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ABSTRACT

For edges e and f in a connected graph G, the distance d(e, f)
between e and f is the minimum nonnegative integer ¢ for which
there exists a sequence e = eg, €),...,e, = f of edges of G such
that e; and e;y; are adjacent for i = 0,1,...,¢6 — 1. Let c
be a proper edge coloring of G using k distinct colors and let
D = {C1,C3,...,Ci} be an ordered partition of E(G) into the
resulting edge color classes of ¢. For an edge e of G, the color
code cp(e) of e is the k-tuple (d(e, Cy),d(e, Cz),. .., d(e, Ct)),
where d(e, C;) = min{d(e, f) : f € C;} for 1 < i < k. If distinct
edges have distinct color codes, then c is called a resolving edge
coloring of G. The resolving edge chromatic number x,.(G) is
the minimum number of colors in a resolving edge coloring of G.
Bounds for the resolving edge chromatic number of a connected
graph are established in terms of its size and diameter and in
terms of its size and girth. All nontrivial connected graphs
of size m with resolving edge chromatic number 3 or m are
characterized. It is shown that for each pair k, m of integers with
3 < k < m, there exists a connected graph G of size m with
Xre(G) = k. Resolving edge chromatic numbers of complete
graphs are studied.
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1 Introduction

For edges e and f in a connected graph G, the distance d(e, f) between e and
f is the minimum nonnegative integer £ for which there exists a sequence
e =ep,e1,...,e¢ = f of edges of G such that e; and e;;; are adjacent for
i=0,1,...,£ —1. Thusd(e,f) = 0if and only if e = f, d(e, f) = 1 if
and only if e and f are adjacent, and d(e, f) = 2 if and only if e and f
are nonadjacent edges that are adjacent to a common edge of G. Also, this
distance is the standard distance between the vertices e and f in the line
graph L(G) of G. For an edge e of G and a subgraph F of G, we define the
distance between e and F as

dle, F') = d(e, E(F")) = min{d(e, f) : f € E(F)}.

A decomposition of a graph G is a collection of subgraphs of G, none of
which have isolated vertices, whose edge sets provide a partition of E(G).
A decomposition into k subgraphs is a k-decomposition. A decomposi-
tion D = {G1,G2,...,Gy} is ordered if the ordering (G1,G?2,...,Gk) has
been imposed on D. We write D = {G1,Ga2,...,Gi} and D = {E(G)),
E(Gs),- .., E(Gy)} interchangeably. For an ordered k-decomposition D =
{G1, Ga, ..., Gi} of a connected graph G and e € E(G), the D-code (or
simply the code) of e is the k-vector

CD(e) = (d(e7 Gl)) d(ev G?)) ey d(e’ GL)) .

Hence exactly one coordinate of cp(e) is 0, namely the ith coordinate if
e € E(G;). The decomposition D is said to be a resolving decomposition
for G if every two distinct edges of G have distinct D-codes. The minimum
k for which G has a resolving k-decomposition is its decomposition dimen-
sion dimg(G). A resolving decomposition of G with dim4(G) elements is a
minimum resolving decomposition for G. Thus if G is a connected graph of
size at least 2, then dimy4(G) > 2.

The topic of resolvability in graphs has previously appeared in the lit-
erature [5, 6, 7). Slater described its usefulness when working with U.S.
sonar and coast guard Loran (Long range aids to navigation) stations (6, 7].
Harary and Melter [5] discovered these concepts independently as well. Re-
solving decompositions in graphs were introduced and studied in [3]. Re-
solving concepts were studied from the point of view of graph colorings in
[1, 2]. We refer to the book [4] for graph theory notation and terminology
not described here.

A decomposition D = {G1,Ga,...,Gx} of a connected graph G is inde-
pendent if E(G;) is independent for each ¢ (1 <7 < k) in G. This concept
can be considered from an edge coloring point of view. Recall that a proper
edge coloring (or simply, an edge coloring) of a nonempty graph G is an
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assignment c of colors (positive integers) to the edges of G so that adjacent
edges are colored differently; that is, ¢ : E(G) — N is a mapping such
that c(e) # c(f) if e and f are adjacent edges of G. The minimum k for
which there is an edge coloring of G using k distinct colors is called the edge
chromatic number x.(G) of G. If D = {G1,Ga, ...,Gx} is an independent
decomposition of a graph G, then by assigning color i to all edges in G;
for each ¢ with 1 <4 < k, we obtain an edge coloring of G using k distinct
colors. On the other hand, if ¢ is an edge coloring of a connected graph G,
using the colors 1,2, ..., k for some positive integer k, then ¢ produces a de-
composition D of E(G) into color classes (independent sets) Cy,Cs,...,Cx,
where the edges of C; are colored i for 1 < i < %. For an edge e in a graph
G, the k-vector

C'D(e) = (d(e, Cl)y d(ex C‘Z)’ ey d(e7 Ck))

is called the color code (or simply the code) cp (e) of e. If distinct edges of
G have distinct color codes, then c is called a resolving edge coloring (or
independent resolving decomposition) of G. Thus a resolving edge coloring
of G is an edge coloring that distinguishes the edges of G in terms of
their distances from the resulting color classes. A minimum resolving edge
coloring uses a minimum number of colors and this number is the resolving
edge chromatic number xr.(G) of G. Suppose that G is a connected graph
with E(G) = {e1,€2,...,en}, where m > 2. By assigning the color i to e;
for 1 < i < m, we obtain a resolving edge coloring of G. Thus x,(G) is
defined for every connected graph G. Since every resolving edge coloring is
both an edge coloring and a resolving decomposition, it follows that

2 < max{dima(G), xe(G)} £ Xre(G) < m (1

for each connected graph G of size m > 2.

To illustrate these concepts, consider the graph G of Figure 1. Let
Dy = {G1, G2, G3} be the decomposition of G, where E(G,) = {viva,
‘02'05}, E(Gz) ={’U2’U3, Vg, '031)6}, and E(Gg) ={’U3‘U4, '03115}. Since Dl
is a minimum resolving decomposition of G, it follows that dimy(G) = 3.
Define an edge coloring ¢ : E(G) -+ N by assigning the color 1 to vyvs
and v3vs, the color 2 to vevs and vavg, the color 3 to vous, and the color
4 to vovg and vzvg. The coloring c is shown in Figure 1(a). Since ¢ is a
minimum edge coloring of G, it follows that x.(G) = 4. However, c is not
a resolving edge coloring. To see this, let D> = {C},C,,C3,Cy} be the
decomposition of G into color classes resulting from ¢, where the edges in
C; are colored i by c¢. Then cp,(vavs) = (1,0,1,1) = cp,(v3vs). On the
other hand, define an edge coloring ¢* : E(G) — N by assigning the color 1
to v1v2 and v3vs, the color 2 to vov3, the color 3 to wevs and vzvy, the color
4 to vavug, and the color 5 to v3vs. The coloring ¢* is shown in Figure 1(b).
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Let D* = {C},C3,...,C:} be the decomposition of G into color classes of
c*. Then

cp-(v1v2) = (0,1,1,1,2), cp-(vevs3) = (1,0,1,1,1),

cD- (vows) = (1,1,0,1,2), ep-(vavs) = (1,1,1,0,1),
(qu ) = (17130a2,1)7 cp- (1)3’0 ) = (Oa 111a271)’
- (v3vs) = (1,1,1,1,0)

Since the D*-codes of the edges of G are distinct, it follows that c¢* is a
resolving edge coloring. Moreover, G has no resolving edge coloring with 4
colors and so x.(G) = 5.

Us

Vg

Figure 1: A graph G with dimy(G) = 3, x.(G) =4, and xr.(G) =5

The example just presented illustrates an important point. Let D =
{Gi, G, ..., G} be a resolving decomposition of G. If e € E(G;) and
f € E(G;), where i # j and 1,5 € {1,2,...,k}, then cp(e) # cp(f) since
d(e,G;) = 0 and d(e,G;) # 0. Thus, when determining whether a given
decomposition D of a graph G is a resolving decomposition for G, we need
only verify that the edges of G belonging to the same subgraph in D have
distinct D-codes. The following two observations are useful to us, the first of
which is a consequence of (1) and the fact that the edge chromatic number
Xe(G) of a graph G is bounded below by the maximum degree A(G) of G.

Observation 1.1  For every graph G, xr.(G) > A(G).

Observation 1.2 Let G be a connected graph. Then dima(G) = xr.(G)
if and only if G contains a minimum resolving decomposition, each of whose
elements is independent in E(G).
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2 Bounds for Resolving Edge Chromatic Num-
bers

First, we review some common terminology from graph theory. The dis-
tance d(u,v) between two vertices © and v in a connected graph G is the
length of a shortest u — v path in G; the diameter of G is the greatest
distance between any two vertices in G and is denoted by diamG. A u —v
path of length d(u,v) is also referred to as a u — v geodesic. A vertex w is
said to lie between two vertices u and v if w is an interior vertex of some
u— v geodesic in G. Two vertices u and v are called antipodal vertices of G
if d(u,v) = diamG. The girth of G is the length of a smallest cycle in G.
In this section, we establish upper bounds for the resolving edge chromatic
number of a connected graph in terms of (1) its size and diameter and (2)
its size and girth. In order to do this, we need to establish some prelim-
inary results. We first state, without proof, the resolving edge chromatic
numbers of paths, stars, and cycles.

Proposition 2.1 Letn > 3. Then
(@) Xre(P3) =2 and xre(Pn) =3 forn > 4;
(0) xre(K1n-1)=n-1;
(¢) xre(Cr) =3 ifn is odd and xre(Crn) = 4 if n is even.

Corollary 2.2  Let G be a connected graph of size m > 2.
(a) Then xre(G) =2 if and only if G = P;.
() If m > 3, then 3 < x7e(G) < m.

Lemma 2.3 Let G be a connected graph of order n such that G #
Ky, P,,Cy. Then G contains three distinct vertices u,v, and w such that u
and v are antipodal vertices of G and w lies between u and v and degw > 3.

Proof. Assume, to the contrary, that there exists a connected graph G
of order n such that G # Ky, P,,C, and no vertex of degree 3 or more lies
between any two antipodal vertices of G. Since G # K,, it follows that
diamG =d > 2.

Let u and v be two antipodal vertices of G and let P be a u — v geodesic
in G. Then every interior vertex of P has degree 2 in G. Since G # P,,
there exists w € V(G) — V(P) such that w is adjacent to u or v, say w is
adjacent to u. Then d—1 < d(w,v) < d. Furthermore, every w —v geodesic
in G and P are internally disjoint. Let () be a w — v geodesic in G. Then
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the edge uw and the paths P and Q produce a cycle C of length k in G,
say
C 1o =u,U, U, ..., Ud = UV, Udtly---  Uk—1 = W, Uk = U,

where k = 2d + 1 or k = 2d. Next, we show that d(w,u4—1) = d. Assume,
to the contrary, that d{w,uq—1) < d — 1. Then there exists a w — uq_;
geodesic L in G. We consider two cases.

Case 1. k = 2d+ 1. Then d(w,v) = d and C is an odd cycle and
every vertex of V(C) — {u,v, w} has degree 2 in G. Since G # C,, there
exists z € V(G) — V(C) such that z is adjacent to u, v or w, say z is
adjacent to u. Thus degu > 3. Then the graph G contains the graph
of Figure 2 as a subgraph. If d(w,uq—1) < d — 2, then d = d(w,v) <
d(w,ug—1) + d(ug-1,v) < (d—2) +1 =d ~ 1, which is impossible. Thus
d(w,uq—1) = d— 1. Note that V(L) — {w,uq—1} contains no interior vertex
P and Q. Thus, the vertex immediately preceding uq—; on L must be v.
However, then, d(w,v) < d — 2, which is a contradiction.

Q

Figure 2: A subgraph of G

Case 2. k = 2d. Then d(w,v) =d— 1 and C is an even cycle. Then
the u — v path P' obtained from @ by joining u to w is also a u — v
geodesic. Thus every interior vertex in P’ has degree 2 in G. In particular,
degw = 2 in G. Since G # Cp, there exists z € V(G) — V(C) such that
is adjacent to u or v, say z is adjacent to u. Again, G contains the graph
of Figure 2 as a subgraph. If d(w,u4—1) < d—3, thend -1 = d(w,v) <
d(w,ug-1) + d(ug-1,v) < (d — 3) + 1 = d — 2, which is impossible. Thus
d(w,ug—1) = d-2ord(w,ug—1) =d—1. Let L : w = wo, w1, ..., W = Ud—1,
where £ € {d — 1,d — 2}. Since degw = 2, it follows that w; = u or w; =
Ug—2. Assume first that w; = u. Since d(u,ug—1) = d — 1, it follows that
d(w,uq4_,) = d, as desired. Thus we may assume that w; = ux—2 € V(Q).
Let w; (1 <i < € —1) be the last vertex on L that belongs to Q. Since w;
is adjacent to some vertex not on Q, it follows that w; = v. However, then,
d-1=d(w,v) =i < €-1<d-2, which is a contradiction.
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Therefore, d(w,uq-1) = d and so w and u4—; are antipodal vertices
of G. Since u lies between w and u4-; and degu > 3, a contradiction is
produced. =

We are now prepared to present an upper bound for the resolving edge
chromatic number of a connected graph in terms of its size and diameter.

Theorem 2.4  If G is a connected graph of size m > 3 and diameter d,
then
Xre(G) Sm-—d+3.

Moreover, xre(G) =m — d + 3 if and only if G is a path of size m > 3.

Proof. If d < 3, then x7(G) < m < m —d+ 3 by (1). Thus, we may
assume that d > 4. Let u and v be vertices of G for which d(u,v) = d,
and let Py :u =i, v, ..., U441 = v be a u — v path of length d in G.
Let e; = v;ui41 for 1 < i < d. Let E(G) - E(Pyt1) ={f, for .., fm—a}-
Assign the color 1 to e;, the color 2 to e; if 4 is even, the color 3 to e; if 7 is
odd, and the color j+3 to f; for 1 < j <m ~d. Smce this is a resolving
edge coloring of G with m — d+ 3 colors, it follows that X,¢(G) < m—d+3.

If G = P,, where n > 4, thenm=d=n—la.ndxre(P) 3
by Proposition 2.1. Therefore, xre(G) = m ~d + 3 if G is a path of
size m > 3. It remains to verify the converse. Assume, to the contrary,
that there is a connected graph G of size m > 3 and diameter d such that
Xre(G) = m—d+3, but G is not a path. By Proposition 2.1, we may assume
that G is not a cycle. If d < 2, then m —d +3 > m + 1. Since x,(G) <m
by (1), a contradiction is produced. So assume that d > 3. By Lemma 2.3,
G contains three distinct vertices u,v, and w such that d(u,v) = d and w
lies between u and v and degw > 3. Let P:u = v;,vs,...,v941 =v be a
u — v geodesic in G, let w = vj, where j € {2,3,...,d}, and let e = v;z,
where « ¢ V(P). Furthermore, let

Ql LZ,V5,V5-1,...,U1 and Qz:(l:,vj,’l)j+1,...,vd+1

be the paths obtained, respectively, from the v; —v; subpath of P by joining
z to v; and from the v; — v441 subpath of P by joining z to v;. We consider
two cases.

Case 1. There ezists no induced cycle C in G such that C contains the
edge e and an z —y subpath of Q; for any y € V(Q;) — {z,v;} and for any
i € {1,2}. Define an edge coloring ¢ of G by assigning the color 1 to v;v;4;
ifiis odd and 1 < ¢ < d, the color 2 to v;v;4; if i is even and 1 < i < d, the
color 3 to e, and distinct colors from {4,5,...,m —d + 2} to the remaining
m —d—1edges in E(G) — (E(P)U {e}). Let D = {C1, Cy, ..., Cry—gy2}
be the decomposition of G resulting from ¢. Qbserve that
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d(vj4+ivj4i41,C3) =i+1 for0<i<d -7,
d(v,-_,-vj_,-+1,Ca) =1 for1<i<j-1.

Thus the codes cp(viviz1), 1 < i < d, are distinct. Therefore, ¢ is a
resolving edge coloring of G using m — d + 2 colors. Therefore, xr.(G) <
m — d + 2, which is a contradiction.

Case 2. There exists an induced cycle C in G such that C contains the
edge e and an T —y subpath of Q; for somey € V(Q;)—{z,v;} and for some
i € {1,2}. Without loss of generality, assume that C is an induced cycle in
G such that C contains an z—y subpath of Q, for some y € V(Q1)—{z,v;}.
Let f be the edge of C that is adjacent to e but not on P. We consider two
subcases. :

Subcase 2.1. The edge f is adjacent to an edge of P. Since P is a
shortest u — v path, it follows that either (1) f = vj1z or f = vj_2x or
(2) f = vj417 or f = vjoz. We may assume that (1) occurs. Then C
is either a 3-cycle or a 4-cycle. In this subcase, the edge coloring ¢ of G
described in Case 1 is also a resolving edge coloring of G with m —d + 2
colors. Therefore, Xre(G) < m — d+ 2, which is a contradiction.

Subcase 2.2. The edge f is not adjacent to any edge of P. Define an
edge coloring c of G by assigning the color 1 to v,v2, the color 2 to f and
v;vis1 if @ is even and 1 < i < d, the color 3 to v;v;4; if ¢ is odd and
1 < i < d, and distinct colors from {4,5,...,m — d + 2} to the remaining
m —d — 1 edges in E(G) — (E(P)U {f}). Since f is not adjacent to any
edge of P, it follows that c is an edge coloring of G. Let D = {C, C3, .
Cm—-d+2} be the decomposition of G resulting from ¢. Observe that

.oy

d(viviz1, C1)=i-1 for2<i<d,
d(viviy1, C3) =1 for2<i<d,
d(fa 03) =2.

It follows that c is a resolving edge coloring of G using m — d + 2 colors.
Thus xre(G) < m — d + 2, producing a contradiction.

Therefore, if G is a connected graph of size m > 3 and diameter d with
resolving edge chromatic number m — d + 3, then G is a path. n

Next, we establish an upper bound for the resolving edge chromatic
number of a connected graph in terms of its size and girth.

Theorem 2.5 If G is a connected graph of size m and girth ¢, where
m>4£€>3, then

m-£+3 zfﬁzsodd,
Xre(G) -<-{ m—{0+4 ifl is even.
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Moreover, if £ is even and G is not an even cycle, then x..(G) <m—£+2.

Proof. If G is a cycle, then m = £. By Proposition 2.1, if G is an odd
cycle, then x,.(G) = 3 = m — £ + 3; while if G is an even cycle, then
Xre(G) = 4 = m — € + 4. Thus we may assume that G is not a cycle and
som > {. Let C; : v1,vs,...,v¢,v1 be a cycle of order £ > 3 in G, where
e; = Vv for 1 < i< € —1and e, = vevy. Let E(G) — E(C¢) = {f1, fo,
.+« fm—¢}. We consider two cases.

Case 1. £=2k+1, where k > 1. Define an edge coloring ¢’ : E(G) = N
by d(e;) =1,¢'(e;) =2if2<i<fandiiseven, c'(g)=3if3<i</?
and ¢ is odd, and ¢/(f;) = i + 3 for each i with 1 < ¢ < m — £. Since ¢
is a resolving edge coloring with m — £ + 3 colors, Xx7.(G) < m — £+ 3, as
desired.

Case 2. ¢ = 2k, where k > 2. Define an edge coloring ¢ : E(G) - N
by cle;) =1if 1 <i < £ andiisodd, cle;) =2if 2 <i < {andiis even,
and c(f;) =1+ 2 for each i with 1 < i < m — £. Since c is a resolving edge
coloring with m — £ + 2 colors, Xre(G) < m — £+ 2, as desired. =

It can be verified that the upper bounds in Theorem 2.5 are sharp.

3 Graphs with Prescribed Resolving Edge Chro-
matic Number

We have seen that if G is a connected graph of size m > 3, then 3 <
xre(G) < m. In this section, we first determine all connected graphs whose
resolving edge chromatic number is one of these extremes. We begin by
determining all connected graphs G with x,.(G) = 3. In order to do this,
we first present some preliminary results.

Lemma 3.1 [fT is a tree with A(T) = 3 and having exactly one vertezx
of degree 3, then x,.(T) = 3. .

Proof. Since A(T) = 3, it follows by Observation 1.1 that x».(T) > 3.
Thus, it remains to show that xre(T) < 3. Suppose that z is the only
vertex of degree 3 in 7. Then we may assume that T is the graph obtained
from the paths

Pkl:ulvuZ’-”)uku Pk2:v13v29"')vk2, Pks:w11w2$"'7wk3

by adding the vertex = and three edges zu;, zv:,zw, where k3, k2, and k3
are positive integers. Define an edge coloring ¢ of T' by assigning (1) the
color 1 to the edges zuy, uiu;+1 for even i with 2 < i < k; — 1, and vjv;44
for odd j with 1 < j < ky — 1, (2) the color 2 to the edges zvy, uiuiyy for

41



odd i with 1 < i < ky — 1, vjv;4, for even j with 2 < j < k2 — 1, and
wewey for odd £ with 1 < € < k3 — 1, and (3) the color 3 to the edges zw,
wyweyy for even ¢ with 2 < £ < k3 — 1. Since c is a resolving edge coloring
of T using three colors, xr(T) < 3. Therefore, x;.(T) = 3. »

A connected graph containing exactly one cycle is a unicyclic graph.
For brevity, we omit the proof of the following lemma.

Lemma 3.2 Let G be a unicyclic graph with A(G) = 3 and exactly one
vertez of degree 3.

(a) If G contains an even cycle, then xr.(G) = 3;
(b) If G contains an odd cycle, then x,.(G) = 4.

Let 7 be set of all trees T with A(T) = 3 having exactly one vertex of
degree 3 and let U be set of all unicyclic graphs G with A(G) = 3 whose
cycle is even and containing exactly one vertex of degree 3. The following
corollary is a consequence of Lemmas 3.1 and 3.2.

Corollary 3.3 Let G be a connected graph with A(G) = 3 such that G
contains ezactly one vertez of degree 3. Then x,.(G) = 3 if and only if
GeTUlU.

We are now prepared to present a characterization of connected graphs
G of order n > 4 with x,.(G) = 3.

Theorem 3.4  Let G be a connected graph of ordern > 4. Then x,¢(G) =
3 if and only if

(@) G=P,,
(b) G = C,, where n is odd, or
(o) GeTUU.

Proof. By Proposition 2.1 and Corollary 3.3, each of the graphs described
in (a), (b), and (c) has resolving edge chromatic number 3. For the con-
verse, assume that G is a connected graph of order n > 4 with x,.(G) = 3.
Let D = {C},C>,Cs} be a decomposition of G resulting from a minimum
resolving edge coloring ¢ of G. Since xr(G) = 3, it follows by Observa-
tion 1.1 that A(G) = 2 or A(G) = 3. If A(G) = 2, then G = P,, where
n >4, or G = Cp, where n > 4 is odd, and so (a) or (b) holds by Proposi-
tion 2.1. Thus we may assume that A(G) = 3. In fact, G contains exactly
one vertex of degree 3. To see this, suppose that G contains two distinct
vertices u and v of degree 3. Then both u and v are incident with edges of
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all three colors. Thus, in order that all edges incident with u and v have
distinct codes, all three edges incident with u must also be incident with
v, producing a contradiction. Therefore, G contains exactly one vertex of
degree 3. It then follows by Corollary 3.3 that G € TUU and so (c) holds. m

Next, we establish a characterization of connected graphs of size m
having resolving edge chromatic number m.

Theorem 3.5 Let G be a connected graph of order n > 3 and size m.
(@) If n =3 or n =4, then xre(G) = m.
() If n > 5, then xre(G) =m if and only if G = Ky n;.
Proof. First, we verify (a). If n =3, then G € {P;, K3}. If n = 4, then
Ge Py, K13, UK, Cy, Ky —e, Kq}.

It is straightforward to verify that each graph involved in this case has
resolving edge chromatic number equal to its size and so (a) holds.

Next we verify (b). By Proposition 2.1, xye(K1,n-1) =n — 1. Thus it
remains to show that if G is a connected graph of order n > 5 and size m
that is not a star, then x,.(G) < m~ 1. Since G # K n—1, wheren > 5, it
follows that G contains a path P : v;,vs,vs,v4 of order 4. Let e; = v;vi4
fori =1,2,3. Since n > 5 and G is connected, there exists v € V(G)—-V (P)
such that v is adjacent to at least one vertex of P. Consequently, some edge
of E(G) — E(P) is adjacent to exactly one of the two edges v,vs and v3vs.
By assigning the same color to v,v2 and vgvs and distinct colors to each of
the remaining edges in G, we produce a resolving edge coloring of G using
m — 1 colors, as desired. Therefore, the star K; ,—; is the only connected
graph of order n > 5 and size m with resolving edge chromatic number m
and so (b) holds. n

Combining (a) and (b) in Theorem 3.5, we have the following.
Corollary 3.6 Let G be a connected graph of order n > 3 and size
m > 2. Then xr(G) = m if and only if G is one the graphs in Figure 3.

By Corollary 2.2, if G is a connected graph of size m > 3, then 3 <

Xre(G) < m. Indeed, the proof of the following result is straightforward.

Theorem 3.7  For each pair k,m of integers with 3 < k < m, there
exists a connected graph G of size m with x..(G) = k.
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Ks: ii P: 6 BUK:: Cy: I:I
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Figure 3: The graphs described in Corollary 3.6

4 On Resolving Edge Chromatic Numbers of
Complete Graphs

In this section, we provide bounds for the resolving edge chromatic num-
ber of a complete graph. We have seen that x.(K3) = xre(K3) = 3 and
Xre(Kn) > xe(Ky) for n > 4. In fact, Xre(Kn) > Xe(Kn) + 1 for n > 4, as
we show next. It is known that x.(K,;) =n—1ifniseven and x.(K,) =n
if n is odd. Moreover, the edge independence number 8, (K,) = |n/2] for
each n > 3.

Proposition 4.1  For every integer n > 4,

n if n is even

Xre(Kn) 2 Xe(Kn) +1= { n+1 ifnis odd.

Proof. Assume, to the contrary, that xp.(Kn) = xe(Krn). Let ¢ be a
minimum resolving edge coloring of K, and let D = {G1,G3,...,Gy. (k.)}
be the decomposition of K, resulting from ¢. We consider two cases.

Case 1. n is even. Then x.(K,) = n—1. Assume, to the contrary, that
there is a resolving edge coloring of K, with n —1 colors. Then every color
is present at every vertex of K,. Consequently, every pair of edges that
share the same color have the same color code, which is a contradiction.

Case 2. n is odd. Then x.(K,) = n. Since the size of K, is (n — 1)n/2
and f1(Kp) = (n — 1)/2, it follows that |E(G;)| = (n — 1)/2 > 2 for
1<i<n. Lete fe€ E(G,). If each of e and f is adjacent to at least one
edge in G; for all ¢ with 2 < i < n, then ¢p(e) = cp(f) = (0,1,1,...,1),
a contradiction. Thus we may assume that at least one of e and f is not
adjacent to any edges in G; for some ¢ with 2 < i < n, say e is not adjacent



to any edges in G2. Let e = uv. Then G; C K, — {u,v} = K,_5. Since
Bi(Kn—2) = (n — 3)/2, it follows that |E(G2)| < (n — 3)/2, which is a
contradiction. -

Since xre(K4) = 6 by Lemma 3.5, strict inequality in Proposition 4.1
holds for n = 4. On the other hand, we have equality in Proposition 4.1 for
n = 5. Let V(Ks) = {v1,v2,...,vs} and define an edge coloring ¢ of K5 by
assigning the color 1 to v, v, and v3vs, the color 2 to vyv3 and vovy, the color
3 to vyv4, the color 4 to vyvs and vaus, the color 5 to vevs and v3v,, and
the color 6 to v4vs. Let D = {C},C2,...,Cs} be the decomposition of K
resulting from ¢. Then d(v,v2,Cs) = 2, d(vsvs,C6) = 1, d(vyvs,Cs) = 2,
d(v2v4,06) = 1, d('Ul'Us,Ca) = 1, d('Uz'Ua,Cs) = 2, d(’Uz’Us,C;;) = 2, and
d(v3v4,C3) = 1. Thus the color codes cp(e), e € E(K5), are distinct and
so ¢ is a resolving edge coloring of K5 using 6 colors. Thus x,e(Ks) < 6.
It follows by Proposition 4.1 that xre(K5) = 6. Therefore, x,.(Ks) =
Xe(Ks) + 1 and so we have equality in Proposition 4.1 for n = 5.

Next, we present an upper bound for x,.(K,) in terms of n for n > 3.
In order to this, we need some additional definitions. Let D be a decom-
position of a connected graph G. Then a decomposition D* of G is called
a refinement of D if every element in D* is a subgraph of some element of
D. We state a fact about the refinements of a resolving decomposition of a
graph without a proof.

Lemma 4.2 Let D be a resolving decomposition of a connected graph G.
If D* is a refinement of D, then D* is also a resolving decomposition of G.

Theorem 4.3  For every integer n > 3,

2nf3+(n—-1) ifn= 0 (mod 3)
Xre(Kn) < [(5n —3)/3] = { @2n+1)/3+(n-1) ifn= 1 (mod 3)
2n+2)/3+(n—-1) ifn= 2 (mod 3).

Proof. Since x,e(K3) = 3, xre(K4) = 6, and xre(Ks) = 6, the result is
true for 3 < n < 5. For n > 6, let V(K,) = {vo,v1,...,0n—1}. We define
a decomposition D of K, based on whether of n is congruent to 0, 1, or 2
modulo 3. Thus, there are three cases.

Casel. n =0 (mod 3). Let D= {G1,Gs,...,G2n/3)+1}, Where
E(Gait1) = {vsivsi+1} and E(Gaiy2) = {vsiy1v3i42}

for 0 < i < n/3 -1, and let G(an/3)+1 consist of the remaining edges
of K, that do not belong to any other elements in D. Observe that
{G1,G2,"*+,G2n/3} is actually a Kz-decomposition of the factor (n/3)Ps
of K,,.
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We show that D is a resolving decomposition of K,,. Observe that every
edge of G(an/3)41 either joins (a) a vertex that belongs to G; only and a
vertex that belongs to G; only, where 1 < i # j < 2n/3, (b) a vertex
that belongs to G; only and a vertex that belongs to both G; and G4,
for some i and j with {i} N {j,7 + 1} = 0 or (c) a vertex that belongs
to both G; and G;;; and a vertex that belongs to both G; and G4, for
some i and j with {i,i + 1} N {j,7 + 1} = 0. Furthermore, each edge of
G(2n/3)+1 satisfies exactly one of (a), (b), and (c). Thus D is a resolving
decomposition of K,. Define an independent refinement D* of D by (1)
retaining each subgraph G; in D for 1 < i < 2n/3 and (2) decomposing
G(2n/3)+1 into n — 1 independent subgraphs. Notice that (2) is possible
since A(G(2n/3)+1) =1 — 2 and 50 Xe(G(2n/3)41) < n— 1. Thus

D" = {GhG?,”'7G2n/3’HlsH2,'°' )Hn—l}’

where {H}, Hz,- -+, Ha—1} is an independent decomposition G(2n/3)+1- Since
D™ is a refinement of the resolving decomposition D of K,,, it then follows
by Lemma 4.2 that D* is a resolving independent decomposition of K, and
$0 Xre(Kn) < |D*| =2n/3 + (n - 1).

Case 2. n =1 (mod 3). We proceed as in Case 1 with D = {G,,
G2, -+, Gan+1)/3) Gan+4)/3}, where {G1,G2,...,G2n41)/3} is a Ko-
decomposition of the factor [(n —4)/3]Ps U K13. An argument similar
to that of Case 1 shows that D is a resolving decomposition. Define an
independent refinement D* of D by (1) retaining each subgraph G; in D for
1<i<(2n+1)/3 and (2) decomposing G(2n+4)/3 into n — 1 independent
subgraphs. Then D* is a resolving independent decomposition of K, and
30 Xre(Kn) < |D*| = (2n + 1)/3+ (n - 1).

Case 3. = 2 (mod 3). Again we proceed as in the previous two
cases, where D = {G1, Gs, ..., G2nt2)/3) G(2n+5)/3} such that {G1, Ga,
..+, Gan+2)/3} is a Ko-decomposition of the factor [(n —5)/3] Ps U K\ 4.
Again, an argument similar to that used in Case 1 shows D is a resolving
decomposition. Then we define an independent refinement D* of D by (1)
retaining each subgraph G; in D for 1 < i < (2n+2)/3 and (2) decomposing
G(2n+5)/3 into n — 1 independent subgraphs. Thus xre(Kn) < |D*| =
2n+2)/3+ (n-1). .

If n = 4, then [(5n — 3)/3] = 6 and x,.(K4) = 6 as well. Thus the
upper bound in Theorem 4.3 is attained when n = 4. Since x;.(Ks) = 6
and [(5n — 3)/3] = 8 for n = 5, we have strict inequality in Theorem 4.3
when n = 5.

There are several open questions here:

(1) Just how good are the bounds for xr.(Kpn) given in Proposition 4.1
and Theorem 4.37
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(2) Is there, in fact, a formula for Xre(Kn)?

(3) One might think that x,e(Kn) < Xre(Knt1) for all n > 3. Is this the
case?
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