2.3 we have
O(A1) > 2k — 2. Hence

8(Az) = B(A) — O(A) <3k —4—(2k—2) =k -2

This is a contradiction to Lemma 2.2 and completes our proof. O
Lemma 2.6 Let X and Y be two distinct normal fragments of G. If
v(XNY) >3, then XNY is a fragment.
Proof According to Lemma 2.5, it suffices to prove that (X NY) <
A3(G). Let X and Y be the two fragments corresponding to Rz-edge cuts

295



S and T respectively. Define A, B,C and D as in the proof of Lemma 2.5.
Since

v(A) + v(B) = v(X) < v(G)/2 < v(Y*°) = v(B) + v(D)
Therefore
v(D) 2 v(A) (1)
We claim that
(D) =2 ;3(G) (2)

Formula (2) is obviously true if D is connected since, in this case, I(D) is an
R3-edge cut. If D is not connected with components D;,i = 1,2,...,p, then
according to lemma 2.2 we have 8(D;) > k. Formula (2) is thus true when
p 2 3. When p = 2, formula (1) implies that one of the two components
of D, say D, contains at least two vertices. From Lemma 2.2 and 2.3, we
find that 8(D;) > 2k — 2 and 8(D2) > k. Hence

9(D) = 0(D1) + 8(D2) = 3k — 2 > X3(G)

Our claim is thus true in either case.
Combining (2) and formula

3(A) + (D) (4, B]| + 1[4, C]| + 2|[4, D]| + |[B, D]|
+|[D1 C]‘ + 2|[Ba C]l - 2|[Bv C]I

= S|+ 71 - 2|[B,C]| < |8] + |T| = 2X3(G)

1l

we have (X NY') = 8(A) < A3(G) as desired. O

Since atoms are normal fragments that contain no fragments as their
proper subgraphs (i.e. fragments with less vertices), according to Lemma
2.6, we can easily prove the following

Corollary 2.7 If X and Y are two distinct atoms of G, then (X NY) <
2.0

Lemma 2.8 If G is not maximal R3-edge connected, i.e. A3(G) #
&3(G), then the atoms are disjoint unless k = 3 and A\3(G) = 3k — 5 and
9(G) = 4.

Proof Suppose, to the contrary, that X and Y are two atoms of G such
that X NY # 0 and at last one of the three equalities fails. Define A, B,C
and D as in the proof of Lemma 2.5. We are going to obtain a contradiction
by proving that B or C is a fragment contained in an atom. Since G is
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not maximal R3-edge connected, it follows that A3(G) < 3k — 5. Let I
be an arbitrary connected subgraph of G with order 3 or 4. Computing
8(H), we find that H cannot be a fragment of G unless k = 3, g(G) = 4,
A3(G) = 3k—5 and H is a cycle of length 4. This implies that »(X) > 5 and
v(Y) > 5. According to Corollary 2.7, »(X NY) < 2, therefore v(B) > 3
and v(C) > 3. On the other hand, since 8(B) + 9(C) < 8(X) + &(Y) =
2A3(G), 8(B) < A3{(G) or 8(C) < A3(G). Hence, B or C is a fragment by
Lemma 2.5. O

Lemma 2.9 Let X be an atom of G. If A\3(G) < 3k — 5, then X is
vertex-transitive unless k = 3 and ¢(G) = 4.

Proof Let u and v be two vertices of X. Since G is vertex transitive,
there is an automorphism 7 € Aut(G) such that 7(u) = v. Since 7(X)
is also an atom of G and the intersection of 7(X) and X is not empty, it
follows from Lemma 2.8 that 7(X) = X. Since 7|x, the restriction of 7 on
X, is an automorphism of X, X is vertex transitive. O

Lemma 2.10 Let X be a fragment of G. If G is not maximal R3-edge
connected, then v(X) > 2k — 2.

Proof Since g(G) > 4, X contains no triangles. Therefore, £(X) <
v(X)?/4. Let dx(u) denote the degree of vertex u in X. Combining the
previous result with 3(X) = A3(G) < 3k — 5, we have

kv(X) - (Bk-5) < kv(X)-MA(G) =kv(X)-0(X)
= ) dx(u) =2(X) < v(X)?/2
o 0 - 8)(X) - @k-H) =120
= W(X)-3)WX)-(2k-3))>0
Since G is not maximal R3-edge connected, it follows that »(X) — 3 > 0.
Hence v(X) >2k—-2. O

3 Main results

Proof Theorem 3.1 A 2-regular connected graph is obviously maximal

R3-edge connected, we thus need only consider the case where k > 3.
Suppose, to the contrary, that graph G is not maximal 3-restricted edge

connected. Let X be an atom of G. According to Lemma 2.10, we have

V(X)) > 2k -2 (3)
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By Lemma 2.9, X is an r-regular vertex transitive graph with 1 <r < k-1.
This implies
A3(G) = 9(X) = (k - r)v(X) (4)

Combining formula (3) with (4), we have
(k—7)2k-2) < (k—TV(X)=0(X)=A3(G) <3k -5
Therefore k —r=1,r=k -1 and
3k — 5 2 A3(G) = 3(X) = v(X) (5)

Let u be an arbitrary vertex of X and Nx(u) = {wi,...,wr—1} be the
neighbors of vertex » in X, let N; = Nx(w;) — {u}. Since g(G) > 5, the
intersection of N; and Nj is empty whenever i # j. Hence

v(X)>(k-1)2+1 (6)
Combining (5) and (6), we have
3k-5>(k-1)%+1=

0> (k—2)(k—3)+2

This contradicts the condition that k > 3, the first result of the theorem is
thus true.

For the second result, we suppose that G is not maximal R3-edge con-
nected, namely A3(G) < 3k — 5. Let X be an arbitrary atom of G. Then
by Lemma 2.9, X is an r-regular transitive graph. With similar reasoning
employed in the proof of the first part, we can show without difficulty that
r =k —1 and 3(X) = v(X). Since, by Lemma 2.8, the atoms of graph
G are disjoint, the union of 7(X),r € Aut(G), is a spanning subgraph of
G. Set m = [{7(X) : 7 € Aut(G)}|. Then, V(G) = mv(X) = md(X) =
mA3(G). Thus, A\3(G) is a divisor of |G| = v(G). By Lemma 2.3 and 2.4,
2k — 2 < X2(G) < A3(G). The second result follows.

On the one hand, by Lemma. 2.3 and 2.4, we have 4 = 2k —2 = Mo(G) <
A3(G); on the other hand, for any 4-cycle C of graph G, G\ C contains
no isolated vertex and isolated edge. Thus I(C) is an Rj-edge cut with
9(C) = 4k — 8 = 4, which implies that A\3(G) < 4. The last result is thus
also true and our proof finishes. O
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Theorem 3.2 Let G be a connected, k-regular (k > 4), transitive graph
with order at least 6 and girth 4. Then A3(G) = 2k — 2 if and only if G
contains Ky_1 —; as its vertex-induced subgraph.

ProofIf X = Kj_; - is a vertex-induced subgraph of G, then A3(G) <
0(X) = 2k — 2. The sufficiency follows from the combination of this obser-
vation with Lemma 2.3 and 2.4.

If \3(G) = 2k — 2, then graph G is not maximal 3-restricted edge
connected since k > 4. Let X be a 3-restricted atom of G. Then X is
a (2k — 2)-regular vertex transitive graph with girth 4 by Lemma 2.9 and
2.10. By the same reasoning employed in the proof of the first result of
Theorem 3.1, we can show that | X| = 0(X) = 2k — 2. This implies that

26(X) = ) dx(u) = (k- 1)(2k - 2) = (X) = |X|*/4
ueX
Thus, X is the complete bipartite graph of order 2k — 2. O

To discuss the extreme case where A3(G) = 3k—5, we introduce a class of
vertex transitive graphs known as circulants. Denote by G(n; a1, a2, ...,an)
the graph that has vertex set {1,2, ...,n}, where vertex j has neighborhood
N@G) = {j £a1,j £a,...,j £ap(modn)}. Then G(n;a;,az,...,as) is a
circulant of order n with jump sequence (ay, ..., as).

Lemma 3.3[9, Proposition 1] The circulant G(n;a1, a2, ..., a) is con-
nected if and only if ged(a,, as, ..., an) = 1.

Lemma 3.4{10, Theorem 1] Let G(n;a;,as,...,as) be a connected
circulant with & > 2 and ap < n/2. Then A2(G) = 4h - 2.

Let k be a sufficiently large odd integer, H be a (3k — 5)-cube with
vertex set {u; : ¢ = 1,2,...,23%*7%}, G = G(3k — 5;a1, a2, ..., a(k—1)/2) be 2
circulant with jump sequence (a1, as,...,ax-1y72) = (1,3,5,...,k — 2). By
Lemma 2.2 and 2.3, \o(H) = 3k —5 and A(G) = k—1. By Lemma 3.3 and
3.4, Ao(G) = 2k — 4.

Let G; be one of the 23%—% copies of the circulant G(3k—5;1,3,...,k—2)
with vertex set V(G;) = {ui1,...,ui3k-5}. Since H is a (3k — 5)-regular
bipartite graph, H has a (3k — 5) edge coloring C = (1,2,...,3k — 5).
Substitute G; for vertex u; in the graph H. If edge u;u; is colored with
color m in the coloring C, then join the vertex ;. to the vertex u;m.
Denote the resulting graph by @, we are going to prove that @ is a k-
regular vertex transitive graph with A3(G) = 3k — 5.
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Let u;s and u;, be arbitrary two vertices of Q. Let 7; be the permuta-
tion on V(Q) such that its restriction on the graph G; is an automorphism
that maps u; , to u; ., and that 7;(v) = v for other vertex v of Q not in Gj;.
Let 0;; be the automorphism of H that maps vertex i to vertex j. Then
OijT1T2 -+ - Tose-s is the automorphism of Q that maps vertex u;, to u; .
Consequently, Q is a k-regular vertex transitive graph.

Now, one can show that I(G;) is a 3-restricted edge cut of size 3k — 5,
which implies that A3(Q) < 3k — 5. Let X be an arbitrary 3-restricted
fragment of Q. If X is a subgraph of some G;, |X| > 2k — 2 by Lemma
2.10, we have

A3(Q)

0(X) 2 X2(G:) +1[X,Q\ Gi]| = 2k — 4 + | X]|
> 4k-6>3k-5.

If there are at least three G;s with X N G; # 0, then

2s(Q) = 8(X) =D IX NGi| 2 3M(G:) = 3¢

If X intersects exactly two G;s, then
A3(Q) = 8(X) = A2(Gi) + A\(G;) = 3k — 2.

These observations show that A3(Q) > 3k — 5. Therefore A\3(Q) = 3k -5
as we claim.
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