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Abstract

Let G be a simple graph with the average degree dgy. and

the maximum degree A. It is proved, in this paper, that G is

not critical if daye < 222 and A > 12. It also improves current

result by L.Y. Miao and J.L. Wu [7] on the number of edges
of critical graphs for A > 12.
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1 Introduction

A graph is k—edge colorable if its edges can be colored with k& colors
in such a way that adjacent edges receive different colors. The edge
chromatic number of a graph G, denoted by x.(G), is the smallest
integer k such that G is k—edge colorable. A simple graph G is class
one if it is A—edge colorable, where A is the maximum degree of G.
Otherwise, Vizing’s Theorem [10] guarantees that it is (A + 1)—edge
colorable, in which case, it is said to be class two. An edge is called
i—colored edge if it is colored by color i.

A critical graph G is a connected graph such that G is class two
and G —e is class one for any edge e of G. Surfaces, in this paper, are
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compact, connected two manifolds without boundary. Embeddings
considered in this paper are 2-cell embeddings. Let S be a surface,
denote cs the Euler characteristic of the surface S. Let V,E and F
be the vertex set, edge set and face set of a given embedded graph G,
respectively. Let |V, |E| and |F| be the cardinality of V, E and F of
G, respectively. A k-vertex is a vertex of degree of k. We call a vertex
zisait-vertexifi < d(z) <8 (i <8). Let ¢ : E(G) — C be an edge-
coloring. Denote by ¢~1(4) the set of edges colored with the color i
where i € C. Denote dgye the average degree of G. Let z € V(G).
Denote N(z) the set of vertices adjacent to z. We call a vertex yisa
neighbor of z if y € N(z). For V' C V(G), let N(V') = Uzev'N(z).

1.1 Main Results

In 1965, Vizing [11] proved that any planar graph of maximum degree
at least 8 is class one. In 1968, he [13] also made the following
conjecture:

Conjecture 1.1 (Vizing planar graph conjecture) Every planar graph
with mazimum degree 6 or 7 is of class one.

For maximum degree A < 5, there are graphs of class two.

Vizing planar graph conjecture seems to be very difficult. The
case A = 7 was recently confirmed independently by Zhang [16] and
D. Sanders and Y.Zhao [9]. The case A = 6 remains open.

H. Hind and Y.Zhao([3]) and Z.Yan and Y.Zhao([14]) proved that
if a graph G can be embedded in a surface S of characteristic cs =
—-9,-4,...,~1,0and A(G) > 11,11,10,9,9 and 8, respectively, then
G is class one.

The following conjecture was proposed by Vizing [13] concerning
the sizes and average degrees of critical graphs.
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Conjecture 1.2 If G = (V, E) is a critical simple graph, then
1
[B] > Z(IVI(A - 1) +3)

That is, if 3
da;ue < (A - 1) + |_‘/I’

then G is not critical.

In 1981, Yap [15] gave some lower bounds on the number of edges
of critical graphs with A < 7.

Theorem 1.3 (Yap [15] 1981) Let G = (V,E) be a critical graph
with the mazimum degree A.

(1) If A = 6, then |E| > GV+1.

(2) If A =7, then |E| > 3.

Lian-Ying Miao and Jian-liang Wu [7] gave another lower bound:

Theorem 1.4 (Miao and Wu [7] 2002) Let G = (V, E) be a critical
graph.
If A > 8, then |E| 2 3(|V| + A - 8).

Currently, R. Luo and C.Q. Zhang [6] improved the Yap’s result:

Theorem 1.5 (Luo and Zhang [6] 2002) Let G = (V, E) be a critical
graph.

(1) If A =8, then |E| > 3|V| + 1;

(2) If A > 9, then |E| > R|V|.

The following main theorem of this paper is motivated by Con-
jecture 1.2 and partial results mentioned above.

Theorem 1.6 Let G be a graph with mazimum degree A > 12 and
average degree dgye < -11923-. Then G 1is not critical.
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The following corollary of the main Theorem 1.6 gives a lower
bound on the number of edges of critical graphs with A > 12.

Corollary 1.7 Let G = (V, E) be a critical graph with A > 12, then
IE| > Z2|VI.

2 Application

We exclude a special case as following in order to present a theorem
which extends the results by Z. Yan and Y. Zhao ([14]) for ¢ > —5.

Lemma 2.1 Let G be a graph with A =12 and |V(G)| = 13 and G
can be embedded in a surface S with cs > —6. Then G is not critical.

Proof. Suppose that G is critical. Denote F' the set of faces of G
embedded in surface S with cs > —6. Since G is simple, |F| < 2@,
thus, by Euler formula that |V |~|E|+|F| > —6, we have l%l < |V|+6.
And

2|E| 6 6
Ju— < J—
dave = |V| 6(1 + IVl) 6(1+ 13)

8.8 (1)

Let z € V(G) be a 12-vertex and y € N(z) with d(y) = d =
min{d(z);z € N(z)}.

If d = 12, then dyve = 12 which contradicts to equation (1).
Hence, we assume that d < 12 and z is adjacent to at least (12—d+1)
12-vertices by Lemma 3.1. So, G has at least (12— d+2) 12-vertices.
Obviously, the number of 12-vertices is no larger than d (degree of
d(y)). Thus, we have 12 —d + 2 < d, so, d is at least 7 which leads
to d(z) > 7 for each z € N(z) by the definition of d(y).

(i) Claim that d # 7.

If d = 7, then, G must have at least seven 12—vertices.

Thus,
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E d(v)
dave = "ev‘fa’ > 7"12"'(1133_7)’(7 > 9.69 which contradicts to
the equation (1).
(ii) Claim that d # 8.

If d = 8, then, G must have at least six 12—vertices.

__ vEV(G) > 6x12+(13-6)x8
= 13

> 9.8 which contradicts to the
equation (1).
By using similar arguments as of in (i), we know that d # 9,10, 11.
This contradiction completes the proof. l

Theorem 2.2 A simple graph embedded in a surface S with cg = —6
and A > 12 is class one.

Proof. Let G be the smallest counterexample to the theorem with
respect to the number of edges. Then, G is critical. By the Lemma 2.1,
V(G)| = 14.

Since G is simple, |F| < 213&, thus, by Euler formula that |V| —
|E| + |F| = -6, we have 2l < |V| +6.

And dave = J < 6(1+ f7) <6(1+ &) <8.58 < 198 Then, by
Theorem 1.6, G is not critical, a contratiction.

3 Some Adjacent Lemmas

The main tools used in the proof of Theorem 1.6 are Vizing’s Adja-
cent Lemma, Zhang’s Adjacent Lemma and charge-discharge method.
We will first introduce these known results.

Lemma 3.1 (Vizing’s Adjacent Lemma [10]) If H is a critical graph
with mazimum degree A, that is, Xe(H) = A+1 and x.(H —e) = A
for every edge e € E(H), and if v and v are adjacent vertices of H,
where the degree of v is d, then,
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(i) if d < A, then u is adjacent to at least A — d + 1 vertices of
degree A,
and,

(i) if d = A, then u is adjacent to at least two vertices of degree
A.

From the Vizing’s Adjacent Lemma, one can get the following corol-
lary:

Corollary 3.2 Let H is a critical graph with mazimum degree A.
Then

(1) every vertez is adjacent to at most one 2-vertex and at least
two A-vertices.
_ (2) the sum of the degree of any two adjacent vertices is at least
A+42.
(8) every vertez is adjacent to at least two A-vertices.

(4) if a vertex is adjacent to a 2-vertez, then the rest of its neigh-
bors are A-vertices.

We define N(z,y) to be the set of all vertices in N(x) U N(y) for
z,y € V(G).

Lemma 3.3 (Zhang’s Adjacent Lemma [16]) Let G be critical, Ty €
E(G) and d(z) + d(y) = A + 2. The following hold:
(1) every vertex of N(z,y) \ {z,y} is a A-vertes;
(2) every vertez of N(N(z,y)) \ {z,y} is of degree at least A —1;
(3) if d(z),d(y) < A, then every vertez of N(N(z,y)) \ {z,y} is

a A-vertezx.

Lemma 3.4 (R.Luo and C.Q. Zhang [6])

Let G be a critical graph with the mazimum degree A > 5. As-
sume that there is a S-vertex x with each of N(z) of degree A. Then,
there must be a vertex y € N(z) such that d(y') > A — 1 for each
¥ € N(y) \ {=}.
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The following lemma generalizes the Lemma 3.4 and its corollar-
ies will be used in the proof of main theorem.

Lemma 3.5 Let G be a critical graph with the mazimum degree A.
Let d(z) = d and each of N(z) is of degree A. Then there is a vertex
y € N(zx) such that there are at most d — 3 vertices of N(y) \ {z}
with degree < A —d + 1.

Proof.

By contradiction, assume that for each vertex y € N (z), there is
at least d — 2 vertices of N(y) \ {z} with degree <A — d + 1.

Let N(z) = {z!,2%,...,z% and d(z%) = A (i =1,2,...,d).

Let G/ = G — zz®. Since G is critical graph, G’ has a A—edge
coloring ¢ : E(G) \ {zz%} — C = {1,2,3,...,A}.

For a vertex v € V(G'), denote by ¢(v) the set of colors appearing
at the edges incident with the vertex v and denote ¢(v) = C \ ¢(v).

The coloring ¢ of G’ can be regarded as a partial edge coloring
of G with the edge zz® uncolored. Without loss of generality, let
(zz*) =i (i = {1,2,...,d — 1}) (see the following figure).
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(1) We claim that |¢(z) N ¢(z%)| = d — 2.

Since d(z?) = A~1in G, we have d— 1 > |¢(z%) N {L1,2,...,d -
1}| > d - 2. Suppose that |¢(z?)N{1,2,...,d~1}| = d— 1. That is,
¢(z) C ¢(z%) and therefore, C \ [p(z)U¢p(z?)] # 0 as |¢p(z?)| = A —1
and |C| = A. Let a € C \ ¢(z%). Now the partial coloring ¢ can be
extended to a A—edge coloring of G by coloring the edge zz¢ with
the color a, a contradiction. Thus, |¢(z) N ¢(z%)| = d — 2.

Without loss of generality, in G, let ¢(z?) = {2,3,... A}, N(z%) =
{z,2h,a%, ..., ¢i_2d,,,...,2h} (6 ={1,2,...,d —1}) and N(z?) =
{z,24,2%,...,2%}.

By (1), we can assume that ¢(a:ix§) =j(i=12..,dj=
1,2,...,A).

(2) For each pair {i,j} € CxC, every (3, j)-bi-colored component
of 71(i) U ¢~1(j) is a path or an even cycle (a cycle of even order).
Furthermore, for each pair (4, j) € [¢(z) \ #(z2)] x [p(z?) \ ¢(z))], the
(4, 5)-bi-colored path P containing one of {z,z%} must containing
both of {z,z%} and z,z% must be the endvertices of the path P.
Otherwise, we can extend the coloring ¢ of G’ to G by alternating
colors ¢ and j along path P and then color the edge zz? with the
color j if z ¢ V(P), or with the color i if z¢ ¢ V(P).

We denote P; ;(y)¢ the (4, j)-bi-colored path starting at y with
i € ¢(y) and j € ¢(y).

(3) Clearly, for each i € ¢(x) and for each j € {d,d +1,...,A},
P, j(z)¢ ends at z¢ as j € ¢(z?) \ ¢(z).

(4) We claim that d(zl) > A —d+2,a € {d,d+1,...,A}.

We will show that {1,d,d+1,...,A} C ¢(zl) with a € {d,d +
1,...,A}. If 21 = 29 then d(zl) = A. So we may assume that
zl # 2%

(4-1) {1,a} € ¢(z2)-
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Let a € {d,d+1,...,A}. Since (1,a)-bi-colored path Py o(z)g
starting at z must ends at z¢ by (3) and zl # 2%, the vertex zl,
* which is on the path, must be incident with a 1-colored edge and an
a-colored edge and therefore, {1,a} € ¢(zl).

(4-2) Assume that k ¢ ¢(zl) for some k € {d,d + 1,...,A}
with k¥ # a. The Pji(z)y with two endvertices z and z¢ does
not pass through the vertex zl, since 1 € ¢(zl) by (4-1) and k ¢
¢(z3). Let ¢’ be the new coloring obtained from ¢ by alternating
the colors 1 and k along the (1, k)-bi-colored path Py x(zl)s start-
ing at zl. (P x(zl)s could be a smgle edge with color 1.) Then,
in the coloring ¢/, Piq(z)y = zzlzl, ¢'(zz!) = P(zz!) = 1 and
#'(z'zl) = ¢(z'zl) = a. A A—edge coloring of G can be ob-
tained from ¢’ by alternating the colors 1 and a along the path
zzlz} and then color the edge zz® with color 1, a contradiction. So,
{1,d,d+1,...,A}C ¢(z}) forae {d,d+1,...,A} if z} # 29, and
of course, d(zl) > A -d+2,a€ {d,d+1,...,A} for z} # z°.

(5) By the contradiction assumption and by (4), we have d(z}) >
A-d+2ifj ¢ ¢(z)= {1,2,...,d — 1} and d(z}) < A—d +1if
J € ¢(z) where j # 1.

(6) Claim that for each i € {d,d + 1,...,A}, Pp;(z)s passes
through x!.

Otherwise, let ¢' be the new coloring obtained from ¢ by alternat-
ing the colors 2 and i for all edges of [#71(2) U¢~1(3)] - Py i(z)4. No-
tice that ¢’ (y) = ¢(y) for each vertex y € {z,z',z?%,...,z%} and the
edge z'z} is now colored with color 2 and edge x'z} is colored with
color 1. By the same argument as of (4), we have d(zl) > A -d +2,
which contradicts to (5).

(7) Claim that for i € {d,d +1,...,A}, d(z¥) > A —d + 2 and
each path Py ;(z)4 passes through z¢.
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A new coloring ¢’ can be obtained from ¢ by uncolor the edge
zz? and color the edge zz¢ with color 2. Notice that ¢(e) = ¢' (e)
for each edge e € E \ {zz?,zz%} and therefore, Pyi(z)y =P2i(z)g

for each i € C'\ {2}. By applying the same argument as of (4), we
know that (7) holds.

(8) By contradiction assumption and (7), we have d(z) > A ~
d+2if j ¢ ¢(z) and d(z}) < A —d+1if j € ¢(z) where j # 1

(9) Claim that d(z?) > A —d+2fori=d,d+1,...,A.

If 22 € N(z), then d(z?) = A. There is nothing to prove. So,
assume that 2% # 2!,2% and b= 2,3,...,d - 1.

Without loss of generality, we show that d(z?) > A —d + 2 for
i=d,d+1,...,A

We will show, sufficiently, that {1,d,d + 1,...,A} C ¢(z?) for
i=d,d+1,...,A.

Leti € {1,d,d+1,...,A}, by (6) and (7), P»;(z)s passes through
both z! and z9, and since the vertex z? is not an endvertex of the
path, therefore, {2,1} C ¢(z2).

Assume that there exists a k € {d,d +1,...,A} \ ¢(z?) where
k # 2,i. Let ¢/ be the new coloring obtained from ¢ by alternating
the colors 2 and k along the path Pp(x?)y. Notice that Pp;(z)g
= zz22? since 2 ¢ ¢'(z?). Let ¢" be a coloring obtained from
¢' by alternating the colors 2 and i along the path zz2z2. Since
P, k(z)g and P x(z?)4 are vertex disjoint and by (6) and (7), the
(2, k)-bi-colored path P, x(x)s passes through the vertex z!, so, the
path P, x(z?)s doesn’t pass through the vertex z!. Therefore, in
the coloring ¢"”, ¢"(e) = ¢(e) for each edge e incident with z!,
#(z'z}) = ¢"(z'z})= ¢"(zx?) = i. By applying the same argu-
ment as of (4), we have d(z3) > A — d + 2 which contradicts to
(5).
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(10) By contradiction assumption and (9), we have d(x’}) > A -
d+2ifje {dd+1,...,A}and d(z}) S A-d+1if j € ¢(z) =
{1,2,...,d — 1} where b=2,3,...,d - 1.

(1) Claim that each Py i(z)s passes through the vertex 2% and
z? is not an endvertex for each i € {d,d+1,...,A} and j € ¢(z)\ {b}
where b=2,3,...,d - 1.

Without loss of generality, we are to show that each Py ;(z)y
passes through the vertex :n? and x? is not an endvertex for each
i€{d,d+1,...,A} and j€{1,3,...,d - 1}.

Suppose that Py ;(x)4 doesn’t pass through the vertex :cf for some
j€{L,3,...,d —1}. Let ¢' be the new coloring obtained from ¢ by
alternating the colors 1 and ¢ along the path P;;(x)s. Then, in the
coloring ¢', ¢'(e) = ¢(e) for each edge e incident with the vertex :z:?
and ¢/(zz') = i. Since ¢'(zz') =i and ¢'(z) = {2,3,...,d - 1,4},
under coloring ¢', by applying the same argument as of in (9), we
have d(z7) < A —d+1 which contradicts to (10). Therefore, Py ;(z)4
contains the vertex z7. Notice that z¢ # a:? since d(z?) = A >
A -d+1 2 d(z?) where j € {1,3,4,...,d — 1}. By (2), z and z¢
are the endvertices of the path P;;(z)s. Therefore, x? cannot be an
endvertex of P; ;(z)¢.

Hence, {1,d,d +1,...,A} C ¢(z2), and so, d(z?) > A - d + 2
where j € {1,3,4,...,d ~ 1}, which contradicts to (10).

Now,we have completed the proof.

If d = 4 or 5, then, we have the following corollaries directly
induced from Lemma 3.5 and Lemma 3.1.

Corollary 3.6 Let G be a critical graph with the mazimum degree
A. Let d(z) = 4 and each of N(z) is of degree A, then there is a
vertez y € N(z) such that there are at most one vertex of N(y)\ {z}
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with degree < A — 3 and at least A — 3 vertices of N(y) \ {z} are of
degree A-vertices.

Corollary 3.7 Let G be a critical graph with the mazimum degree A.
Let d(x) = 5 and each of N(z) is of degree A, then there is a vertex
y € N(z) such that there are at most two vertices in N(y) \ {x} with

degree < A —4 and at least A — 4 vertices of N(y)\ {z} are of degree
A-vertices.

4 Proof of the Main Theorem

For the sake of convenience, we re-state the main theorem:
Let G be a graph with maximum degree A > 12 and average
degree daye < 2. Then G is not critical.

Proof. By contradiction, suppose that G is critical.

For each vertex v, denote m, = min{d(w) : w € N(v)}.

Let ¢(z) = d(z) — 4 be the initial charge of z for each z € V(G).
We are going to reassign a new charge denoted by ¢(z) toeachz € V
according to the following dischargeing rules starting from R2:

R2. Every 2-vertex v receives -139 from each of its neighbors;

R3. For each 3-vertex v,

(i) v receives g from each of the adjacent A-vertex and receives
I from each of adjacent (A — 1)-vertex if m, = A — 1,

(ii) v receives % from the adjacent A-vertex whose neighbors are
all of degree at least (A — 1) except for v and receives % from the
other two adjacent A-vertices if m, = A.

R4. For each 4-vertex v,

(1) v receives % from each of the adjacent A-vertex and receives
3 from each adjacent (A — 2)-vertex if m, = A — 2,
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(ii) v receives 3(15 from each adjacent A-vertex and receives £ from
each adjacent (A — 1)-vertex ifm,=A-1,

(iii) v receives 2 from the adjacent A-vertex which has at most
two adjacent vertex with degree< A — 3 and receives 190 from each
of the rest adjacent A-vertex if m, = A.

R5. For each 5-vertex v,

(i) v receives 2 from each of the adjacent A-vertex and receives
3 from the adJacent (A — 3)-vertex if my = A - 3,

(ii) v receives 33 from each of its adjacent A-vertex, receives z
from each of its (A 1)-vertex and receives 2 from each of its adjacent
(A = 2)-vertex if m,, =A-2,

(iii) v receives 33 from each of its adjacent A-vertex and receives
I from each of its adjacent (A — 1)-vertex if my, = A — 1,

(iv) v receives 13 from the adjacent A-vertex which has at most
three adjacent vertices with degree < A — 4 and receives % from
each of the rest adjacent A-vertex if m, = A.

R6. For each 6-vertex v,

(i) v receives 2 from each of the adjacent A-vertex if m, = A —4,
orm, =A -3,

(ii) v receives § from each of its adjacent vertex if m, > A — 2.

R7. For each 7-vertex v,

(i) v receives § from each of the adjacent A-vertex if (A — 5) <
my < (A -2),

(ii) v receives 1—% from each of its adjacent vertices otherwise.

R8. For each 8-vertex v, v receives 31; from each of the adjacent
A-ertex.

We are going to show that after discharging, with new charge ¢/,
each vertex has non-negative charge, and the total original charge is
non-positive which leads a contradiction.
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(1) Claim that ¢/(z) > 0 for d(z) =2 or 9 < d(x) < A — 4.

If d(z) = 2, then by Lemma 3.1, z is adjacent to two A-vertices,
and d(z) = -B +2x ¥ =21 >0byR2

If9<d(z)<A- 4,c(z)29—%>0.

(2) Let y € N(z) such that d(y) = min{d(z) : z € N(z)}. Note
that if d(y) = i, = is adjacent to at least (A — 4 + 1) A-verices by
Lemma 3.1. We are going to use the value of d(y) for discha.rging.

(8) Claim that ¢/(z) > 0 if d(z) = 3 where c¢(z) = % = -%
and d(y) > A — 1 by Corollary 3.2(2).

If d(y) = A — 1, then, by (2), z is adjacent to at least two A-
vertices and therefore, by R3(i), ¢(z) = —-§ + 2 x 2+i=%>0

If d(y) = A, then, all three neighbors of = are A-vertices, say
T1,%2,%3. Let p; = min{d(z) : z € N(z;) \ {z}}(: = 1,2,3). And
therefore, by Lemma 3.4, at least one of {u1,pu2,u3} is of at least
A—1. By R3(ii), d(z) =-Z + L+2x I =L >0.

(4) Claim that ¢(z) > 0 if d(z) = 4 where c(z) = -3 and
d(y) > A — 2 by Corollary 3.2.

(4-1) If d(y) = A — 2, By Lemma 3.1(i), the rest 3 neighbors of z
are all of degree A. Therefore, by RA(i), ¢'(z) = -B +3x ¥ + 4 =
& >0.

(4-2) d(y) =

(4-2-1) By R4(ii), ¢(z) > -5 +2x L +2 x 4t > 0 if z is adjacent
to two (A — 1)-vertices and two A—vertlces.

(4-2-2) Again by R4(ii), d(z) > -5+ I +3x 4§ =0ifz is
adjacent to one (A — 1)-vertex and three A-vertices.

" (4-3) If d(y) = A, then, all four neighbors of x are A-vertices.
By Corollary 3.6 and RA(iii), ¢(z) = —$3 +3+3x ¥ 10 =35>0

(5) Claim that ¢/(z) > 0 if d(z) = 5. Note that c(z) = —%3 and
d(y) > A — 3 by (2). Note that z is adjacent to at least A-vertlces
by Corollary 3.2.
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(5-1) If d(y) = A — 3, then, by Lemma 3.1(i), the rest four
neighbors of z are all of degree A. Therefore, by R5(i), ¢(z) =

B+i+4axg=4>0.

(5—2) If d(y) A — 2, by Lemma 3.1(i), z is adja.cent to at least

three A-vertices. Therefore, by R5(ii), ¢(z)= — + 2 +4x 4 12 =
1>0ifzis adjacent to one (A 2)-vertex and four A-vertlces
Or d(z)= - +2x3+3x M>O if = is adjacent

to two (A — 2)-vertlces and three A-vertices.
Orcd(z)=-8+2+I+3x 3 > -B48T4385 5 0 if 5 adjacent
one (A — 2)-vertex, one (A — 1)-vertex and three A-vertices.

(5-3) If d(y) = A—1, then, by R5(iii), d(z)= -3 +F+4x 12 >0
if = is adjacent to one (A — 1)-vertex and four A-vertices.
Or d(z)= -8B +2xI+3x 3 > 0if z is adjacent to two

(A — 1)-vertices and three A-vertlces

Or d(z)= -8 +3x §+2x 4] > 0if z is adjacent to three
(A — 1)-vertices and two A-vertlces '

(5-4) If d(y) = A, by Corollary 3.7 and R5(iv), ¢(z) = -3 +
BraxBs>o

(6) Claim that d(z) > 0 if d(z) = 6 where ¢(z) = —ﬂ and
dly) > A-4.

If d(y) = A — 4, by Lemma 3.1, the rest neighbors of z are all of
degree A. Therefore, by R6(i), d(z) = -3 +5x & > 0.

If d(y) = A — 3, by Lemma 3.1, z is adjacent to at least four

A-vertices. Therefore, by R6(i), d(z) = -3 +4x 2 =24 >0.
Ifd(y) > A- 2 by R6(n), z receives 3 from each of its neighbors,
then, d(z) = -3 +6 x § = 55 > 0.

(7) Claim that ¢(z) > 0 if d(z) = 7 where ¢(z) = —3 and
d(y) > A -5.

IfA-5<d(y) <A-2 by Lemma 3. 1(i) z is adjacent to at
least three A-vertices. By R7(i), ¢(z) > -3 +3x 3 =& >0.
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Ifd(y) > A-1,by R7(ii), d(z) = B +7x & > 4 >0.

(8) Claim that ¢/(z) > 0 if d(z) = 8 where c(r) = - 12 and
d(y) > A -6.

ByRB,c'(a:)>—_+2x =é>0,

(9) Claim that ¢/(z) > 0 if d(z) = A — 3 where c(z) 2
Be aware that only rule R5(i) affects the charge of z. = sends at

1 1
most 3 out, c'(z) > F—-3=%>0.

(10) Claim that ¢'(z) > 0 if d(z) = A — 2 where c(z) > 1% and
d(y) > 4. Note that only rules R4(i), R5(ii) and R6(ii) affect the
charge of z.

If d(y) = 4, by Lemma 3.1 and definiton of d(y) (see (2)), the
rest nelghbors of z are all of degree A. By R4(i), z only sends 2 3 out,

dz) =1L - 3= & > 0.

If d(y) = 5, then z is adjacent to at most two 5+-vertices By

R5(ii) and R6(ii), = sends at most 2 X% 2 out, ¢(z) = E-4= 15 > 0.

3
Ifd(y) >6,zis adjacent to at most three 6+—vert1ces. By R6(ii),

z sends at most 3 x 9 out. '(z) =35 -3 x § > 0.

For the sake of convenience of discussion from now on, we let
{z1,72,23,...,2,}®" be the set with each element of the form as
Tj +Tj, + ... +zj, where {j1,J2,...,4n} € {1,2,...,q}.

(11) Claim that ¢/(z) > 0 if d(z) = A — 1 where ¢(z) > % and
d(y) = 3.

If d(y) = 9, all neighbors of z are of degree of at least 9, then,
original charge c(z) is not affected. So we only discuss it when d(y) =
3,4,5,6,7,8.

If d(y) = 3, then, d(z) + d(y) = A +2, by Lemma 3.3(i), the rest
neighbors of N(x) \ {y} are all A-vertices. Therefore, z sends Ttoy
only. d(z) > £ -1 >0.

If d(y) = 4, by Lemma 3.1(i), z is adjacent to at most two 4*-
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vertices and all rest of its neighbors are A-vertices. Therefore, by
R4(ii), R5(iii), R6(ii), R7(ii), = sends at most  out, where § =
max{6,9,9,18 182 = 7+7 3,80, d(z) > > 2 ——- > 0.

If d(y) = 5, then, z is adjacent to at most three 5%_vertices
and all rest of its neighbors are A—vertices Therefore, by R5(ii),
R5(iii), R6(ii), R7(ii),  sends at most 1% 5 out to 1ts neighbors, where
I=maz{],4, &)1 =3x] z. 8o, c’(m)> B-I>o0

If d(y) = 6, then, z is adjacent to at most four 6+-vertices and
all rest of its neighbors are A-vertices. Therefore by R6(ii), R7(ii)
z sends at most 4 out to its neighbors, where 8 = maz{§, 3 519 =
4 % . thus, ¢ ’(:z:)>—--1-§_§%>0.

If d(y) = 7, then, z is adjacent to at most five 7t-vertices and all
rest of its neighbors are A-vertices. Therefore, by R7(ii) T sends at
most {%}®° = Z out to its neighbors. Hence, ¢/(z) > 2 B_850.

(12) Claim that ¢/(z) > 0 if d(z) = A where c(z) > 4 and
d(y) > 2.

If d(y) > 9, then by R2, z sends nothing out to its neighbors,
original charge c(z) is not affected. So, we assume that d(y) =
2,3,...,8.

If d(y) = 2, by Lemma 3.3(1), the rest neighbors of = are all of
degree A. Then, z only sends J out toy. c/(z) > £ -L =1 5 0.

If d(y) = 3, then by Lemma 3.3(1), z is adjacent to at most two
3+-vertices and all rest of its neighbors are A-vertices.

By Lemma 3.4, and R3-R8, = sends at most 10 out, wher

57 10 41 55 191919 2 4 210
maz{3, 5 5 360 3> o 30218 31 30 5 15 3192, L} Wehavec’(:c) >

If d(y) = 4, then, z is adjacent to at most three 4*-vertices and
all rest of its neighbors are A-vertices. Therefore, by Corollary 3.6

and rules R4-R8, z sends at most 42 out to its neighbors where 41 12
maz{10,4,10 5 19 19 2 5 4 5 1103 9, 5

If d(y) = 5, then, z is adjacent to at most four 5*-vertices
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and all rest of its neighbors are A-vertices. Therefore, by R5-R8,

z sends at most #19 = 10 out to its neighbors where 9 -
519 245 5 1 19 3
maz{g:ﬁ,g,g,g,ﬁ;,g}e" 3 X g} and d(z) > >4 — - —- =35 >0.

If d(y) = 6, then, z is adjacent to at most five 6+-vertlces and all
rest of its neighbors are A-vertices. Therefore, by R6-R8, z sends at
most 3 out to its neighbors where L = maz{3,4,5, & 1185

So, c'(a:)>‘"—-—— & >0.

If d(y) = 7, then, z is adjacent to at most six 7+-vertices and
all rest of its neighbors are A-vertices. Therefore, by R7 and RS,
z sends at most 3 = maz{3, &, 1}®% out to its neighbors. Thus,
dzy=%-¥=%>0

If d(y) = 8, then, z is adjacent to at most seven 8-vertices and
all rest of its neighbors are A-vertices. Therefore, by RS, = sends at
most 7 X — out to its neighbors. Again, we have ¢/(z) > E - — > 0.

From all above arguments, we conclude that ¢/(z) > 0 for each
vertex z in G.

And we have that

Y d@=0 (%)
zeV(G)
since0< > d(z)= Y c(z)<0.
z€V(G) zeV(G)

Note that each vertex carries strict positive charge under new
charge ¢’ except 4-vertices and A-vertices. So, graph G only contains
4-vertices and A-vertices.

(13) Claim that there is no 4-vertex.

Suppose that G has a 4-vertex z. Note that ¢/(z) = 0 occurs only
in the case (4-2-2). Thus, z must be adjacent to one (A — 1)-vertex,
say, z, and other three A-vertices. But ¢/(z) > 0 by (11) which
contradicts to equation (*), so, there is no 4-vertex in G.

(14) From (13), we know that graph G only contains A-vertices
which means that average degree of G is A > 12, which contradicts
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to dgye < %)22

This contradiction completes the proof of the theorem.
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