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Abstract

In this paper, we consider the problem of decomposing complete
multigraphs into multistars (a multistar is a star with multiple edges
allowed). We obtain a criterion for the decomposition of the complete
multigraph AK,, into multistars with prescribed number of edges, but
the multistars in the decomposition with the same number of edges
are not necessarily isomorphic. We also consider the problem of de-
composing AK, into isomorphic multistars and propose a conjecture
about the decomposition of 2K, into isomorphic multistars.
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1 Introduction

For a positive integer n, let K, denote a complete graph on n vertices, and
S, denote a star with n edges. Both K,, and S, are simple graphs. For a
positive integer A and a graph G, let AG denote the multigraph obtained
from G by replacing each edge e of G by A edges with the same ends as
e. Thus AK,, is the multigraph on n vertices such that there are A\ edges
between every pair of vertices. We call AK,, a complete multigraph.

For multigraphs G and H, we say that G has an H-decomposition if
the edges of G can be partitioned into several subgraphs of G of which
each is isomorphic to H. The family of these subgraphs is called an H-
decomposition of G. M. Tarsi [7] considered the S,,-decomposition of AK,.
An S,,-decomposition D of AK, is said to be center balanced if the centers
of the stars in D are distributed among the vertices of AK, as uniformly
as possible (i.e., if a(v) denotes the number of stars in D with centers at
v € V(AK,), then |a(z) — a(y)] £ 1 for all z,y € V(AK,)). M. Tarsi
obtained the following result.

Theorem 1.1 [7] Let A, m, n be positive integers with n > 2. Then AK,
has an Sp,-decomposition if and only if

2m|dn(n—-1) and
n/2 for A=1
m < n-1 for even A

m < (n-1)/(14+1/X) for odd A >3 .

m

IA

Furthermore, under the same conditions the Sp,-decomposilion can be re-
quired to be center balanced.

Proof. The center balanced requirement can be seen from the proof of
the theorem in [7]. a

C. Lin and T.-W. Shyu considered the problem of decomposing K, into
stars (not necessarily isomorphic) and obtained the following resulit.

Theorem 1.2 [4] Let my > mg > -+ > mg be nonnegative integers. Then

Kp can be decomposed into stars Sm,,Sm,, -+, Sm, if and only if
¢ n
Zmi = ( ) and
4 2
i=1
k k
Zm,- < Z(n—i) Jor k=1,2,---,n—1. O
i=1 i=1
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The following more general result concerning the decomposition of uni-
form hypergraphs into hyperstars is due to Lonc. A hyperstar is a nonempty
family F of sets with (\ycp X # 0.

Theorem 1.3 (5] Suppose that t and n are positive integers such that t <
n—1. Let my > m3 > --- > mq be nonnegative integers. Then the family of
all t-element subsets of an n-element set can be partitioned into | hyperstars
of cardinalities my,my, - - -, my respectively if and only if

¢ n

E m; = ( ) and
£ t
i=1

(:)_(n:k) for k=1,2,---.n—t+1. a

Obviously Theorem 1.2 is a special case of Theorem 1.3 with ¢ = 2. Our
discussions will be restricted to graphs and multigraphs. A multistar is
a star with multiple edges allowed. We use Synygna...kne to denote a mul-
tistar which has n; edges with multiplicity 1, n, edges with multiplicity
2, ---, and n; edges with multiplicity k. As an illustration, the multi-
stars Sya, S1221, S119031, Sjo92, S1og03041 are exhibited in Fig. 1. Obviously
S1rigna..kne has ny+2ng+- - -+ kny edges. Also Syny = Sp, - The multistars
with the same number of edges need not be isomorphic. The multistars in
Fig. 1 are all the multistars with 4 edges.

NN

S] 31221 5112031 31022 510203041

IA

k
2 m:
i=1

Fig. 1

In this paper, we consider the problem of decomposing complete multi-
graphs into multistars. In Section 2, we obtain a criterion for the decom-
position of the complete multigraph AK,, into multistars with prescribed
number of edges, but the multistars in the decomposition with the same
number of edges need not be isomorphic. In Section 3, we consider the iso-
morphic multistar decomposition of AK,, and propose a conjecture about
that of 2K,.
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2 Decomposition of complete multigraphs into
multistars

In this section we consider the problem of decomposing AK,, into multistars.
We extend the results in [4]. Let us begin with the following proposition,
which is a criterion for the existence of an orientation of a given graph with
prescribed outdegrees. This result was obtained by M. Tarsi [8]. Though (8]
deals with simple graphs, Proposition 2.1 holds for multigraphs, the proof
of which is exactly the same as that given in [8].

Proposition 2.1 [8] Let G = (V, E) be a given multigraph and § a non-
negative integer function defined on V. For A C V, let e(A) denote the
number of edges with two ends in A, and let 6(A) denote 3 6(z) where the
summation is taken over all vertices z’s in A. A necessary and sufficient
condition for the existence of an orientation of G for which the ouldegree
of every vertez z € V' is 8(x) is

§(V) |E| and
5(A) = e(A) for every ACV with 2 <|A| L |V|. (m}

A criterion for the existence of an orientation of AK,, with prescribed
outdegrees follows from the above proposition.

Theorem 2.2 Let dy < dp < --- < dn be nonnegative integers. A neces-
sary and sufficient condition for the existence of an orientation of AK, for
which the outdegrees of the vertices are dy,da,-- -, dy is as follows

n
> d
i=1
k k

Sdi > ,\() for k=2,3,---,n—1.
i=1 2

Proof. Let V(AK,) = {v1,v2,---,vs}. Define a function § on V(AKj,) by
8(vi) = di, i = 1,2,---,n. The theorem follows from Proposition 2.1 and

Il
S
/N
o 3
—
=]

3
&

the following observations. The condition that i d; = )\(’5) is equivalent
10 that 8(V(\K»)) = e(V(\Kn)). For 2 < k < n 1, the condition that
i d; 2 /\(g) is equivalent to that 6(A) > e(A) for every A C V(AK,) with
14| = k. O

The case A = 1 in Theorem 2.2 is a well known theorem of Landau [1,
2, 6]. Theorem 2.2 can be rewritten as follows.
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Theorem 2.3 Let m; > mg > --- > my be nonnegative integers. A
necessary and sufficient condition for the existence of an orientation of AK,,
for which the outdegrees of the verlices are mi, my,---,my, is as follows

- n

Zmi = /\(2) and

i=1

k k

zm,- < /\Z(n—i) for k=1,2,---,n-2.
i=1 i=1

Proof. Fori=1,2,---,n,let di =mp_iy1. Thend; < dp <--- < dp.
(Necessity) Suppose that there exists an orientation of AK,, such that the
outdegrees of the vertices are m,, mg, - - -, m,,. Equivalently, the outdegrees
of the vertices of the oriented AK,, are dy, dy, - - -, dn. By the necessity part
of Theorem 2.2, we have

d n

Zd; = /\(2) and

i=1

k k

dod 2 ,\(2) for k=2,3,--,n—1.

Then im,- = id‘- = /\(g) and
i=1 i=1

k n n

2om o= Y omi= Yom

i=1 i=1 i=k+1
n n-k

n n—k
< — <n-—-k<n-—
< )‘(2) /\( 9 ) 2<n—-k<n-1

k k
Thus Y m; <AY (n—d)for1<k<n-2
(Sufficiency) Suppose that

;mi = )\(g) and
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k k
Zmi < /\Z(n—i) for k=1,2,.--,n—2.
i=1 i=1
n n
Then Zd.-:Zm,-:A(g) and
i=1 i=1
k n
> ds
i=1

> ™

i=n—k+1
n n—k
> A(z)—)\Z(n—i) 1<n—-k<n-2

Thus Z d; > /\( ) for 2 < k < n—1. By the sufficiency part of Theorem

2.2, there exists an orientation of MK, such that the outdegrees of the
vertices are dy,dg, - - - , dn; equivalently, the outdegrees are my, ma,- -, Mn.

a
We need the following lemma for our discussions.

Lemma 2.4 Let n and £ be integers such that n > 2 and £ > n + 1.

Suppose that Ai,)2, -+, n—1,Mm1,M2, - ,Mg are nonnegative numbers such
that Ay > Ag 2 - ZM1,m12m22-'-2mn2'--2mzand

4 n—1
o= 2 N(n-i),
t=1 i=1

k k
Sm < Y Mn-i)  for k=12 ,n-2
i=1 i=1

Let m{ >mj > --- > mj_, be a rearrangement of my,ma,- -+, Mp_1,Mn+
Mgy, M1, Mp42," ", Mg—-1. Then

e—1 n—1

ng = z)\;(n—i) and
i=1 i=1

k
> m
i=1

IN

k
Z)\,—(n—i) for k=1,2,---,n—-2.
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Proof. The required equality follows from the fact that 2 m} = Z ™mi.

=1 i=1
Now we prove the inequalities. Suppose that m; = my + me where t < n.
We can see that

mi,  i=1,2,,0—1
mi—1, 1=t+11t+2v:n

mi =

Suppose, to the contrary of the conclusion, that Z mf > E Ai(n — 1) for
=1
some integer j where t < j < n —2. Then

2mn, 2> mp+me
= mj

J j-1
= ZmZ—Zmi
i=1 i=1
J Jj—1
> Y Mln—i) =Y Mln—i)
i=] i=1
= Aj(n—j).

Hence m, > Aj(n —3)/2.
Then

n-1 -1
> M(n-i) = Zm;
i=1 i=

> Zm + Z m
t—]+l

= Zm +th
i=j

>

Zm: + (n —j)my,
i=1
> iw— )+ (- 372

Z)\(n—z YA Z (n—1)

—J+1

v
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n—1
> > Aln-—i).

i=1

n—1 n-1
Thus we obtain 3 M\i(n —i) > Y. Ai(n —2); this absurdity confirms the
i=1 i=1

lemma. t ‘ (m

Letting A\; = A2 = --- = Ay in the above lemma, we have the follow-
ing.

Lemma 2.5 Let € and n be integers such that n > 2 and € > n+1. Suppose

that A,my,my,- - -, Mg are nonnegalive numbers such that my > mg 2 -+ 2
Mp >+ 2> My and

gmi = /\(;),

k k
Zmi < )\Z(n—i) for k=1,2,--- . n—2.
i=1 i=1

Let m{y > mb > --- > m),_, be a rearrangement of my, ma, -+, Mn—1,Mn +
Mg, Mn41,Mpt2y° ", Me—1- Then

-1 n

Zm§ = )\(2) and

i=1

k k

Yomi < AY (n-i)  for k=1,2,--,n—2. O
i=1 i=1

Now we prove the main result of this section.

Theorem 2.6 Let m; > mg > -+ > mg be nonnegative integers. Then
the complete multigraph \K,, can be decomposed into £ mullistars, each of
which has m; edges (i =1,2,---,£) if and only if

¢ > n-1,

£

Sm o= A(3):
i=1

k

Y m
=1

IN

k
)\Z(n—i) for k=1,2,---,n—2.
i=1
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Proof. (Necessity) Let V(AK,) = {v1,v2,:--,vn} and D be the decom-
position of AK, into £ multistars. First we prove £ > n— 1. Suppose, on the
contrary, that £ < n — 2. Then there are two vertices, say v;, v, which are
not centers of multistars in D. Thus the edges between v; and v belong to
none of the multistars in D. This impossibility establishes £ > n — 1.

The required equality is obvious. To prove the remaining inequalities,
orient the edges of AK,, as follows. For an edge belonging to a multistar
in D with the center at v;, we orient it outward from v;. Suppose now
the outdegree of v; is /; for j = 1,2,---,n. Obviously 7; = > m; where
m;'s are the numbers of edges of those multistars in D with centers at v
(; = 0 if there is no multistar with the center at v;). Let m] > mj >

- > m,, be the rearrangement of 7;, My, - -, My,. By the necessity part
of Theorem 2.3,

k k
Yomi<AY (n-i) fork=1,2-,n-2
i=1 i=1

Thus

k k k
dDomi<) mi<AY (n—i) for k=1,2,n-2.
i=1 i=1 i=1

(Sufficiency) We prove the result by induction on £. Since in the case £ =
n—1 we can let m, = 0, let us begin with £ = n. By the sufficiency part of
Theorem 2.3, there is an orientation of AK,, for which the outdegrees of the
vertices are my,mp, -+ -, my,. In a natural way AK, can be decomposed into
n multistars, each of which hasm; edges (¢ = 1,2, ---,n). Now let £ > n+1.

Suppose that the result holds for £ —1. Let m} > m2 -2 m, , be a
rearrangement of my, my, - M1, mp + e, M1, M2, »Me-1. By

Lemma 2.5, Em =/\(") andZm </\Z(n—z)fork—l 2,-,m—=2.

By the mductlon hypothesns /\K n can be decomposed into £— 1 multistars,
each of which has m; edges (i =1, 2,- —1). A multistar with my, 4+ my
edges can easily be decomposed into two multistars with m, and m; edges,
respectively. Thus AK,, can be decomposed into £ multistars, each of which
has m; edges (i = 1,2, ---,£). This completes the proof. O

Note that Theorem 1.2 is a special case of Theorem 2.6 with A = 1.
Note also that in Theorem 2.6 the multistars in the decomposition of AK,,
with the same number of edges may not be isomorphic. The following
theorem follows easily from Theorem 2.6.

Theorem 2.7 Let A\, n, m be positive integers. Then MK, can be decom-
posed into mullistars, each of which has m edges (these slars need not be
isomorphic) if and only if m|A(3) and m < An/2.
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Proof. (Necessity) Suppose that AK,, can be decomposed into £ multi-
stars, each of which has m edges. By the necessity part of Theorem 2.6,
£>n—1and mé=A(}). Thus m|A(3) and m = An(n — 1)/2¢ < Mn/2.
(Sufficiency) Let £ be the number such that mé = A(3). Since m < An/2,
wehave £ >n—1. Let m; =mo =--- =mg =m. Then

e
Z m; =\ (g) and
=1

fork=1,2,---,n -2,

k
E m; = mk
i=1

< Ank/2
k

< AY (n—i).
i=1

By the sufficiency part of Theorem 2.6, AK, can be decomposed into £
multistars, each of which has m edges. a

3 Decomposition of complete multigraphs into
isomorphic multistars

The multistars with m edges in Theorem 2.7 may not be isomorphic. Ac-
tually the condition in the theorem does not guarantee decompositions into
isomorphic multistars. For example, by Theorem 2.7, 3K5 can be decom-
posed into 6 multistars, each of which has 5 edges. But, as shown in the
following remark, we can not require that these 6 multistars to be isomor-
phic.

Remark. Let S be an arbitrary multistar with 5 edges which is contained
in 3K5. Then 3Kj5 does not have an S-decomposition.

Check. Suppose, on the contrary, that 3Ks has an S-decomposition D
where S is a multistar with 5 edges. Since S is contained in 3Kj5, there
are four candidates for S, which are Sy3g1, S120031, S1122 and Syogz1. These
multistars are given in Fig. 2. Assume that 3Ks is decomposed into six
S’s. Let V(3Ks) = {v1,v2,v3,v4,5}. An edge with odd multiplicity is
said to be an odd edge. Since each edge viv; (1 < i < 7 < 5) in 3Ks
has multiplicity 3, vjv; is an odd edge. Thus 3K has ten odd edges. We
consider three cases and show that each case leads to a contradiction.
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3132! 5122031 31122 5102131
Fig. 2

Case 1. § = Sj192 or Spogiar.

Since 3K has ten odd edges and S has only one odd edge, it is impos-
sible for 3K’5 to be decomposed into six S’s.

Case 2. S = 31321 .

Since there are 6 multistars in D and 3K5 has 5 vertices, we see that
there are two multistars in D with centers at the same vertex, say at v;.
Let G be the subgraph of 3K35 induced by these two multistars. We see
that G is isomorphic to S;09232, which has v; as the center, and vs, v3, v4, v
as endvertices. Without loss of generality, assume that G has two edges
Jjoining v; and wvg, two edges joining v; and w3, three edges joining v; and
v4, and three edges joining v; and vs. The graph G is exhibited in Fig. 3.
Then it is impossible to have a multistar in D with its center at v4, since
the multistar in D (which is isomorphic to Sj3p1 ) must be a spanning con-
nected subgraph of 3K’s but the edges joining v4 and v, in 3K’5 have been
exhausted. Similarly there is no multistar in D with its center at vs. Thus
the edges joining v4 and vs do not belong to any multistar in D; this is
absurd.

v

Us v2

V4 3
Fig. 3

Case 3. S = 3122031.

As in Case 2, we may assume that there are two multistars in D with
centers at v;. Without loss of generality, the subgraph induced by these
two multistars is the graph G in case 2, which is exhibited in Fig. 3. For
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each i = 2, 3,4, 5, at least two edges joining v; and v; have been used for G,
so there is at most one multistar in D with its center at v;. Then it follows
from |D| = 6 that there is exactly one multistar in D with its center at
each v; (¢ = 2,3,4,5). The multistar in D with its center at v4 has either
one edge or three edges joining v4 and vs; also the multistar in D with its
center at vs has either one edge or three edges joining vs and v4. These
contradict the fact that there are exactly three edges joining v4 and vs in
3Ks. O

Now we consider the problem of decomposing 2K, into isomorphic mul-
tistars. Let us begin with a lemma concerning the decomposition of a
multistar into isomorphic simple stars.

Lemma 3.1 ([3]; Proposition 1.3) Suppose that A,n are positive inte-
gers, and ny,ng, -+ -, Ny are nonnegative integers such that ny +2n9+-- -+
knr = Mn and k < X\. Then Siniona...kne can be decornposed into A copies

of Sn. O

In the following, a multistar Sy~19n2 is abbreviated to Sp, n,. With
k = 2 in Lemma 3.1, we have the following.

Lemma 3.2 Suppose that A\, n are positive integers, and ny,na are non-
negative integers such that ny + 2ng = M and 2 < A. Then Sp, n, can be
decomposed into A copies of S,. 0

An edge in Sp, n, with multiplicity 2 is referred to a 2-edge. Thus
Sny .n, has ng 2-edges. The following lemma concerns the decomposition of
a multistar into isomorphic multistars.

Lemma 3.3 Suppose that A\, ni,n2,n},ny are nonnegalive inlegers such
that ny + 2np = Mn} +2n}) >0, 2 < A and ny > Mnjy. Then Sy, n, cen be
decomposed into A copies of Spy ns.

Proof. For the case n} = 0, we have n; = 0 and nz = Anj. It is trivial
that Sp,n, can be decomposed into A copies of Sp, nys ; the result follows. For
the case ny = 0, the result follows from Lemma 3.2. Now consider the
case nj > 1, nj > 1. Removing Anj 2-edges from Sy, n,, We obtain the
multistar Sp, n,— Anj . Since ny + 2(n2 — Mny) = Ini, 2 < )}, it follows from
Lemma 3.2 that S,., ,n2—Xnj, €an be decomposed into A copies of S, . Then
to each of these copies of S,,; we attach nf 2-edges in a natural way to
obtain an S'n o . Thus Sy, n, is decomposed into A copies of S,.: o a

The case ny = 0 in the above lemma gives



Lemma 3.4 Suppose that A\, n2,n},ny are nonnegative integers such that
2ng = A(n] +2n5) > 0, 2 < A. Then Son, can be decomposed into A copies
of Sni ns- a

The case A =1 in Theorem 1.1 gives

Theorem 3.5 K,, has an S,,-decomposition if and only if 2m|n(n— 1) and
m < n/2. PFurthermore the S;,-decomposition can be required to be center
balanced. O

Now we prove the main result of this scction.

Theorem 3.6 Let S be a mullisiar conlained in 2K,,. Suppose that S has
m edges such that

(1) m|n(n — 1) and

2)m<n/2orm=n—~1orm=n.

Then 2K,, has an S-decomposition.

Proof. Suppose that S = Sy, n, Where n; + 2ny = m. Let V(2K,) =
{v1,vg,--,vn}. Distinguish three cases: Case 1. m < n/2, Case 2. m =
n—1,Case3. m=n.

Case 1. m < n/2. Consider two subcases.

Subcase 1.1. m is odd or m = n/2 for some even integer n.

If m is odd, the assumption m|n(n—1) implies 2m|n(n—1). If m = n/2,
it is obvious that 2m|n{n — 1). Thus, by Theorem 3.5, K,, has an S,-
decomposition, which implies that 2K, has a 2S,,-decomposition. Obvi-
ously, 25, = Sp,m. Since 2m = 2(n; + 2ny), it follows from Lemma 3.4
that So,» can be decomposed into 2 copies of Sy, »,- Hence 2K, has an
S-decomposition.

Subcase 1.2. m is even and m < n/2.

Let m = 2m' where m' is a positive integer. Since 2m’|n(n — 1) and
m’ < n/2, it follows from Theorem 3.5 that K, has a center balanced S/~
decomposition D. For v € V(K,), let a(v) denote the number of stars in
D with centers at v. Then K, can be decomposed into the following stars:
Sa(vym’ (v € V(Ky)), which implies that 2K, can be decomposed into the
following multistars: 2S,(yym’ (v € V(Ky)). Note 2S4(v)ym' = So,a(vym’-
Since D is a center balanced S,,.-decomposition of K,, we have a(v) >
LIDI/n) = |(3)/m'n] = |(rn —1)/m]. Thus a(v) > 2 since m < n/2. It
follows from Lemma 3.4 that Sp o(v)m’ ¢an be decomposed into a(v) copies
of Sn, na, since 2a(v)m’ = a{v)(n1 + 2n2) and a(v) > 2. Thus 2K, has an
Sn, ,np,-decomposition.

Case2. m=n-1.
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We partition the edge set of 2K, into n subsets, each of which induces
a subgraph isomorphic to S = Sy, », as follows. For j =1,2,---,n, let E;
be the set consisting of the following edges: two edges joining v; and vj44
(1 <1 < ny) and one edge joining v; and v;j4; (n2+1 < i < ny+n2) where
the subscripts of v;4i’s are taken modulo n. Then each induced subgraph
< Ej; > is isomorphic to Sy, », (as an example, for n =8, n; = 3, ny = 2,
< E; > is exhibited in Fig. 4, and any other < E; > is a rotation of
< By >). Also E(2K,,) is partitioned into By, Fs,---, BE,. Thus 2K, has
an S-decomposition.

vy Y9 V)
vg e Vg Ug e Vg
v7 e v3 v7 e v3
Vs V4 Vg V4
[ [ ]
Vs Us
Fig. 4 Fig. 5

Case 3. m=n.

Since S = Sy, n, is contained in K,, we have n; < n — 1. Then it
follows from n = m = n; + 2ny that ny > 1. We partition the edge set
of 2K, into n — 1 subsets, each of which induces a subgraph isomorphic
to S as follows. For j =1,2,---,n — 1, let E; be the set consisting of the
following edges: two edges joining v; and v,,, two edges joining v; and v;;
(1 £i < ny—1) and one edge joining v; and vjy; (n2 < i <nyp+ng—1)
where the subscripts of v;4;’s are taken modulo n — 1. Then each induced
subgraph < E; > is isomorphic to Sp, », (as an example, forn =9, n; =3,
ny = 3, < E; > is exhibited in Fig. 5). Also E(2K,) is partitioned into
Ey, Es,---,E,_1. Thus 2K,, has an S-decomposition. O

We conclude this paper with the following conjecture.

Conjecture. Let S be a multistar contained in 2K,. Suppose S has m
edges. Then 2K, has an S-decomposition if and only if m|n(n —1) and
m < n.

The necessity of the conjecture follows from Theorem 2.7 with A = 2,
and the sufficiency holds for m < % or m = n — 1 or m = n by Theorem
3.6.
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