Average degrees of critical graphs

Xuechao Li

Division of Academic Enhancement
The University of Georgia
Athens, GA 30602
email:xcli@uga.edu

Abstract

Let G be a simple graph with the average degree d_{ave} and the maximum degree Δ . It is proved, in this paper, that G is not critical if $d_{ave} \leq \frac{103}{12}$ and $\Delta \geq 12$. It also improves current result by L.Y. Miao and J.L. Wu [7] on the number of edges of critical graphs for $\Delta \geq 12$.

Key words: edge chromatic number, critical graph.

1 Introduction

A graph is k-edge colorable if its edges can be colored with k colors in such a way that adjacent edges receive different colors. The edge chromatic number of a graph G, denoted by $\chi_e(G)$, is the smallest integer k such that G is k-edge colorable. A simple graph G is class one if it is Δ -edge colorable, where Δ is the maximum degree of G. Otherwise, Vizing's Theorem [10] guarantees that it is $(\Delta + 1)$ -edge colorable, in which case, it is said to be class two. An edge is called i-colored edge if it is colored by color i.

A critical graph G is a connected graph such that G is class two and G-e is class one for any edge e of G. Surfaces, in this paper, are

compact, connected two manifolds without boundary. Embeddings considered in this paper are 2-cell embeddings. Let S be a surface, denote c_S the Euler characteristic of the surface S. Let V, E and F be the vertex set, edge set and face set of a given embedded graph G, respectively. Let |V|, |E| and |F| be the cardinality of V, E and F of G, respectively. A k-vertex is a vertex of degree of k. We call a vertex z is a i^+ -vertex if $i \leq d(z) \leq 8$ ($i \leq 8$). Let $\phi: E(G) \to C$ be an edge-coloring. Denote by $\phi^{-1}(i)$ the set of edges colored with the color i where $i \in C$. Denote d_{ave} the average degree of G. Let $x \in V(G)$. Denote N(x) the set of vertices adjacent to x. We call a vertex y is a neighbor of x if $y \in N(x)$. For $V' \subseteq V(G)$, let $N(V') = \bigcup_{x \in V'} N(x)$.

1.1 Main Results

In 1965, Vizing [11] proved that any planar graph of maximum degree at least 8 is class one. In 1968, he [13] also made the following conjecture:

Conjecture 1.1 (Vizing planar graph conjecture) Every planar graph with maximum degree 6 or 7 is of class one.

For maximum degree $\Delta \leq 5$, there are graphs of class two.

Vizing planar graph conjecture seems to be very difficult. The case $\Delta=7$ was recently confirmed independently by Zhang [16] and D. Sanders and Y.Zhao [9]. The case $\Delta=6$ remains open.

H. Hind and Y.Zhao([3]) and Z.Yan and Y.Zhao([14]) proved that if a graph G can be embedded in a surface S of characteristic $c_S = -5, -4, \ldots, -1, 0$ and $\Delta(G) \geq 11, 11, 10, 9, 9$ and 8, respectively, then G is class one.

The following conjecture was proposed by Vizing [13] concerning the sizes and average degrees of critical graphs. Conjecture 1.2 If G = (V, E) is a critical simple graph, then

$$|E| \geq \frac{1}{2}(|V|(\Delta-1)+3).$$

That is, if

$$d_{ave}<(\Delta-1)+\frac{3}{|V|},$$

then G is not critical.

In 1981, Yap [15] gave some lower bounds on the number of edges of critical graphs with $\Delta \leq 7$.

Theorem 1.3 (Yap [15] 1981) Let G = (V, E) be a critical graph with the maximum degree Δ .

(1) If
$$\Delta = 6$$
, then $|E| \ge \frac{(9|V|+1)}{4}$;

(2) If
$$\Delta = 7$$
, then $|E| \ge \frac{5|V|}{2}$.

Lian-Ying Miao and Jian-liang Wu [7] gave another lower bound:

Theorem 1.4 (Miao and Wu [7] 2002) Let G = (V, E) be a critical graph.

If
$$\Delta \geq 8$$
, then $|E| \geq 3(|V| + \Delta - 8)$.

Currently, R. Luo and C.Q. Zhang [6] improved the Yap's result:

Theorem 1.5 (Luo and Zhang [6] 2002) Let G = (V, E) be a critical graph.

(1) If
$$\Delta = 8$$
, then $|E| > 3|V| + 1$;

(2) If
$$\Delta \geq 9$$
, then $|E| > \frac{10}{3}|V|$.

The following main theorem of this paper is motivated by Conjecture 1.2 and partial results mentioned above.

Theorem 1.6 Let G be a graph with maximum degree $\Delta \geq 12$ and average degree $d_{ave} \leq \frac{103}{12}$. Then G is not critical.

The following corollary of the main Theorem 1.6 gives a lower bound on the number of edges of critical graphs with $\Delta \geq 12$.

Corollary 1.7 Let G = (V, E) be a critical graph with $\Delta \geq 12$, then $|E| > \frac{103}{24}|V|$.

2 Application

We exclude a special case as following in order to present a theorem which extends the results by Z. Yan and Y. Zhao ([14]) for $c_S \geq -5$.

Lemma 2.1 Let G be a graph with $\Delta = 12$ and |V(G)| = 13 and G can be embedded in a surface S with $c_S \ge -6$. Then G is not critical.

Proof. Suppose that G is critical. Denote F the set of faces of G embedded in surface S with $c_S \ge -6$. Since G is simple, $|F| \le \frac{2|E|}{3}$, thus, by Euler formula that $|V| - |E| + |F| \ge -6$, we have $\frac{|E|}{3} \le |V| + 6$. And

$$d_{ave} = \frac{2|E|}{|V|} \le 6(1 + \frac{6}{|V|}) = 6(1 + \frac{6}{13}) \le 8.8 \tag{1}$$

Let $x \in V(G)$ be a 12-vertex and $y \in N(x)$ with $d(y) = d = min\{d(z); z \in N(x)\}.$

If d=12, then $d_{ave}=12$ which contradicts to equation (1). Hence, we assume that d<12 and x is adjacent to at least (12-d+1) 12-vertices by Lemma 3.1. So, G has at least (12-d+2) 12-vertices. Obviously, the number of 12-vertices is no larger than d (degree of d(y)). Thus, we have $12-d+2\leq d$, so, d is at least 7 which leads to $d(z)\geq 7$ for each $z\in N(x)$ by the definition of d(y).

(i) Claim that $d \neq 7$.

If d = 7, then, G must have at least seven 12-vertices. Thus,

$$d_{ave} = \frac{\sum\limits_{v \in V(G)} d(v)}{13} \ge \frac{7 \times 12 + (13 - 7) \times 7}{13} > 9.69 \text{ which contradicts to}$$
 the equation (1).

(ii) Claim that $d \neq 8$.

If d = 8, then, G must have at least six 12-vertices.

 $d_{ave} = \frac{\sum\limits_{v \in V(G)} d(v)}{13} \ge \frac{6 \times 12 + (13 - 6) \times 8}{13} > 9.8 \text{ which contradicts to the}$ equation (1).

By using similar arguments as of in (i), we know that $d \neq 9, 10, 11$. This contradiction completes the proof.

Theorem 2.2 A simple graph embedded in a surface S with $c_S = -6$ and $\Delta \geq 12$ is class one.

Proof. Let G be the smallest counterexample to the theorem with respect to the number of edges. Then, G is critical. By the Lemma 2.1, $|V(G)| \ge 14$.

Since G is simple, $|F| \leq \frac{2|E|}{3}$, thus, by Euler formula that |V| - |E| + |F| = -6, we have $\frac{|E|}{3} \leq |V| + 6$.

And $d_{ave} = \frac{2|E|}{|V|} \le 6(1 + \frac{6}{|V|}) \le 6(1 + \frac{6}{14}) \le 8.58 \le \frac{103}{12}$. Then, by Theorem 1.6, G is not critical, a contratiction.

3 Some Adjacent Lemmas

The main tools used in the proof of Theorem 1.6 are Vizing's Adjacent Lemma, Zhang's Adjacent Lemma and charge-discharge method. We will first introduce these known results.

Lemma 3.1 (Vizing's Adjacent Lemma [10]) If H is a critical graph with maximum degree Δ , that is, $\chi_e(H) = \Delta + 1$ and $\chi_e(H - e) = \Delta$ for every edge $e \in E(H)$, and if u and v are adjacent vertices of H, where the degree of v is d, then,

(i) if $d < \Delta$, then u is adjacent to at least $\Delta - d + 1$ vertices of degree Δ ,

and,

(ii) if $d = \Delta$, then u is adjacent to at least two vertices of degree Δ .

From the Vizing's Adjacent Lemma, one can get the following corollary:

Corollary 3.2 Let H is a critical graph with maximum degree Δ . Then

- (1) every vertex is adjacent to at most one 2-vertex and at least two Δ -vertices.
- (2) the sum of the degree of any two adjacent vertices is at least $\Delta + 2$.
 - (3) every vertex is adjacent to at least two Δ -vertices.
- (4) if a vertex is adjacent to a 2-vertex, then the rest of its neighbors are Δ -vertices.

We define N(x,y) to be the set of all vertices in $N(x) \cup N(y)$ for $x,y \in V(G)$.

Lemma 3.3 (Zhang's Adjacent Lemma [16]) Let G be critical, $xy \in E(G)$ and $d(x) + d(y) = \Delta + 2$. The following hold:

- (1) every vertex of $N(x,y) \setminus \{x,y\}$ is a Δ -vertex;
- (2) every vertex of $N(N(x,y)) \setminus \{x,y\}$ is of degree at least $\Delta 1$;
- (3) if $d(x), d(y) < \Delta$, then every vertex of $N(N(x, y)) \setminus \{x, y\}$ is a Δ -vertex.

Lemma 3.4 (R.Luo and C.Q. Zhang [6])

Let G be a critical graph with the maximum degree $\Delta \geq 5$. Assume that there is a 3-vertex x with each of N(x) of degree Δ . Then, there must be a vertex $y \in N(x)$ such that $d(y') \geq \Delta - 1$ for each $y' \in N(y) \setminus \{x\}$.

The following lemma generalizes the Lemma 3.4 and its corollaries will be used in the proof of main theorem.

Lemma 3.5 Let G be a critical graph with the maximum degree Δ . Let d(x) = d and each of N(x) is of degree Δ . Then there is a vertex $y \in N(x)$ such that there are at most d-3 vertices of $N(y) \setminus \{x\}$ with degree $\leq \Delta - d + 1$.

Proof.

By contradiction, assume that for each vertex $y \in N(x)$, there is at least d-2 vertices of $N(y) \setminus \{x\}$ with degree $\leq \Delta - d + 1$.

Let
$$N(x) = \{x^1, x^2, \dots, x^d\}$$
 and $d(x^i) = \Delta \ (i = 1, 2, \dots, d)$.

Let $G' = G - xx^d$. Since G is critical graph, G' has a Δ -edge coloring $\phi : E(G) \setminus \{xx^d\} \to C = \{1, 2, 3, ..., \Delta\}$.

For a vertex $v \in V(G')$, denote by $\phi(v)$ the set of colors appearing at the edges incident with the vertex v and denote $\overline{\phi(v)} = C \setminus \phi(v)$.

The coloring ϕ of G' can be regarded as a partial edge coloring of G with the edge xx^d uncolored. Without loss of generality, let $\phi(xx^i) = i$ $(i = \{1, 2, ..., d-1\})$ (see the following figure).

(1) We claim that $|\phi(x) \cap \phi(x^d)| = d - 2$.

Since $d(x^d) = \Delta - 1$ in G', we have $d - 1 \ge |\phi(x^d) \cap \{1, 2, \dots, d - 1\}| \ge d - 2$. Suppose that $|\phi(x^d) \cap \{1, 2, \dots, d - 1\}| = d - 1$. That is, $\phi(x) \subseteq \phi(x^d)$ and therefore, $C \setminus [\phi(x) \cup \phi(x^d)] \ne \emptyset$ as $|\phi(x^d)| = \Delta - 1$ and $|C| = \Delta$. Let $a \in C \setminus \phi(x^d)$. Now the partial coloring ϕ can be extended to a Δ -edge coloring of G by coloring the edge xx^d with the color a, a contradiction. Thus, $|\phi(x) \cap \phi(x^d)| = d - 2$.

Without loss of generality, in G', let $\phi(x^d) = \{2, 3, ..., \Delta\}$, $N(x^i) = \{x, x_2^i, x_3^i, ..., x_{i-1}^i, x_{i+1}^i, ..., x_{\Delta}^i\}$ $(i = \{1, 2, ..., d-1\})$ and $N(x^d) = \{x, x_2^d, x_3^d, ..., x_{\Delta}^d\}$.

By (1), we can assume that $\phi(x^ix_j^i)=j$ $(i=1,2,\ldots,d,\ j=1,2,\ldots,\Delta)$.

(2) For each pair $\{i,j\} \in C \times C$, every (i,j)-bi-colored component of $\phi^{-1}(i) \cup \phi^{-1}(j)$ is a path or an even cycle (a cycle of even order). Furthermore, for each pair $(i,j) \in [\phi(x) \setminus \phi(x^d)] \times [\phi(x^d) \setminus \phi(x)]$, the (i,j)-bi-colored path P containing one of $\{x,x^d\}$ must containing both of $\{x,x^d\}$ and x,x^d must be the endvertices of the path P. Otherwise, we can extend the coloring ϕ of G' to G by alternating colors i and j along path P and then color the edge xx^d with the color j if $x \notin V(P)$, or with the color i if $x^d \notin V(P)$.

We denote $P_{i,j}(y)_{\phi}$ the (i,j)-bi-colored path starting at y with $i \in \phi(y)$ and $j \in \overline{\phi(y)}$.

- (3) Clearly, for each $i \in \phi(x)$ and for each $j \in \{d, d+1, \ldots, \Delta\}$, $P_{i,j}(x)_{\phi}$ ends at x^d as $j \in \phi(x^d) \setminus \phi(x)$.
 - (4) We claim that $d(x_a^1) \ge \Delta d + 2, a \in \{d, d + 1, \dots, \Delta\}$.

We will show that $\{1, d, d+1, \ldots, \Delta\} \subseteq \phi(x_a^1)$ with $a \in \{d, d+1, \ldots, \Delta\}$. If $x_a^1 = x^d$, then $d(x_a^1) = \Delta$. So we may assume that $x_a^1 \neq x^d$.

$$(4-1) \{1, a\} \subseteq \phi(x_a^1).$$

Let $a \in \{d, d+1, \ldots, \Delta\}$. Since (1, a)-bi-colored path $P_{1,a}(x)_{\phi}$ starting at x must ends at x^d by (3) and $x_a^1 \neq x^d$, the vertex x_a^1 , which is on the path, must be incident with a 1-colored edge and an a-colored edge and therefore, $\{1, a\} \in \phi(x_a^1)$.

- (4-2) Assume that $k \notin \phi(x_a^1)$ for some $k \in \{d, d+1, \ldots, \Delta\}$ with $k \neq a$. The $P_{1,k}(x)_{\phi}$ with two endvertices x and x^d does not pass through the vertex x_a^1 , since $1 \in \phi(x_a^1)$ by (4-1) and $k \notin \phi(x_a^1)$. Let ϕ' be the new coloring obtained from ϕ by alternating the colors 1 and k along the (1,k)-bi-colored path $P_{1,k}(x_a^1)_{\phi}$ starting at x_a^1 . $(P_{1,k}(x_a^1)_{\phi}$ could be a single edge with color 1.) Then, in the coloring ϕ' , $P_{1,a}(x)_{\phi'} = xx^1x_a^1$, $\phi'(xx^1) = \phi(xx^1) = 1$ and $\phi'(x^1x_a^1) = \phi(x^1x_a^1) = a$. A Δ -edge coloring of G can be obtained from ϕ' by alternating the colors 1 and a along the path $xx^1x_a^1$ and then color the edge xx^d with color 1, a contradiction. So, $\{1,d,d+1,\ldots,\Delta\}\subseteq \phi(x_a^1)$ for $a\in\{d,d+1,\ldots,\Delta\}$ if $x_a^1\neq x^d$, and of course, $d(x_a^1)\geq \Delta-d+2, a\in\{d,d+1,\ldots,\Delta\}$ for $x_a^1\neq x^d$.
- (5) By the contradiction assumption and by (4), we have $d(x_j^1) \ge \Delta d + 2$ if $j \notin \phi(x) = \{1, 2, ..., d 1\}$ and $d(x_j^1) \le \Delta d + 1$ if $j \in \phi(x)$ where $j \ne 1$.
- (6) Claim that for each $i \in \{d, d+1, \ldots, \Delta\}$, $P_{2,i}(x)_{\phi}$ passes through x^1 .

Otherwise, let ϕ' be the new coloring obtained from ϕ by alternating the colors 2 and i for all edges of $[\phi^{-1}(2) \cup \phi^{-1}(i)] - P_{2,i}(x)_{\phi}$. Notice that $\phi'(y) = \phi(y)$ for each vertex $y \in \{x, x^1, x^2, \dots, x^d\}$ and the edge $x^1 x_i^1$ is now colored with color 2 and edge $x^1 x_2^1$ is colored with color i. By the same argument as of (4), we have $d(x_2^1) \geq \Delta - d + 2$, which contradicts to (5).

(7) Claim that for $i \in \{d, d+1, \ldots, \Delta\}$, $d(x_i^d) \ge \Delta - d + 2$ and each path $P_{2,i}(x)_{\phi}$ passes through x^d .

A new coloring ϕ' can be obtained from ϕ by uncolor the edge xx^2 and color the edge xx^d with color 2. Notice that $\phi(e) = \phi'(e)$ for each edge $e \in E \setminus \{xx^2, xx^d\}$ and therefore, $P_{2,i}(x)_{\phi} = P_{2,i}(x)_{\phi'}$ for each $i \in C \setminus \{2\}$. By applying the same argument as of (4), we know that (7) holds.

- (8) By contradiction assumption and (7), we have $d(x_j^d) \ge \Delta d + 2$ if $j \notin \phi(x)$ and $d(x_j^1) \le \Delta d + 1$ if $j \in \phi(x)$ where $j \ne 1$
 - (9) Claim that $d(x_i^b) \ge \Delta d + 2$ for $i = d, d + 1, \ldots, \Delta$.

If $x_i^2 \in N(x)$, then $d(x_i^2) = \Delta$. There is nothing to prove. So, assume that $x_i^b \neq x^1, x^d$ and $b = 2, 3, \ldots, d-1$.

Without loss of generality, we show that $d(x_i^2) \ge \Delta - d + 2$ for $i = d, d + 1, ..., \Delta$.

We will show, sufficiently, that $\{1, d, d+1, \ldots, \Delta\} \subseteq \phi(x_i^2)$ for $i = d, d+1, \ldots, \Delta$.

Let $i \in \{1, d, d+1, \ldots, \Delta\}$, by (6) and (7), $P_{2,i}(x)_{\phi}$ passes through both x^1 and x^d , and since the vertex x_i^2 is not an endvertex of the path, therefore, $\{2, i\} \subseteq \phi(x_i^2)$.

Assume that there exists a $k \in \{d, d+1, \ldots, \Delta\} \setminus \phi(x_i^2)$ where $k \neq 2, i$. Let ϕ' be the new coloring obtained from ϕ by alternating the colors 2 and k along the path $P_{2,k}(x_i^2)_{\phi}$. Notice that $P_{2,i}(x)_{\phi'} = xx^2x_i^2$ since $2 \notin \phi'(x_i^2)$. Let ϕ'' be a coloring obtained from ϕ' by alternating the colors 2 and i along the path $xx^2x_i^2$. Since $P_{2,k}(x)_{\phi}$ and $P_{2,k}(x_i^2)_{\phi}$ are vertex disjoint and by (6) and (7), the (2,k)-bi-colored path $P_{2,k}(x)_{\phi}$ passes through the vertex x^1 , so, the path $P_{2,k}(x_i^2)_{\phi}$ doesn't pass through the vertex x^1 . Therefore, in the coloring ϕ'' , $\phi''(e) = \phi(e)$ for each edge e incident with x^1 , $\phi(x^1x_i^1) = \phi''(x^1x_i^1) = \phi''(xx^2) = i$. By applying the same argument as of (4), we have $d(x_2^1) \geq \Delta - d + 2$ which contradicts to (5).

- (10) By contradiction assumption and (9), we have $d(x_j^b) \geq \Delta d + 2$ if $j \in \{d, d+1, \ldots, \Delta\}$ and $d(x_j^b) \leq \Delta d + 1$ if $j \in \phi(x) = \{1, 2, \ldots, d-1\}$ where $b = 2, 3, \ldots, d-1$.
- (11) Claim that each $P_{1,i}(x)_{\phi}$ passes through the vertex x_j^b and x_j^b is not an endvertex for each $i \in \{d, d+1, \ldots, \Delta\}$ and $j \in \phi(x) \setminus \{b\}$ where $b = 2, 3, \ldots, d-1$.

Without loss of generality, we are to show that each $P_{1,i}(x)_{\phi}$ passes through the vertex x_j^2 and x_j^2 is not an endvertex for each $i \in \{d, d+1, \ldots, \Delta\}$ and $j \in \{1, 3, \ldots, d-1\}$.

Suppose that $P_{1,i}(x)_{\phi}$ doesn't pass through the vertex x_j^2 for some $j \in \{1,3,\ldots,d-1\}$. Let ϕ' be the new coloring obtained from ϕ by alternating the colors 1 and i along the path $P_{1,i}(x)_{\phi}$. Then, in the coloring ϕ' , $\phi'(e) = \phi(e)$ for each edge e incident with the vertex x_j^2 and $\phi'(xx^1) = i$. Since $\phi'(xx^1) = i$ and $\phi'(x) = \{2,3,\ldots,d-1,i\}$, under coloring ϕ' , by applying the same argument as of in (9), we have $d(x_i^2) \leq \Delta - d + 1$ which contradicts to (10). Therefore, $P_{1,i}(x)_{\phi}$ contains the vertex x_j^2 . Notice that $x^d \neq x_j^2$ since $d(x^d) = \Delta > \Delta - d + 1 \geq d(x_j^2)$ where $j \in \{1,3,4,\ldots,d-1\}$. By (2), x and x^d are the endvertices of the path $P_{1,i}(x)_{\phi}$. Therefore, x_j^2 cannot be an endvertex of $P_{1,i}(x)_{\phi}$.

Hence, $\{1, d, d+1, \ldots, \Delta\} \subseteq \phi(x_j^2)$, and so, $d(x_j^2) \ge \Delta - d + 2$ where $j \in \{1, 3, 4, \ldots, d-1\}$, which contradicts to (10).

Now, we have completed the proof.

If d=4 or 5, then, we have the following corollaries directly induced from Lemma 3.5 and Lemma 3.1.

Corollary 3.6 Let G be a critical graph with the maximum degree Δ . Let d(x) = 4 and each of N(x) is of degree Δ , then there is a vertex $y \in N(x)$ such that there are at most one vertex of $N(y) \setminus \{x\}$

with degree $\leq \Delta - 3$ and at least $\Delta - 3$ vertices of $N(y) \setminus \{x\}$ are of degree Δ -vertices.

Corollary 3.7 Let G be a critical graph with the maximum degree Δ . Let d(x) = 5 and each of N(x) is of degree Δ , then there is a vertex $y \in N(x)$ such that there are at most two vertices in $N(y) \setminus \{x\}$ with degree $\leq \Delta - 4$ and at least $\Delta - 4$ vertices of $N(y) \setminus \{x\}$ are of degree Δ -vertices.

4 Proof of the Main Theorem

For the sake of convenience, we re-state the main theorem:

Let G be a graph with maximum degree $\Delta \geq 12$ and average degree $d_{ave} \leq \frac{103}{12}$. Then G is not critical.

Proof. By contradiction, suppose that G is critical.

For each vertex v, denote $m_v = min\{d(w) : w \in N(v)\}.$

Let $c(x) = d(x) - \frac{103}{12}$ be the initial charge of x for each $x \in V(G)$. We are going to reassign a new charge denoted by c'(x) to each $x \in V$ according to the following dischargeing rules starting from R2:

- R2. Every 2-vertex v receives $\frac{10}{3}$ from each of its neighbors;
- R3. For each 3-vertex v,
- (i) v receives $\frac{5}{3}$ from each of the adjacent Δ -vertex and receives $\frac{7}{3}$ from each of adjacent $(\Delta 1)$ -vertex if $m_v = \Delta 1$,
- (ii) v receives $\frac{10}{3}$ from the adjacent Δ -vertex whose neighbors are all of degree at least $(\Delta 1)$ except for v and receives $\frac{7}{6}$ from the other two adjacent Δ -vertices if $m_v = \Delta$.
 - R4. For each 4-vertex v,
- (i) v receives $\frac{10}{9}$ from each of the adjacent Δ -vertex and receives $\frac{4}{3}$ from each adjacent $(\Delta 2)$ -vertex if $m_v = \Delta 2$,

- (ii) v receives $\frac{41}{36}$ from each adjacent Δ -vertex and receives $\frac{7}{6}$ from each adjacent $(\Delta 1)$ -vertex if $m_v = \Delta 1$,
- (iii) v receives $\frac{5}{3}$ from the adjacent Δ -vertex which has at most two adjacent vertex with degree $\leq \Delta 3$ and receives $\frac{10}{9}$ from each of the rest adjacent Δ -vertex if $m_v = \Delta$.
 - R5. For each 5-vertex v,
- (i) v receives $\frac{5}{6}$ from each of the adjacent Δ -vertex and receives $\frac{1}{3}$ from the adjacent $(\Delta 3)$ -vertex if $m_v = \Delta 3$,
- (ii) v receives $\frac{19}{24}$ from each of its adjacent Δ -vertex, receives $\frac{7}{9}$ from each of its $(\Delta-1)$ -vertex and receives $\frac{2}{3}$ from each of its adjacent $(\Delta-2)$ -vertex if $m_v = \Delta 2$,
- (iii) v receives $\frac{19}{24}$ from each of its adjacent Δ -vertex and receives $\frac{7}{9}$ from each of its adjacent $(\Delta 1)$ -vertex if $m_v = \Delta 1$,
- (iv) v receives $\frac{19}{18}$ from the adjacent Δ -vertex which has at most three adjacent vertices with degree $\leq \Delta 4$ and receives $\frac{19}{24}$ from each of the rest adjacent Δ -vertex if $m_v = \Delta$.
 - R6. For each 6-vertex v,
- (i) v receives $\frac{2}{3}$ from each of the adjacent Δ -vertex if $m_v = \Delta 4$, or $m_v = \Delta 3$,
 - (ii) v receives $\frac{4}{9}$ from each of its adjacent vertex if $m_v \geq \Delta 2$.
 - R7. For each 7-vertex v,
- (i) v receives $\frac{5}{9}$ from each of the adjacent Δ -vertex if $(\Delta 5) \le m_v \le (\Delta 2)$,
 - (ii) v receives $\frac{5}{18}$ from each of its adjacent vertices otherwise.
- R8. For each 8-vertex v, v receives $\frac{1}{3}$ from each of the adjacent Δ -ertex.

We are going to show that after discharging, with new charge c', each vertex has non-negative charge, and the total original charge is non-positive which leads a contradiction.

- (1) Claim that c'(x) > 0 for d(x) = 2 or $9 \le d(x) \le \Delta 4$.
- If d(x)=2, then by Lemma 3.1, x is adjacent to two Δ -vertices, and $c'(x)=-\frac{79}{12}+2\times\frac{10}{3}=\frac{1}{12}>0$ by R2.

If
$$9 \le d(x) \le \Delta - 4$$
, $c(x) \ge 9 - \frac{103}{12} > 0$.

- (2) Let $y \in N(x)$ such that $d(y) = min\{d(z) : z \in N(x)\}$. Note that if d(y) = i, x is adjacent to at least $(\Delta i + 1)$ Δ -verices by Lemma 3.1. We are going to use the value of d(y) for discharging.
- (3) Claim that c'(x) > 0 if d(x) = 3 where $c(x) = 3 \frac{103}{12} = -\frac{67}{12}$ and $d(y) \ge \Delta 1$ by Corollary 3.2(2).
- If $d(y)=\Delta-1$, then, by (2), x is adjacent to at least two Δ -vertices and therefore, by R3(i), $c'(x)=-\frac{67}{12}+2\times\frac{5}{3}+\frac{7}{3}=\frac{1}{12}>0$
- If $d(y) = \Delta$, then, all three neighbors of x are Δ -vertices, say x_1, x_2, x_3 . Let $\mu_i = \min\{d(z) : z \in N(x_i) \setminus \{x\}\} (i = 1, 2, 3)$. And therefore, by Lemma 3.4, at least one of $\{\mu_1, \mu_2, \mu_3\}$ is of at least $\Delta 1$. By R3(ii), $c'(x) = -\frac{67}{12} + \frac{10}{3} + 2 \times \frac{7}{6} = \frac{1}{12} > 0$.
- (4) Claim that $c'(x) \geq 0$ if d(x) = 4 where $c(x) = -\frac{55}{12}$ and $d(y) \geq \Delta 2$ by Corollary 3.2.
- (4-1) If $d(y) = \Delta 2$, By Lemma 3.1(i), the rest 3 neighbors of x are all of degree Δ . Therefore, by R4(i), $c'(x) = -\frac{55}{12} + 3 \times \frac{10}{9} + \frac{4}{3} = \frac{1}{12} > 0$.
 - (4-2) $d(y) = \Delta 1$.
- (4-2-1) By R4(ii), $c'(x) \ge -\frac{55}{12} + 2 \times \frac{7}{6} + 2 \times \frac{41}{36} > 0$ if x is adjacent to two $(\Delta 1)$ -vertices and two Δ -vertices.
- (4-2-2) Again by R4(ii), $c'(x) \ge -\frac{55}{12} + \frac{7}{6} + 3 \times \frac{41}{36} = 0$ if x is adjacent to one $(\Delta 1)$ -vertex and three Δ -vertices.
- (4-3) If $d(y) = \Delta$, then, all four neighbors of x are Δ -vertices. By Corollary 3.6 and R4(iii), $c'(x) = -\frac{55}{12} + \frac{5}{3} + 3 \times \frac{10}{9} = \frac{5}{12} > 0$.
- (5) Claim that c'(x) > 0 if d(x) = 5. Note that $c(x) = -\frac{43}{12}$ and $d(y) \ge \Delta 3$ by (2). Note that x is adjacent to at least Δ -vertices by Corollary 3.2.

- (5-1) If $d(y) = \Delta 3$, then, by Lemma 3.1(i), the rest four neighbors of x are all of degree Δ . Therefore, by R5(i), $c'(x) = -\frac{43}{12} + \frac{1}{3} + 4 \times \frac{5}{6} = \frac{1}{12} > 0$.
- (5-2) If $d(y) = \Delta 2$, by Lemma 3.1(i), x is adjacent to at least three Δ -vertices. Therefore, by R5(ii), $c'(x) = -\frac{43}{12} + \frac{2}{3} + 4 \times \frac{38}{4 \cdot 12} = \frac{1}{4} > 0$ if x is adjacent to one $(\Delta 2)$ -vertex and four Δ -vertices.

Or $c'(x) = -\frac{43}{12} + 2 \times \frac{2}{3} + 3 \times \frac{19}{24} = \frac{-43 + 16 + 28.5}{12} > 0$, if x is adjacent to two $(\Delta - 2)$ -vertices and three Δ -vertices.

Or $c'(x) = -\frac{43}{12} + \frac{2}{3} + \frac{7}{9} + 3 \times \frac{19}{24} > -\frac{43+8+7+28.5}{12} > 0$ if x adjacent one $(\Delta - 2)$ -vertex, one $(\Delta - 1)$ -vertex and three Δ -vertices.

(5-3) If $d(y) = \Delta - 1$, then, by R5(iii), $c'(x) = -\frac{43}{12} + \frac{7}{9} + 4 \times \frac{19}{24} > 0$ if x is adjacent to one $(\Delta - 1)$ -vertex and four Δ -vertices.

Or $c'(x) = -\frac{43}{12} + 2 \times \frac{7}{9} + 3 \times \frac{19}{24} > 0$ if x is adjacent to two $(\Delta - 1)$ -vertices and three Δ -vertices.

Or $c'(x) = -\frac{43}{12} + 3 \times \frac{7}{9} + 2 \times \frac{19}{24} > 0$ if x is adjacent to three $(\Delta - 1)$ -vertices and two Δ -vertices.

- (5-4) If $d(y) = \Delta$, by Corollary 3.7 and R5(iv), $c'(x) = -\frac{43}{12} + \frac{19}{18} + 4 \times \frac{19}{24} > 0$.
- (6) Claim that c'(x) > 0 if d(x) = 6 where $c(x) = -\frac{31}{12}$ and $d(y) \ge \Delta 4$.

If $d(y) = \Delta - 4$, by Lemma 3.1, the rest neighbors of x are all of degree Δ . Therefore, by R6(i), $c'(x) = -\frac{31}{12} + 5 \times \frac{8}{12} > 0$.

If $d(y) = \Delta - 3$, by Lemma 3.1, x is adjacent to at least four Δ -vertices. Therefore, by R6(i), $c'(x) = -\frac{31}{12} + 4 \times \frac{2}{3} = \frac{1}{12} > 0$.

If $d(y) \ge \Delta - 2$, by R6(ii), x receives $\frac{4}{9}$ from each of its neighbors, then, $c'(x) = -\frac{31}{12} + 6 \times \frac{4}{9} = \frac{1}{12} > 0$.

(7) Claim that c'(x) > 0 if d(x) = 7 where $c(x) = -\frac{19}{12}$ and $d(y) \ge \Delta - 5$.

If $\Delta - 5 \le d(y) \le \Delta - 2$, by Lemma 3.1(i), x is adjacent to at least three Δ -vertices. By R7(i), $c'(x) \ge -\frac{19}{12} + 3 \times \frac{5}{9} = \frac{1}{12} > 0$.

If
$$d(y) \ge \Delta - 1$$
, by R7(ii), $c'(x) = -\frac{19}{12} + 7 \times \frac{5}{18} > \frac{1}{12} > 0$.

(8) Claim that c'(x) > 0 if d(x) = 8 where $c(x) = -\frac{7}{12}$ and $d(y) \ge \Delta - 6$.

By R8,
$$c'(x) \ge -\frac{7}{12} + 2 \times \frac{1}{3} = \frac{1}{12} > 0$$
.

(9) Claim that c'(x) > 0 if $d(x) = \Delta - 3$ where $c(x) \ge \frac{5}{12}$.

Be aware that only rule R5(i) affects the charge of x. x sends at most $\frac{1}{3}$ out, $c'(x) \ge \frac{5}{12} - \frac{1}{3} = \frac{1}{12} > 0$.

- (10) Claim that c'(x) > 0 if $d(x) = \Delta 2$ where $c(x) \ge \frac{17}{12}$ and $d(y) \ge 4$. Note that only rules R4(i), R5(ii) and R6(ii) affect the charge of x.
- If d(y)=4, by Lemma 3.1 and definition of d(y) (see (2)), the rest neighbors of x are all of degree Δ . By R4(i), x only sends $\frac{4}{3}$ out, $c'(x)=\frac{17}{12}-\frac{4}{3}=\frac{1}{12}>0$.

If d(y) = 5, then x is adjacent to at most two 5⁺-vertices. By R5(ii) and R6(ii), x sends at most $2 \times \frac{2}{3}$ out, $c'(x) = \frac{17}{12} - \frac{4}{3} = \frac{1}{12} > 0$.

If $d(y) \ge 6$, x is adjacent to at most three 6⁺-vertices. By R6(ii), x sends at most $3 \times \frac{4}{9}$ out. $c'(x) = \frac{17}{12} - 3 \times \frac{4}{9} > 0$.

For the sake of convenience of discussion from now on, we let $\{x_1, x_2, x_3, \ldots, x_q\}^{\oplus n}$ be the set with each element of the form as $x_{j_1} + x_{j_2} + \ldots + x_{j_n}$ where $\{j_1, j_2, \ldots, j_n\} \in \{1, 2, \ldots, q\}$.

- (11) Claim that $c'(x) \ge 0$ if $d(x) = \Delta 1$ where $c(x) \ge \frac{29}{12}$ and $d(y) \ge 3$.
- If $d(y) \ge 9$, all neighbors of x are of degree of at least 9, then, original charge c(x) is not affected. So we only discuss it when d(y) = 3, 4, 5, 6, 7, 8.

If d(y)=3, then, $d(x)+d(y)=\Delta+2$, by Lemma 3.3(i), the rest neighbors of $N(x)\setminus\{y\}$ are all Δ -vertices. Therefore, x sends $\frac{7}{3}$ to y only. $c'(x)\geq \frac{29}{12}-\frac{7}{3}>0$.

If d(y) = 4, by Lemma 3.1(i), x is adjacent to at most two 4⁺-

vertices and all rest of its neighbors are Δ -vertices. Therefore, by R4(ii), R5(iii), R6(ii), R7(ii), x sends at most $\frac{7}{3}$ out, where $\frac{7}{3} = max\{\frac{7}{6}, \frac{7}{9}, \frac{4}{9}, \frac{5}{18}\}^{\oplus 2} = \frac{7}{6} + \frac{7}{6} = \frac{7}{3}$, so, $c'(x) \geq \frac{29}{12} - \frac{7}{3} > 0$.

If d(y)=5, then, x is adjacent to at most three 5⁺-vertices and all rest of its neighbors are Δ -vertices. Therefore, by R5(ii), R5(iii), R6(ii), R7(ii), x sends at most $\frac{14}{9}$ out to its neighbors, where $\frac{7}{3} = max\{\frac{7}{9}, \frac{4}{9}, \frac{5}{18}\}^{\oplus 3} = 3 \times \frac{7}{9}$. So, $c'(x) \ge \frac{29}{12} - \frac{7}{3} > 0$.

If d(y)=6, then, x is adjacent to at most four 6^+ -vertices and all rest of its neighbors are Δ -vertices. Therefore, by R6(ii), R7(ii), x sends at most $\frac{16}{9}$ out to its neighbors, where $\frac{16}{9}=max\{\frac{4}{9},\frac{5}{18}\}^{\oplus 4}=4\times\frac{4}{9}$. thus, $c'(x)\geq \frac{29}{12}-\frac{16}{9}=\frac{23}{36}>0$.

If d(y)=7, then, x is adjacent to at most five 7^+ -vertices and all rest of its neighbors are Δ -vertices. Therefore, by R7(ii), x sends at most $\{\frac{5}{18}\}^{\oplus 5}=\frac{25}{18}$ out to its neighbors. Hence, $c'(x)\geq \frac{29}{12}-\frac{25}{18}>0$.

(12) Claim that $c'(x) \geq 0$ if $d(x) = \Delta$ where $c(x) \geq \frac{41}{12}$ and $d(y) \geq 2$.

If $d(y) \geq 9$, then by R2, x sends nothing out to its neighbors, original charge c(x) is not affected. So, we assume that $d(y) = 2, 3, \ldots, 8$.

If d(y) = 2, by Lemma 3.3(1), the rest neighbors of x are all of degree Δ . Then, x only sends $\frac{10}{3}$ out to y. $c'(x) \ge \frac{41}{12} - \frac{10}{3} = \frac{1}{12} > 0$.

If d(y) = 3, then by Lemma 3.3(1), x is adjacent to at most two 3^+ -vertices and all rest of its neighbors are Δ -vertices.

By Lemma 3.4, and R3-R8, x sends at most $\frac{10}{3}$ out, where $\frac{10}{3} = max\{\frac{5}{3}, \frac{7}{6}, \frac{10}{9}, \frac{41}{36}, \frac{5}{3}, \frac{5}{6}, \frac{19}{24}, \frac{19}{18}, \frac{19}{3}, \frac{2}{3}, \frac{4}{9}, \frac{5}{9}, \frac{5}{18}, \frac{1}{3}\}^{\oplus 2}, \frac{10}{3}\}$. We have $c'(x) \ge \frac{41}{12} - \frac{10}{3} > 0$.

If d(y)=4, then, x is adjacent to at most three 4⁺-vertices and all rest of its neighbors are Δ -vertices. Therefore, by Corollary 3.6 and rules R4-R8, x sends at most $\frac{41}{12}$ out to its neighbors where $\frac{41}{12}=max\{\frac{10}{9},\frac{41}{36},\frac{10}{9},\frac{5}{6},\frac{19}{24},\frac{19}{18},\frac{2}{3},\frac{5}{9},\frac{4}{9},\frac{5}{18},\frac{1}{3}\}^{\oplus 3}$, $2\times\frac{5}{3}\}$.

If d(y) = 5, then, x is adjacent to at most four 5⁺-vertices

and all rest of its neighbors are Δ -vertices. Therefore, by R5-R8, x sends at most $\frac{4\times 19}{24} = \frac{19}{6}$ out to its neighbors where $\frac{4\times 19}{24} = max\{\frac{5}{6}, \frac{19}{24}, \frac{2}{3}, \frac{4}{9}, \frac{5}{9}, \frac{5}{18}, \frac{1}{3}\}^{\oplus 4}, 3 \times \frac{19}{18}\}$, and $c'(x) \geq \frac{41}{12} - \frac{19}{6} = \frac{3}{12} > 0$.

If d(y)=6, then, x is adjacent to at most five 6^+ -vertices and all rest of its neighbors are Δ -vertices. Therefore, by R6-R8, x sends at most $\frac{10}{3}$ out to its neighbors where $\frac{10}{3}=max\{\frac{2}{3},\frac{4}{9},\frac{5}{9},\frac{5}{18},\frac{1}{3}\}^{\oplus 5}$.

So,
$$c'(x) \ge \frac{41}{12} - \frac{10}{3} = \frac{1}{12} > 0$$
.

If d(y)=7, then, x is adjacent to at most six 7^+ -vertices and all rest of its neighbors are Δ -vertices. Therefore, by R7 and R8, x sends at most $\frac{30}{9}=max\{\frac{5}{9},\frac{5}{18},\frac{1}{3}\}^{\oplus 6}$ out to its neighbors. Thus, $c'(x)=\frac{41}{12}-\frac{30}{9}=\frac{1}{12}>0$.

If d(y) = 8, then, x is adjacent to at most seven 8-vertices and all rest of its neighbors are Δ -vertices. Therefore, by R8, x sends at most $7 \times \frac{1}{3}$ out to its neighbors. Again, we have $c'(x) \ge \frac{41}{12} - \frac{7}{3} > 0$.

From all above arguments, we conclude that $c'(x) \geq 0$ for each vertex x in G.

And we have that

$$\sum_{x \in V(G)} c'(x) = 0 \tag{*}$$

since
$$0 \le \sum_{x \in V(G)} c'(x) = \sum_{x \in V(G)} c(x) \le 0$$
.

Note that each vertex carries strict positive charge under new charge c' except 4-vertices and Δ -vertices. So, graph G only contains 4-vertices and Δ -vertices.

(13) Claim that there is no 4-vertex.

Suppose that G has a 4-vertex x. Note that c'(x) = 0 occurs only in the case (4-2-2). Thus, x must be adjacent to one $(\Delta - 1)$ -vertex, say, z, and other three Δ -vertices. But c'(z) > 0 by (11) which contradicts to equation (*), so, there is no 4-vertex in G.

(14) From (13), we know that graph G only contains Δ -vertices which means that average degree of G is $\Delta \geq 12$, which contradicts

to $d_{ave} \leq \frac{103}{12}$.

This contradiction completes the proof of the theorem.

ACKNOWLEDGEMENTS

The author would like to thank Dr. Rong Luo for his helpful suggessions.

References

- [1] L.W. Beineke, S. Fiorini, On small graphs critical with respect to edge-colourings, *Discrete Math.*, 16(1976), 109-121.
- [2] S. Fiorini, Some remarks on a paper by Vizing on critical graphs, Math. Proc. Camb. Phil. Soc., 77(1975), 475-483.
- [3] Hugh Hind and Yue Zhao, Edge colorings of graphs embeddable in a surface of low genus, *Discrete Math.*, 190(1998), 107-114.
- [4] I. T. Jacobsen, On critical graphs with chromatic index 4, Discrete Math., 9(1974), 265-276.
- [5] K. Kayathri, On the size of edge-chromatic critical graphs, *Graphs and Combinatorics*, 10(1994), 139-144.
- [6] Rong Luo and C.Q. Zhang, Edge coloring of graphs with small average degrees, preprint.
- [7] Lian-Ying Miao and Jian-liang Wu, Edge-coloring critical graphs with high degree, *Discrete Math, 2002, In press.*
- [8] L. S. Mel'nikov, The chromatic class and location of a graph on a closed surface, *Mat. Zametki*, 7(1970), 671-681 (Math. Notes 7 (1970) 405 411).

- [9] Daniel Sanders and Yue Zhao, Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B., 83(2)(2001), 201-212.
- [10] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz, 3(1964), 25-30.
- [11] V. G. Vizing, Critical graphs with given chromatic class (in Russian), *Metody Diskret. Analiz.*, 5(1965), 9-17.
- [12] V. G. Vizing, The chromatic class of a multigraph (in Russian), Kiebernetika (Kiev), 3(1965), 29-39.
- [13] V. G. Vizing, Some unsolved problems in graph theory (in Russian), Uspekhi Mat. Nauk, 23(1968), 117-134; English translation in Russian Math. Surveys, 23 (1968) 125-141.
- [14] Zhongde Yan and Yue Zhao, Edge Colorings of Embedded Graphs, Graphs and Combinatorics, 16(2)(2000), 245-256.
- [15] H. P. Yap, On graphs critical with respect to edge-colorings, Discrete Math., 37(1981), 289-296.
- [16] Limin Zhang, Every planar graph with maximum degree 7 is of class 1, Graphs and Combinatorics, 16(4)(2000), 467-495.