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Abstract

We extend the work of Currie and Fitzpatrick [1] on circular words
avoiding patterns by showing that, for any positive integer n, the
Thue-Morse word contains a subword of length n which is circular
cube-free. This proves a conjecture of V. Linck.
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1 Introduction

A word such as ratatat is said to contain a cube, as it can be written as
Tyyy, where z = r and y = at; i.e. at occurs three times consecutively.
Early in the twentieth century, it was shown by Thue [6] that it is
possible to construct an infinite cube-free word using the alphabet {0,1}.
In fact, Thue proved a somewhat stronger result, that there was an infinite
binary sequence not containing a pattern of the form BBb, where B is a
word, and b is the first letter of B. Such a pattern is known as an overlap.
The sequence used by Thue is known as the Thue-Morse sequence t, which
is defined below. It was also shown by Thue that one can construct circular
words which are overlap-free, but the only lengths for which this is possible
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are of the form 2" and 3 - 2". A recent paper of Currie and Fitzpatrick [1]
showed that it is possible to construct circular cube-free words of arbitrary
length. Using a related approach, we show that such words exist within the
Thue-Morse word:

Main Theorem: Let n be o natural number. Then there is a binary
cirenlar cube-free word of length n contained in t.

2 Preliminaries

Let u and v be two words. We say u is a subword of v, denoted u < v, or
v > u, if we can write v as v = zuy for some words z and y. It may occur
that u is a subword of v in more than one way; that is, if v = z uy; = zouys,
where z; # x. In this case we say that there is more than one occurrence
of u in v. We say u is a prefix of v, denoted u <, v, or v >, w, if we can
write v = uy for some word y. The analogous definition applies when u
is a suffix of v, denoted v <, v or v >; u. If w is a word, let |w| denote
its length; that is, the number of letters in w. Thus [01101001| = 8, for
example. Let w be a word. If one cannot write w = ayyyz with y a non-
empty word, then w is said to be cube-free. We call a word v a conjugate
of w if there are words x and y such that w = xy and v = yx. If all of the
conjugates of w are cube-free, then w is a circular cube-free word.

The results below are concerned with binary words; namely, strings over
{0,1}. If w is a binary word, denote by @ the binary complement of w,
obtained from w by replacing 0’'s with 1’s and vice versa. For example,
01101001 = 10010110. Write w as w = w ws...w,, where the w; are
letters. We say that w is periodic if for some k we have w; = w;,
i=1,2,...,n—k. We call k a period of w. The exponent of w is |w|/k,
where k is the shortest period of w. For example, the exponent of 01010 is
5/2. Squares, overlaps and cubes are periodic.

3 The Thue-Morse word: Some useful facts

The Thue-Morse [5, 6] word is the basis of the construction used in the
proof of our main theorem. Readers who are unfamiliar with the word have
many sources available to them; some examples are {3, 3, 6).

The Thue-Morse sequence ¢ is defined to be ¢ = h¥(0) = lim,,_, 0 A" (O),
where h : {0,1}* — {0,1}" is the eubstltutlon generated by h(0) =
h(1) = 10. Thus

¢ = 01101001100101101001011001101001 - - -
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Every subword of ¢ is a subword of h*(0) for some n. Therefore, every
subword of ¢ appears in ¢ infinitely often.

The following are well-known facts regarding the Thue-Morse word
which will be uscful for our proof:

1. Word ¢ is overlap-free.

2. If w is a subword of ¢ then so is @. (The set of subwords of ¢ is closed
under binary complementation.)

3. I w = toty ...t, is a subword of ¢, then so is t,t,_; ... 4 (The set of
subwords of ¢ is closed under reversal)

4. None of 00100, 01010 or 11011 is a subword of ¢.

5. If w is a overlap (cube)-free binary word, then h(w) is also ‘overlap
(cube)-free.

Lemma 3.1 Let n be an integer, n > 4. Word ¢ contains a subword of the
Jorm 0000, where |0000] = n.

Proof: Suppose 0000 < ¢, [0v00| = n. Since ¢ is cube-free, we must have
0u1001 < ¢, where pl = v. Then h(0p1001) = 01A()10010110 < ¢, and
¢ contains the subwords 014(p)100 of length 21 — 3, and 14()1001011 of
length 2n. Since the set of subwords of ¢ is closed under binary complemen-
tation, the existence of 1h(x)1001011 implies that ¢ contains a subword of
the form 0v00 of length 2n. The words 0010 and 001100 are of the desired
form and of length 4 and 6, respectively; thus the result is seen to follow
by induction. O

Corollary 3.2 Let n be an integer, n > 4. Word t contains a subword of
the form 0000, where |00v0| = n.

Proof: This follows from the previous lemma, and the fact that the set of
subwords of t is closed under reversal. O

By an argument similar to that of Lemma 3.1, one proves the following:

Lemma 3.3 Let n be an integer, n > 3. Word t contains a subword of the
form Ov10 with [0v10| = n.

The following lemma is left as an easy exercise. See [2], for example.

Lemma 3.4 Let w = h{w) for some binary string u. Suppose w contains
a cube zzz. Then |z| is even, and w contains a cube yyy with |y| = |z|/2.
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Lemma 3.5 Let v be a circular cube-free word of length n. Then h(v) is
a circular cube-free word of length 2n.

Proof: Let v be a cube-free word, and suppose v = A(v) contains a cir-
cular cube. Then some conjugate w of v contains a subword zzz. This is
equivalent to saying that zzz < vv, with |z| < |v|/3, since vv contains all
conjugates of v. But vv = h(v)h(v) = h(vv); thus by Lemma 3.4, yyy < vv
with |y| = |z]/2 < (|v|/3)/2 = (2|v|/3)/2 = |v|/3, which implies a circular
cube in v, a contradiction. O

Lemma 3.6 Suppose that u < zzx and |u] < |z|. Then there is more than
one occurrence of u in TxT.

Proof: Since u < zzz and |u| < |z|, we must have u < zz. Since there is
more than one occurrence of xx in xxx, there is more than one occurrence
of uin zzz. O

Lemma 3.7 Let v < t. Let ue{0,1}". Suppose that vu contains a cube.
Then for some prefiz w of w. word vw ends in a cube xxx with x| < |wl.

Proof: Let w be the shortest prefix of « such that vw contains a cube,
possibly w = u. It follows that vw ends in zzz for some non-empty word
z. We claim that |#] < jwi; if |z] > |w!, write 2 = zoyw, where 24 is the
first letter of 2. Then ¢ > v > zxry. an overlap. This is impossible, since ¢
is overlap-free. O

Similarly, one proves the following two lemmas:

Lemma 3.8 Let v < t. Let ue{0,1}*. Suppose that wv conteins o cube.
For some suffix w of u, word wv begins in a cube Txx with {x| < |w).

Lemma 3.9 Let v < t. Let v/, u"€{0,1}*. Suppose that v"vu' = zzz.

Then |z| < fu'| + |u"].

4 Proof of the Theorem

We begin by restating our main theorem, the proof of which depends on a
number of technical results which are included after the proof.

Theorem 4.1 Let n be a natural number. Then there is a binary circular
cube-free word of length n contained in t.

Proof: We prove the existence of circular cube-free words of all lengths
within ¢ by considering the lengths falling into the four congruence classes
modulo 4. The existence of the words of odd length will be proved below.
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The even lengths can then be obtained by applying the morphism A to the
words of odd length, using Lemma 3.5.

Suppose n = 1(mod4), and n > 9. Then we may write n = 4k —
3, for k > 3. By Lemma 3.3, ¢ contains a subword 0v10 of length k.
Thus ¢ contains the subword 0110A2(»)10010 < 0110k*(~)10010110, where
|0110A%(¥)10010| = n, and 0110A%(v)10010 is circular cube-free by Theo-
rem 4.4.

Suppose n = 3(mod4), and n > 15. Then we may write n = 4k — 1, for
k > 4. By Corollary 3.2, ¢ contains a subword 0000 of length k. Thus
¢t contains the subword 1100110A%(v)0110 < 01100110~%(v)0110, where
[1100110A%(¥)0110| = n, and 1100110A%*(»)0110 is circular cube-free by
Theorem 4.7.

One can casily provide the words of lengths 1, 3, 5, 7 and 11 to complete
the proof. O

Lemma 4.2 Let u, = 010. Let v = h*(0v), where Ov < t. Then u,v is
cube-free.

Proof: Word » commences 0110. Also, v < t. For each non-empty suffix
w of ug, let p, be the prefix of wv with period at most |w| and maximal
exponent. Here are the w and p,.:

w v Pw  exponent of py,
0 0110... 00 2

10 0110... 1 1
010 0110... 01001 5/3

Each p,, has exponent less than 3; thus no wv has a prefix p = zzx
where |z| < |w|. It follows from Lemma 3.9 that u,v is cube-free.0

The following lemma is proved similarly:

Lemma 4.3 Let v, = 0. Let v = h%(ul) where pl < t. Then uv, is
cube-free.

Theorem 4.4 Let w = h*>(0wl0) where Qwl0 < t. Let go = 0 and let
u = h*(0wl) = 0110h%(w)1001. Then word ug, < w is circular cube-free.

Proof: Word h?(0w1) begins 0110 and ends 1001. Suppose some conjugate
of ug, contains a cube zzx. By Lemma 4.2, g,u is cube-free, and by Lemma
4.3, ug, is cube-free.

Thus we must have zzx = u"geu’, where u' <, u, v’ <, u, v, v’ # e
Since 0 <, v and 001 <, u, f, = 00100 < rzx, and f, must occur at most
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once in xxzx, since f, does not occur in ¢. Thus, |z| < 5. The cases where
|| < 5 are eliminated by finite checking. We conclude that ug, is circular
cube-free.0

Lemma 4.5 Let uy = 10110. Let v = h*(01v), where 01v < t. Then uyv
is cube-free.

Proof: Word v commences 0110. Also, v < t. For each non-empty suffix
w of uy, let p,, be the prefix of wv with period at most [w| and maximal
exponent. Herc are the w and p,,:

w v Pw exponent of p,,
0 01101... 00 2
10 o1101... 1001 4/3
110 01101... 11 2
0110 01101... 01100110 2
10110 01101... 10110 5/3

Each p,, has exponent less than 3; thus, no wv has prefix p = zzx where
[£] < |w|. Tt follows from Lemma 3.9 that u,v is cube-free.0

The following lemma is proved similarly:

Lemma 4.6 Let v, = 110. Let u = h*(u0), where p0 < t. Then uvy, is
cube-free.

Theorem 4.7 Let w = h2(00w0) where 00w0 < t. Let gy = 110 and let
u = h?(0w0) = 0110A*(w)0110. Then word gyu < w is circular cube-free.

Proof: Word h*(0w0) begins 0110 and ends 0110. Suppose some conjugate
of gyu contains a cube zzz. 10gyu and ugy are cube-free by Lemmas 4.5
and 4.6, respectively. This leaves the following two cases:

Case 1: Suppose that zzz = g, ug;, where g, = g¢'gg"”, and g may be
the empty word. By Lemma 3.9, |z| < |g"”| + |¢'|- Thus, |z| < 3. But
3|z| = |zzz| = |g"ug’| > 1+ 2|0110] + 1 = 10, which implies that |z| > 3,
a contradiction.

Case 2: Suppose zxx = ugyu’, where u' <, u, u” <, u, v’ # € and
u” >, 110. Since 0 <, u and 110 <; u, f, = 11011 < zzrz, and f, must
occur at most once in zzz, since f, does not occur in ¢. Thus, |2} < 5. The
cases where |x| < 5 are eliminated by finite checking. We conclude that
gott is circular cube-free.0
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