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Abstract

It is shown that the voltage-current duality in topological graph
theory can be obtained as a consequence of a combinatorial descrip-
tion of the pair (an embedded graph, the embedded dual graph)
without any reference to derived graphs and derived embeddings.
In the combinatorial description the oriented edges of an embedded
graph are labeled by oriented edges of the embedded dual graph.

1 Introduction

In the theory of voltage and current graphs [2, 3] in topological graph
theory, both a current graph and an embedded voltage graph have their
own derived graphs, and the derived embeddings of the derived graphs
are defined. Then, given a pair (an embedded graph K, the embedded
dual graph), the voltage-current transferring is defined so that, given a
voltage (resp. current) assignment on the oriented edges of the embedded
graph K, the transferred current (resp. voltage) assignment on the oriented
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edges of the embedded dual graph is defined such that both the obtained
current graph and the obtained embedded voltage graph determine the
same derived embedding of the same derived graph.

In this paper we give a combinatorial description of the pair (an em-
bedded graph, the embedded dual graph) in the case when the graphs
are embedded (generally) in a nonorientable surface. In the combinato-
rial description the oriented edges of an embedded graph K are labeled by
oriented edges of the embedded dual graph. If, in addition, the oriented
edges of the embedded dual graph are assigned some marks (these marks
can be elements of arbitrary set; in particular, they can be elements of a
group), then the marks are transferred to become additional labels of the
oriented edges of the embedded graph K. Then, as a consequence of the
combinatorial description, we obtain the voltage-current transferring, the
same as in the theory of voltage and current graphs, without any reference
to derived graphs and derived embeddings. This gives a new insight into
the voltage-current transferring and suggests that the theory of voltage and
current graphs can be outlined in the following (more easier to understand)
way: define a voltage graph and the derived graph; given an embedding of
a voltage graph, define the derived embedding of the derived graph; given
an embedding of a voltage graph, define a current graph as the embed-
ded dual graph such that the voltages are transferred (in accordance with
the combinatorial description of the duality) to become additional labels
(currents) of the oriented edges of the embedded dual graph.

Note that an embedded voltage graph and a current graph can both
be useful to study embeddings, without one entirely supplanting the other.
Some aspects are much easier to study with voltage graphs (orientability
and connectivity tests, etc.), other aspects are easier to study with current
graphs (map-coloring problems, where duality plays the central role, etc.).

The paper is organized as follows. Section 2 gives preliminaries about a
combinatorial description of a 2-cell embedding of a graph. In Section 3 we
show how, starting with a pair (an embedded graph, the embedded dual
graph) we can arrive at the idea of a combinatorial description of the pair
such that the oriented edges of the embedded graph are labeled by oriented
edges of the embedded dual graph. Section 4 gives a formal exposition of
the combinatorial description as a correspondence between some 6-tuples.
The content of Section 4 is based on the paper [1]. In Section 5 we show how
the voltage-current transferring follows from the combinatorial description.

The reader is assumed to be familiar with the theory of voltage and
current graphs, derived graphs and derived embeddings.
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2 A combinatorial description of an embed-
ding of a graph

In what follows, by an embedding of a graph we mean a 2-cell embed-
ding of the graph in a surface. Digraphs considered in this paper may
have loops and multiple arcs. Permutations are expressed in cyclic form:
((51,62, v ’6171)'

In this section we give preliminaries about the combinatorial description
of an embedding of a graph proposed by Ringel [4], and introduce some
definitions used in further sections to describe embedded dual graphs.

By a set with the involution we mean a finite set with a fixed involutory
permutation 8 of the set (that is, 8(6a) = a for every element a of the set),
the elements a and fa are called (mutually) reverse elements, an element
a = fa is called a self-reverse element.

Let G be a connected digraph with the vertex set V(G) and the arc set
A(G) with the involution @ (called also the involution of G) such that if
an arc a is directed from the vertex v to the vertex u, then the arc 8a is
directed from u to v , the arcs a and fa are called reverse arcs. An arc a
such that a = fa is called a self-reverse loop.

A rotation D of G is a permutation of A(G) whose orbits cyclically
permute the arcs directed outwards from each vertex. The rotation D can
be represented as {D, : v € V(G)}, where D,, called a rotation of the
vertex v, is a cyclic permutation of the arcs directed outwards from ». We
will consider triples (G, W, D), where W is a subset of A(G) such that if
a € W, then a # 8a and fa € W. The subset W is called the set of twisted
arcs of G. By the mapping associated with the subset W we mean the
mapping A : A(G) — {1,~1} such that A(a) = -1 iffa e W.

Given a triple (G, W, D), define a permutation H(G, W, D) = H of the
set A(G) x {1,-1} as

H(a,7) = (D%8a,0) (1)

where ¢ = TA(a). If an arc a is directed from v to w, then the arc D?fa is
directed from w. Hence, if ((a1,71),(@2,72),-..,(@m,Tm)) is a cycle of H,
then (@1, a2,...,am) is a closed directed walk in G called the circuit deter-
mined by the cycle. The circuits (a1,as,...,am) and (fam,...,0az,0a;)
are called reverse circuits. Define a permutation p of A(G) x {1,-1} as

pla,7) = (ba, —7(a)) (2)
It is easy to see that p?(a,7) = (a,7) for every pair (a,7). For every
cycle = ((a1,71), (a2, 72), ..., (@m,Tm)) of H, define the cyclic sequence

MQ = (p(am,Tm),...,p(a2,72), plar,7)). Clearly, M(MQ) = Q. The
notation (a,7) € Q will mean that the pair (e, ) enters into the cycle Q.
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Cousider an arbitrary cycle of H. By (1) and (2), one can casily check
that if H(a,7) = (b,0), then Hp(b,o) = p(a,T), hence, MQ is a cycle of
H also. Now we show that MQ # Q for every cycle Q of H. Suppose
(reductio ad absurdum) that & = MQ for some cycle  of H. Then for
some k € {1,2,...,m}, either {(ax,m) = plak,7) = (far, —7rA(ar)) or
p(ak, k) = (ak+1,Te41) = Har,7i). If (ak,7x) = (far, —7xA(ar)), then
ar = far, AMag) = -1, a contradiction. If p(ar,7) = H(ax,7x), then
(Bar, —TrA(ar)) = (D?8ay, 0), where 0 = 7. M(ay), a contradiction.

Cycles 2 and MQ are called reverse cycles, they determine reverse cir-
cuits. The set of cycles of H is partitioned into pairs {Q2, MQ} of reverse
cycles. Choose one cycle from every pair of reverse cycles of H. The ob-
tained collection of cycles is called an r-set (representative set) for H. If
(a,7) € Q, then p(a,7) € MK, hence we have the following claim:

(A1) Let R be a subset of the set of cycles of H. Then R is an r-set for
H iff the cycles from R contain exactly one element from every pair

{(a7 T)7p(a’T)}'

In what follows, given an r-set R , the notation (a,7) € R will mean that
(a,7) € Qand Qe R.

Given a connected nonoriented graph K, the associated digraph K with
the involution is defined as follows. A directed edge of K is an edge endowed
with one of the two possible directions. Every edge of K gives rise to two
oppositely directed edges called (mutually) reverse arcs of X, and these arcs
for all edges of K form the arc set A(K). Note that K has no self-reverse
loops.

The boundary of a face of an embedding of a graph K is a closed walk
in K called the boundary cycle of the face. The boundary cycle of a face
has two opposite directions, the boundary cycle with a chosen direction
is called a directed boundary cycle of the face and is considered to be an
oriented closed walk in K.

Ringel [4] shown that every triple (K, W, D) generates an embedding of
K such that the circuits determined by the cycles of H = H(K, W, D) are
exactly the directed boundary cycles of the faces of the embedding and that
every embedding of K is generated by some triple (K, W, D) . Following
Ringel, the circuits determined by cycles of H are constructed as follows.
Let a be an arc directed to a vertex v. If a is an arc of a circuit, then the
subsequent arc of the circuit is uniquely determined by D,, A(a) and the
behavior with which the circuit passes the first half of the arc a. The circuit
has two modes of behavior, normal (depicted as a solid line in figures) and
alternative (dashed line). In normal behavior the circuit obeys the rotation
given at each vertex. In alternative behavior the circuit acts as if the given
rotations are reversed. When the circuit passes an arc a with A(a) = —1
its behavior switches modes at the midpoint of the arc. Now we see that to
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construct a circuit (ay, as,...,an) in such a manner, we actually construct
a cycle ((a;,71),(a2,7),...,(@m,Tm)) of H where 7; = 1 (resp. = —1)
means that the circuit passes the first half of the arc a; with normal (resp.
alternative) behavior.

Now we consider some mappings that will be used in a combinatorial
description of embedded dual graphs.

Two sets with the involutions are called (mutually) comparable if they
have the same number of pairs of reverse elements and the same number
of self-reverse elements. The arc sets of an embedded graph and the dual
embedded graph are comparable sets.

Given (G,W), where G is a digraph with the involution 8, and given
a set A* with the involution 6* such that A(G) and A* are comparable,
a mapping p : A(G) —» A* is called a proper mapping of A(G) into A* iff
(A2) holds:

(A2) For every pair b # 6*b from A*, there are exactly two arcs, a; and
a2, of G such that p(ay),p(a2) € {b,6*b}. The arcs a; and ay are
reverse and the following holds: p(a;) = p(as) iffay € W. If b = 6*b,
then G has exactly one arc a such that p(a) = b, this arc a is a self-
reverse loop.

The arcs a of an embedded graph G will be labeled by the arcs p(a) of the
dual embedded graph with the arc set A* such that y is a proper mapping
of A(G) into A*.

Given (G,W) and a proper mapping u of A(G) into A*, define a map-
ping T, : A(G) x {1,-1} - A* as follows:

Tule,) = { g”(z)(a) g: - 1—’1. ®)

the mapping T, will be used to define the arc set of the dual embedded
graph. For simplicity, in this section we shall write T instead of T),.

Verifying the following claim {A3) is straightforward and is left to the
reader.

(A3) T(a,1) # T(a,-1) for a # 0a; T(a,7) = Tp(a, ) for every pair (a, 7).

Since T'(a,1),T(a,—1) € {u(a),8*u(a)}, by (A2) and (A3), we obtain the

following:

(A4) For every element b of A*, there are exactly two pairs (a;,m1) and
(az,72) such that b = T(a;, 1) = T(az,72), and we have (a;,7;) =
p(aZa T2)'

By the log of a cycle ((a1,71), (a2, 72),...,(am,™m)) of H = H(G,W, D)
we mean the cyclic sequence (T'(a1,71),T(a2,72),...,T(am,™m)). The fol-
lowing claim (AS5) follows from (A1) and (A4):
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(A5) Let R be a collection of cycles of H. Then R is an r-sct for H iff
every element from A* appears exactly once in the logs of the cycles
from R.

By (A3), we obtain:

(A6) The logs of cycles 2 and M of H are mutually reverse cyclic se-
quences.

Given (G,W, D), an r-set R for H, and given a proper mapping s of
A(G) into A*, define a mapping ¢, : A(G) = A* x {1, -1} as follows:

_J ((e),1) if(e,1)€R,
‘p”a_{ (Z(Z),—l) if (a,1) ¢ R. (4)

The mapping ¢, will be used to define an r-set for the dual embedding.
In what follows, when we write T}, and ¢, , it will be always clear from
the context what (G, W, D), R, A* and p are considered.

3 Mutual labellings of arcs in dual embed-
dings

In this section we show how, starting with a pair (an embedded graph,
the embedded dual graph) we can arrive at the idea of a combinatorial
description of the pair such that the oriented edges of the embedded graph
are labeled by oriented edges of the embedded dual graph.

Given an embedding f of a graph K in a surface, define the embedding
f* of the dual graph K* in the surface as follows. For every face of f ,
insert a vertex of K* inside the face. Then for every edge e of K, draw
the dual edge e* of K* such that e* crosses e (and no other edge of K
or K*) and joins the two vertices inside the faces of f which are incident
with e. If e is incident with one face only, then e* is a loop. The taking of
duals is involutory, that is, (K*)* = K. The dual edge e* gives rise to two
reverse arcs called the arcs dual to the arcs corresponding to the edge e of
K. Denote the involutions of K and K* by 6 and 6*, respectively. To every
vertex v of the embedded graph K there corresponds a face of f* such that
v is the unique vertex of K inside the face, denote the face by F(v) (in
what follows, when we will speak about a face F'(v), it will be always clear
from the context what an embedded graph K is considered). There are
two possible orientations at v, each of them induces an orientation of the
face F'(v) and induces a rotation of v. We will say that an orientation of
F(v) determines a rotation of v and vice versa, provided that they both
are induced by the same orientation at v.
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Given the embeddings f and f*, let R* be a collection of orientations
of the faces of f*, one for each face. The collection R* determines D and
W such that (K, W, D) generates f. These D and W are determined in the
following way. For every vertex v of K, the rotation D, is determined by
the orientation of the face F'(v). An orientation of a face can be specified by
a direction of the boundary cycle of the face. Hence, R* can be considered
as a collection of directed boundary cycles, one for each face. Every edge of
K* appears exactly twice as an edge endowed with a direction in the cycles
from R*. An edge e of K gives rise to two reverse arcs from W if and only
if the dual edge e* of K* has the same direction in the two appearances in
the cycles from R*.

Now we consider quadruples (K, W, D)z where R is a collection of
orientations of the faces of the embedding generated by (K, W, D). Given
the embeddings f and f*, define the correspondence

(Fa Wy D)'R - (F,W*,D*)Rv, (5)

where (K, W, D) and (K*,W*, D*) generate f and f*, respectively, R de-
termines D* and W*, R* determines D and W. Since taking of duals is
involutary, and since D and D* in turns determine R* and R respectively,
we get the following duality:

(D1) If (T{., W, D)r — (F, W*, D*)R-, then (T(_‘, W*, D*}p~ — (F, W, D)r.

Given a quadruple (X, W, D)z, the collection R can be combinatorially -
represented by an r-set for H (I, W, D), denote this r-set by the same letter
R. In what follows we will consider quadruples (K, W, D, R), where R is
an r-set for H(K,W, D). Then the correspondence (5) takes the form

(F)WaDa'R‘) - (I—{T)W*)D*aR*)) (6)

where (K, W, D) and (K*,W*,D*) generate f and f*, respectively, R
(resp. R*) represents the collection of orientations of the faces of f (resp.
f*) such that this collection determines D* and W* (resp. D and W). The
duality (D1) takes the form:

(D2) If (K,W,D,R) — (K*,W*,D*,R*), then (K*,W*,D*,R*) —
(K, W,D,R).

Given (K,W,D,R), the quadruple (K*,W*,D* R*) in (6) is obtained
in the following way. Construct the embeddmg f of K generated by
(K,W,D). Consider the embedding f* of the dual graph K* and con-
struct the triple (K*,W*, D*) generating f* such that D* and W* are
determined by those orientations of the faces of f which are represented
by the r-set R. Choose an r-set R* for H(K*,W*, D*) such that the r-set
represents those orientations of the faces of f* which determine D and W.
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Now consider the following problem:

(P1) Given (K, W, D, R), obtain (K*,W*, D*,R*) in (6), not considering
the embeddings f and f*.

Here is a problem of describing the arc set of K*. We will solve the
problem by labeling the oriented edges of an embedded graph by oriented
edges of the embedded dual graph.

Considering an embedding of K, since an arc of K is a directed edge of
K, the embedded edge with the direction can be called the embedded arc
and all the embedded arcs are called the arcs of the embedded graph K.

Now we consider how the arcs of an embedded graph can be labeled
by arcs of the embedded dual graph. Given a triple (K, W, D) generating
an embedding of K, and given an arc a of K, by the arc (a|D) of the
embedded K* we mean the arc that is defined in the following way. Let
the embedded arc a be directed from a vertex v and cross the edge e* of
K* incident with vertices g and h (may be g = h). We can join v with g
by an edge c inside F(v) so that we obtain a closed disc L C F(v) such
that the boundary of the disc consists of the three components: the edge ¢;
the part B of e* between g and the intersection point of e* and a; the part
of a between v and the intersection point such that this part is directed
from v to the intersection point (see Fig. 1(a), where e* is depicted in a
wavy line). The rotation D, determines an orientation of F(v), thereby
determining an orientation of L. This orientation of L induces a direction
of B, thereby determining a direction of e*.

The edge e* with this direction is the arc (a|D) (see Fig.1(a), where
the orientation of L is indicated by an oriented cycle inside L). It should
be noticed that such a definition of the arc (a|D) is given to take into
account that graphs may have loops and that an edge can appear twice in
the boundary cycle of a face.

Now, given a quadruple (X, W, D, R) and the correspondence (6), con-~
sider the 6-tuple (K, W, D, u, R)(A(K™)), where p : A(K) - A(K*) such
that p(a) = (a|D) for every arc a of K. We will say that an arc a of
K is labeled by the arc p(a) = (a|D) of K*. The sets A(K) and A(K")
are comparable. One can easily see that u(a) = p(fa) if @ € W, and
u(a) = 0*u(Ba) if a ¢ W, that is, p is a proper mapping of A(K) into
A(K*). Given (6), consider the correspondence

(K, W, D, 1, R)(A(K™)) = (K*,W*, D", pi*, R*)(A(K)), (7)
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where p* : A(K*) = A(K) such that u*(b) = (b|D*). Analogously, p* is a
proper mapping of A(K*) into A(K). Since, given f and f*, the mappings
1 and p* are uniquely determined by D and D*, respectively, the duality
(D2) implies the following duality:

(D3) If (K,W,D,pu, RYAK") - (K*,W*,D*,u*,R*)(A(K)), then
(K>, W*,D*,p*, R*)(A(K)) = (K, W, D, n, R)A(K™)).

The motivation to consider the correspondence (7) is that we can solve
the following problem:

(P2) Given (K,W,D,pu,R)(A(K*")), obtain (K*,W=, D*,u*, R*}A(K))
in (7), not considering the embeddings f and f*.

A solution of (P2) is given below in points (B1)-(B4).

Since p{a) = (a|D), taking into account the definition (3) of the map-
ping T, , we have (T,,(a,7)|D*) = a (see Fig.1(b) where the arcs of K’ are
depicted in wavy lines), hence

(B1) If Q@ = ((a1,m1), (@2, 72),- - -, (@m, Tm)) is & cycle from R representing
the orientation of a face F(w) of f, where w € V(K™), then

D:u = (Tu(alarl)»Tp(a‘ZaT?), oy ;Tu(am,Tm)),
that is, D}, is the log of the cycle .

Considering (A5), we see that (B1) also defines K* assigning the initial
and terminal vertices to every arc from A(K*).

The arc T,(a,7) is one of the arcs of K* dual to the arcs a and fa of
K, whence

(B2) Tu(a,7) € W iff (a,1),(a,-1) € R.
We have (T, (a,7)|D*) = a for every (a,7) € R (see Fig. 1(b)), hence
(B3) p*(Tu(a,7)) = a.

We have R* = {[v] : v € V(K)}, where [v] is the cycle representing the
orientation of the face F(v) of f*. If D, = (a1, a2,...,an), then, clearly,
the circuit determined by the cycle [v] is ((a1]|D), (a2]|D),...,(am|D)) =
(n(@1), u(a@z2),- .., ul(an)). Taking into account the definition (4) of the
mapping ¢, and considering Fig.2, we obtain
(B4) ['U] = (‘ppah Pud, ..., ‘Puam)

(a formal proof of (B4) will be given in Section 4).

340



We see that (B1)-(B4) give a purely combinatorial way to solve (P2).
The problem of describing the arc set of K* is solved here by extension of
a quadruple (K, W, D, R) to the 6-tuple (K, W, D p.,R)(A(K‘)) that is,
by specifying the arc set of K* and by labeling the arcs of K by arcs of
Kﬁ

Now we show how the solution of (P2) can be used to solve (P1). Let A’
be an arbitrary set with the involution . Let A’ and A(K) be comparable
and ' be an arbitrary proper mapping of A(X) into A’. Define the mapping
w: A(K*) = A’ as follows:

w(u(a)) = p'(a),

w(0"p(a)) = 0'1 (a),

for every arc a of K. Since g and p' are proper mappings, we obtain that
w is a bijection that takes reverse arcs of A(K*) to reverse elements of A’.

Consider the correspondence
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(K, W,D, ', R)(A) = (K",W', D', ", R'"WA(K)),

the right side being determined by (B1)-(B4), where we replace p by . The
digraphs K* and K’ have the same vertex set. Since wTy(a,7) =Ty (a,1)
for every (a,7) € R, we get that that for every b € A{K™*), the arcs b and
w(b) have the same initial vertex. Now it is an easy exercise to check that
the following (i)-(iv) hold:

(i) D*by = by iff D'w(by) = w(bs);
(i) be W* iff w(b) € W';
(iii) p*(b) = p"(w(b));

(iv) ((br,71), (b2, 72)s - By ™)) € R* iff
((w(b1), 1), (w(b2), 72), .. ., (W(bm), Tm)) € R'.

We see that (K',W',D',u",R')(A(K)) is obtained from
(K*,W*,D*, u*, R*)(A(K)) by relabeling the arcs of K* so that for
every b € A(K™), the arc b of K* becomes the arc w(b) € A’ = A(K").

Hence, the problem (P1) can be solved in the following way. Given
(K,W,D,R), choose an arbitrary set A* comparable with A(K) to be
the arc set of the embedded dual graph K*. Then choose an arbitrary
proper mapping p : A(K) —» A*. Consider (K,W,D,pn, R)(A(K*)) —
(K*,W*,D*,u*, R"}A(K)), where the right 6-tuple is determined in
accordance with (B1)-(B4). Then (K*,W*, D*,u*,R*) is the required
quadruple (up to designation of arcs).

4 The duality between 6-tuples

In this section we consider a generalization of the correspondence (7) where
K is replaced by a digraph G with the involution, such that G may have
self-reverse loops. For the case of such 6-tuples, we prove the duality (D3).
Considering digraphs with self-reverse loops is motivated by the fact that
a voltage graph with the voltage group of even order may have self-reverse
loops assigned voltages of order 2.

Note that if G has self-reverse loops, then a triple (G, W, D) can be
considered as a triple generating an embedding of a graph K in a surface
with holes such that every hole is bounded by an embedded edge of K.
Then, to obtain G, we replace every edge bounding (resp. not bounding)
a hole by a self-reverse loop (resp. by a pair of reverse arcs). We will not
consider the topological interpretation of such triples, and in what follows
we will consider the triples and the 6-triples from the combinatorial point
of view only.
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Let G be a digraph with the involution 8. Let A* be a set with the
avolution 8%, and A* be comparable with A(G). Now we define the corre-
pondence

(G,W,D,p, R)(A") = (G*,W*, D", ", R")(A) (8)

vhere G* is a digraph with the arc set A* and the involution 8*. For
simplicity, in this section we will write T, T, and " instead of T),, p,,
I, and ;. respectively.

The vertex set of G* is the set of all pairs {Q, M 1} of reverse cycles of
H(G,W,D)=H.

By (A5), every element of A* appears exactly once in the logs of the
cycles from . For every cycle ©; from R, denote by w; the vertex {Q;, M Q;}
of G*. If b # 6*b and b,0*b appear in the logs of cycles 0; and §2; respec-
tively, then the arc b of G* is directed from w; to wj , and 6*b is directed
from w; to w; . If b = 6*b and b appears in the log of a cycle Q; , then b
is a self-reverse loop incident with the vertex w; . Note that, by (A6), the
constructed digraph G* does not depend on the choice of the r-set R.

Define the rotation D* as follows: the rotation of a vertex w; is the log
of the cycle Q; from R.

The set W™ is defined to be the set of all arcs b, 6*b such that {b,*b} =
{T'(a,1),T(a,~1)}, where (a,1),(a, ~1) € R.

Define A to be A(G).

For every arc b of G*, by (A5), b = T(a, ) for some unique pair (a,7) €
R, and we define p*b = p*(T(a, 7)) = a. It follows from the definition of
W™ that p* is a proper mapping of A(G*) into A.

To define R*, we need the following lemma.

Lemma 1 For every v € V(G), if D, = (@1,02,...,an), then [v] =
(vai1,pas,...,pan) is a cycle of H(G*,W*,D*) = H* and the log of the
cycle is D,,.

Proof 1t suffices to show that
H*pa = ¢pDa, 9)

T*pDa = Da (10)

for every arc a of G. By (A1), there are two cases: either (Da,1) or p(Da,1)
enters into the cycles from R. Since A(a) = A(a) = %1, it follows from
(1) that H(8a, A(a)) = (Da,1) and H(8Da, —A(Da)) = (a, —1), where, by
(2), we have p(fa, A\(a)) = (a,~1) and p(Da, 1) = (8Da, —A(Da)). By (3),
we get
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Tp(ba, A(a)) = T(a, —1) = 6" p(a),
T(6Da,~A(Da)) = T(Da,1) = p(Da). (11)

Now we consider the two cases.

Case 1. R has a cycle Q = (..., (0a, A(a)),(Da,1),...) (sec Fig.3(a),
where the arcs of G* are depicted in wavy lines) and (a,—1) ¢ R. From
(11) and the definition of D* and p* it follows that

D*(6*p(a)) = p(Da), u* (6" p(a)) = 0a, p*(u(Da)) = Da.

We have pDa = (u(Da),1) and T*pDa = p*(u(Da)) = Da, hence
(10) holds. If (a,1) € R, then pu(a) ¢ W* (by the definition of W*) and
wa = (u(a),1). Here we get A(u(a)) = 1, hence H*pa = (D*6*1(a),1) =
(u(Da),1) = pDa. If (a,1) ¢ R, then p(a) € W* and pa = (u(a), —1).
Here we get A(u(a)) = —1, hence H*pa = (D*0*pu(a),1) = (u(Da),1) =
@Da. Thus (9) holds.

Case 2. RhasacycleQ = (..., (8Da,-A(Da)), (a,-1),...) (see Fig.3(b))
and (Da,1) ¢ R. It follows from (11) that

D* (4(Da)) = 6" u(a), 1" (1(Da)) = 8Da, u* (6" () = a.

We have pDa = (u(Da),—1) and T*pDa = 8u*(u(Da)) = Da, hence
(10) holds. If (a, 1) ¢ R, then pu(a) ¢ W* and pa = (u(a), —1). Here we get
A(u(a)) =1, hence H*pa = ((D*)7'6" u(a), ~1) = (¢(Da), -1) = pDa. If
(a,1) € R, then p(a) € W* and pa = (u(a), 1). Here we get A(u(a)) = —1,
hence T*pa = ((D*)~16*u(a), -1) = (u(Da), —1) = pDa. Thus (9) holds.
a

Denote R* = {[v] : v € V(G)}. By Lemma 1, every arc of G appears
exactly once in the logs of the cycles from R*, hence, by (A5), R* is an
r-set for H*.

The reader can easily check in a way analogous to that used in Section 3
that taking different R* and p in (8), we will obtain the same right 6-tuple
in (8) (up to designation of arcs).

Theorem 1 If (G,W,D,u,R)(A*) — (G*,W*,D*,u*,R*)(A), then
(G*\W*,D*, u*, R*}(A) = (G, W, D, u, R)(A*).

Proof. Let (G*,W*,D*,u*,R*}{(A) = (G',W',D',i//,R")(A*). The
vertex set of G’ is the set of all pairs {[v], M[v]}, v € V(G). For every
vertex v of G, denote by v the vertex {[v], M[v]} of G'. Then, by Lemma
1, weget G' =G and D' = D.
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For every arc ¢ of G, pa = (u(a), 7) € R* and, by Lemma 1, T"pa = a,
hence p'(a) = ¢/ (T*pa) = p'(T*(u(a), 7) = p(a), that is, ' = p. Since p'
is a proper mapping of A(G’) = A(G) into A* = A(G*), weget W' =W.

It remains to show that R’ = R. We have G' = G, W' = W and
D' = D, thus R' and R are r-sets for the same permutation H(G, W, D).
Hence, it suffices to prove the following:

(i) for every (a,7) € R, we have (a,7) € R'.

For every arc a of G, either (a,1) € R, or p(a,1) € R. Now, to prove
(i), we show that for every arc a of G, if (a,1) € R (resp. p(a,1) € R ),
then ¢*p(Da) = (a,1) € R’ (resp. = p(a,1) € R').

If (a,1) € R, then T(a,1) = p(a), p*(1(a)) = a and pa = (p(a),1) €
R*, hence p*p(a) = (p*(p(a)),1) = (a,1) € R".

Let (a,1) = (fa,—A(a)) € R. Then pa = (u(a),—1) € R* and, by (11)
(where replace Da by a), we have Tp(a,1) = p(a), hence p*(p(a)) = fa.
If a = fa, then (a,1) = (a,-1) € R, p*(u(a)) = a, p(a) = 0*pu(a) and
(n(a), ~1) = (u(a), 1), hence (u(a),1) ¢ R* and ¢*p(a) = (1" (p(a)), -1) =
(a,—1) € R'. Let a # fa. If (u(a),1) € R*, then a € W and ¢*pu(a) =
(1*(p(a)), 1) = pla,1) € R'. If (u(a),1) ¢ R*, then a ¢ W and ¢*p(a) =
(1" (u(a)), —1) = (fa, —A(a)) = p(a,1) € R'. |

Taking the theorem into account, we will say that the 6-tuples in (8)
are mutually dual. The theorem reduces the problem of construction of

a 6-tuple to the problem of construction of the dual 6-tuple. As a consc-
quence of the theorem, it will be shown in Section 5 that the problem of
construction of an embedded voltage graph is reduced to the problem of
construction of the dual current graph.

5 Transferring voltages and currents

In this section we first briefly review the voltage-current transferring. Then
we show how the transferring follows from the combinatorial description of
embedded dual graphs given in Sections 3 and 4.

Let & be a group and G be a digraph with the involution §. By a
voltage assignment on G we mean a mapping ¢ : A(G) = @ such that
¢(a) = (p(8a))~! for every arc a. By an embedded voltage graph we mean
a quadruple (G, W, ¢, D), where y is a voltage assignment on G. Here w(a)
is called the voltage of the arc a.

By a current graph we mean a quadruple (G, W,7n, D} , where 5 :
A(G) — @ such that n(a) = (n(6a))~! if a ¢ W, and n(a) = n(fa) if
a € W . Here ) is called a current assignment, n(a) the current of the arc
a.
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In the theory of voltage and current graphs, both a current graph and
an embedded voltage graph have their own derived graphs, and the derived
embeddings of the derived graphs are defined (the derived graphs and the
derived embeddings are defined in different ways in both of the cases; sec
(2] as a good expository paper on this subject). Then, in the theory, the
voltage-current transferring is defined in the following way. Consider the
correspondence

(K,W,D,R) & (K*,W*,D*,R*),

where (K, W, D) and (K*,W*,D* D*) generate embeddings of graphs K and
K*, respectively. Then, given (K, W,p, D), where ¢ is a voltage assign-
ment, the trdnsferred current assignment 7 is defined such that (K, W, ¢, D)
and (K*,W*,n, D*) determine the same derived embedding of the same de-
rived graph, the embedded voltage graph and the current graph are said
to be mutually dual. The (voltage — current) transferring is defined as
follows: for every b € A(K*), n(b) = @((b|D*)) (see Fig.4). And vice versa,
given (K*,W*,n, D*), where 7 is a current assignment,

a=(b|D*)

- -3__74 ______

1(b)

Fig.4

the transferred voltage assignment ¢ is defined such that (K, W, ¢y, D) and
(K*,W*,n, D*) determine the same derived embedding of the same derived
graph. The (current — voltage) transferring is defined as follows: for every
b€ A(K™), o((bID¥)) = n(b) and (8(b|D+)) = (n(b))~*, where 6 is the
involution of K. If we first transfer a current assignment to a voltage
assignment and then transfer back again, we regain the original current
assignment. Similarly, the two processes are inverses of each other in the
other order.
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Now we show how the voltage-current duality follows from the com-
binatorial description of embedded dual graphs given in Sections 3 and
4.

Let G be a digraph with the involution 8. Let ¢ : A(G) — ® be a voltage
assignment on G. By the voltage digraph G, with the involution 8’ we mean
the digraph with the vertex set V(G) and the arc set {{a,¢(a)) : a € A(G)},
where arcs a of G and (a, p(a)) of G, have the same initial vertex and the
same terminal vertex, and 8'{a, (a)) = (fa, (¢(a))™!). Consider

(qus Wl D)/”'? R)(A(G*)) « (G‘) W’) D.1 IJ*,R*>(A(G¢)) (12)

Suppose we speak about an arc (a, ¢(a)) of G, as an arc with the voltage
¢(a), and about an arc b of G* such that p*(b) = (c,¢(c)) as an arc with
the current n(b) = ¢(c). Then, since p*(b) = (b|D*), we get

n(b) = o((b|D"))

and, clearly,
©(6'(b]1D*)) = (n(b)) ™"

Hence, if given the voltage assignment ¢ on G, , we consider 7 as the
transferred current assignment, and if, given the current assignment 7, we
consider ¢ as the transferred voltage assignment, then we obtain the same
voltage-current transferring as in the theory of voltage and current graphs.

Considering the combinatorial description of the correspondence (12)
given in Section 4, we obtain the following combinatorial description of the
voltage-current duality:

(Voltage — current) transferring: For every (a,7) € R, we have
p*(Ty(a,7)) = a, hence

N(Tu(a, 7)) = p(a).

(Current — voltage) transferring: For every (b,7) € R*, we have (see (3))

Tur () = { gu(bzb) ir oo, ()
hence
—
oG ={ [0 7o 4
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Taking (A5) into account, we see that (13) and (14) determine the
transferred currents and voltages of all arcs of G* and G, , respectively.

The duality (12) reduces the problem of construction of an embedded
voltage graph to the problem of construction of the dual current graph.
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