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We remedy the gap in the proof of the following theorem stated
in [1]:
Theorem. Let C be a cycle of length c in a graph G, and let H be a
component of G — C. Suppose that C is locally longest with respect
to H, and H is locally k-connected to C, where 2 < k < 4, and
|V(H)| > k — 1 and, in addition, the average degree of H in G isr.
Then ¢ 2 k(r + 2 — k), with equality only if r is an integer and either
H is a complete graph of order r + 1 — k and every vertez of H has
the same k neighbours on C, or H is a complete graph of order k—1
and every vertex of H has the same r + 2 — k neighbours on C.

1 Introduction

In this paper, we consider only finite, undirected graphs without loops
or multiple edges.

Let G be a graph. The vertex set of G is denoted by V(G), and the
edge set of G is denoted by E(G). For a subset X of V(G), G — X denotes
the subgraph obtained from G by deleting the vertices in X together with
the edges incident with them. For z € V(G), we let Ng(z) denote the set
of vertices adjacent to z in G, and set degg(z) := |Ng(z)|. For X C V(G),
we let Ng(X) denote the union of Ng(x) as r ranges over X. For disjoint
subsets X, X' of V(G), we define Eq(X,X') := {zz' € E(G)|z € X,z €
X'}. A subgraph of G is often identified with its vertex set. Thus when H is
a subgraph of G, we write G — H and Ng(H) for G-V (H) and NG(V(H)),
when H and H are vertex-disjoint subgraphs, we write Eq(H,H ) for
Eg(V(H),V(H")).

A cycle C is denoted by a sequence by bs ... by, b of its vertices such that
V(C) = {b1 ’ b-z, ey bm} and E(C) = {blbg,bzb;;, ceny bm_lbm,bmbl}(n =
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|[V(C)|). Similarly, a path R is denoted by a sequence by b, ...b,, of its
vertices such that V(R) = {b;,b2,...,bm} and E(R) = {biba,babs,...,
bm-1bm}. Let C = biba...bmby be a cycle. For i,j with 7 < j < i+ m,
we let C[b;,b;] denote the path b;biy; ...b;, and let C(b;, b;) denote the
path b;y1biy2...bj—1 (subscripts are to be read modulo m). Note that if
j =1i+1, then C(b;,b;) denotes an empty path.

Let again G be a graph. Let C be a cycle of G, and let H be a component
of G—C. We say that C is locally longest with respect to H in G if we cannot
obtain a cycle longer than C by replacing a segment C[u,v] by a uv-path
all of whose inner vertices lie in H (a wv-path means a path connecting u
and v).

Let C be a subgraph of G, and let = be a vertex in G—C. An (z,C)-path
is a path connecting z to some vertex v € V(C) such that v is the only
vertex of C on the path. Two (z,C)-paths are said to be disjoint if they
have only the vertex z in common. Let H and C be two subgraphs of G
with V(H)NV(C) = 0. We say that H is locally k-connected to C in G if
for every vertex ¢ € V(H), there are k pairwise disjoint (z, C)-paths in G.

Let W be a subset of V(G). The average degree of W in G is the number

I_I;/T Z degq(2).

EW

If H is a subgraph of G with vertex set W, we also call this number the
average degree of H in G.
In this paper, we are concerned with the following theorem:

Theorem A. Let C be a cycle of length ¢ in a graph G, and let H be a
component of G — C. Suppose that C is locally longest with respect to H,
and H is locally k-connected to C, where 2 < k <4, and |[V(H)| 2 k-1
and, in addition, the average degree of H in G isr. Thenc > k(r +2—k),
with equality only if r is an integer and either H is a complete graph of
order r + 1 — k and every vertex of H has the same k neighbours on C, or
H is a complete graph of order k — 1 and every vertex of H has the same
r + 2 — k neighbours on C.

Theorem A appears as Theorem 2 in Fan [1] but, as we shall describe
below, there is a gap in the proof of the theorem given in [1]. In [1], the
proof of Theorem 2 is carried out by induction on the number of blocks of
H. The problem occurs when H contains at least two blocks, and there is
an endblock B of H such that 3. .y (g_(s}) d€8c(2) < (r — 1)|[V(B - b)|
where b is the unique cutvertex of H contained in B. That is to say, in
[1], it is asserted that if we let G denote the graph obtained from G by
contracting B, and let H denote the subgraph of G arising from H through



the contraction of B, then we obtain the desired conclusion by applying
the induction hypothesis to C and H in G. However, in the case where
k=4 and |V(H)| = |V(B)| + 1, we cannot apply the induction hypothesis
because |V(H)| = 2 < k — 1. We here remedy this gap by proving the
following proposition:

Proposition B. Let C be a cycle of length ¢ in a graph G, and let H be a
component of G —C'. Suppose that C is locally longest with respect to H, H
is locally 4-connected to C, and the average degree of H in G is r. Suppose
further that there exists an endblock B of H such that |V (H)| = |V(B)|+1.
Then ¢ > 4(r — 2).

We conclude this section by defining some more terms which we use in
the proof of Proposition B.

Let u and v be two distinct vertices of a graph G. We define the codis-
tance dg;(u, v) between u and v to be the maximum length of a uv-path in
G (a uv-path means a path connecting u and v); if no uv-path exists, we
set dg,;(u,v) = 0.

Let C be acycle of a graph G, and let H be a subgraph of G-C. A strong
attachmentof H to C in G is asubset T = {u;,uy,...,u,} C Ng(H)NV(C),
where %(,us,...,u, occur on C in this order, such that either ¢ < 1, or
t > 2 and for each 1 < i < ¢, there exist y,z € V(H) with y # z such
that u;y,u;412 € E(G) (we take upy) = u;). A strong attachment T of H
to C is said to be mazimum if it has maximum cardinality over all strong
attachments of H to C.

2 Preliminary Results

In this section, we collect lemmas which we use in the proof of Proposition
B. Most of the lemmas in this section are taken from Fan [1].

Lemma 2.1 [1; Proposition 1]. Let H and C be two disjoint subgraphs
of a graph G, and suppose that H is locally k-connected to C in G. Then
E(C, H) contains t independent edges, where t = min{k, |V (H)|}.

Lemma 2.2 [1; Proposition 3]. Let H and C be two disjoint subgraphs of
a graph G, and suppose that H is locally k-connected to C in G. Let B be
a block of H. Let G be the graph obtained from G by contracting B into a
single vertez, and let H be the subgraph of G arising from H through the
contraction of B. Then H is locally k-connected to C in G.
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Lemma 2.3 [1; Lemma 1]. Let C be a cycle of a graph G, and let H
be a subgraph of G — C. Let T = {uy,us,...,uw;} be a mazimum strong
attachment of H to C, where uy,us,...,u; occur on C in this order, and
suppose that t > 2. Set

S = (Na(H)NV(C)) -T.

Then the following hold.
(i)  Every vertex in S is joined to ezactly one vertex of H.
(ii)) Letl<i<t, and write

V(C[u,~,u,~+1]) n NG(H) = {a()a aiy.-. 1aq~:aq+l}

with ag = u; and ay4y = uiy) S0 that ag,ay, ..., 8041 occur on Clu;, uiy]
in this order (in the case where i = t, we take w4y = uy). Then there is
an index m with 0 < m < q such that

V(H)N N¢(a;) = V(H) N Ng(ao) forall 0<j<m
and

V(H)N Ng(a;) = V(H)N Ng(agy1) forall m+1<j<qg+1.

For convenience, we restate (ii) of the above lemma in the following
form.

Lemma 2.4 LetG,C, H, T = {u;,uz,...,u.} be as in Lemma 2.3. Then
there exists a mazimum strong attachment T of H to C which satisfies the
following property:

if we write T = {v1,vs,...,u} so that vy,vs,...,v; occur on C
in this order, then for each 1 <1 < t, we have V(H) N Ng(w) = (1)
V(H)NNg(viq1) for allw € V(C(v;,viz1] — {vi}) NN (H), where

we take v141 = ;.
Proof. For each 1 < i < t, write
V(Clui, uig1]) N Ne(H) := {ai0,ai1,- - - Qi g(i)+1 }
with a; 0 = u; and a; g(ij+1 = Ui+1 SO that a@;0,ai1,...,8;4:)+1 OCCUr ON
Clui,ui41] in this order. It follows from Lemma 2.3 (ii) that for each i,

there exists an index m(é) with 0 < m(7) < ¢(%) such that

V(H) N N(,'(a,"j) = V(H) n NG(a,’,o)
for all 0 < j < m(7), 2)

68



and

V(H)N Ng(a:;) = V(H)NNg(a;gi+1)
for all m(z) +1 < j <q(?) + 1. (3)
Set
T' = {al,nn(l)1a2,m(2)1 seey at,m(t)}-

Then we see from (2) that T' is a strong attachment, and (2) and (3)
together imply that T satisfies (1).

Lemma 2.5 [1; Theorem 1]. Let u and v be two distinct vertices of a
nonseparable graph G of order at least 3. Suppose that the average degree
of the vertices other than u and v is r. Then the following hold.

(i) dg(u,v)>r.

(i1)  Equality holds in (i) if and only if r is an integer,
each of x and y is joined to all vertices in V(G) — {u,v},
and each component of G — {u,v} is a complete graph
of orderr — 1.

The following lemma follows immediately from the definition of a locally
longest cycle:

Lemma 2.6. Let C be a cycle of a graph G, and H be a component of
G — C, and suppose that C is locally longest with respect to H. Let u, v be
distinct vertices on C, and suppose that there exist y € V(H) N Ng(u) and
z € V(H)N Ng(v) such that y # 2. Then |E(Clu,v])| > dy(y,z) + 2.

3 Proof of Proposition B

Let G,C, H, ¢, , B be as in Proposition B. Write V(H) = V(B)U{z},
and let b be the unique cutvertex of H; thus E(H) = E(B) U {bz}. We
divide the proof into two cases according to the order of B.

Case 1. |V(B)|>4.

Let G denote the graph obtained from G by contracting the edge bz
into a single vertex. Let b denote the new vertex of G arising from bz
through its contraction, and let H denote the subgraph of G arising from
H (so H = B). Note that V(C) N Ng(H) = V(C) N Ng(H). Note also
that from the assumption that C is locally longest with respect to H in
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G, it follows that C is locally longest with respect to H in G. Let T C
V(C) N Ng(H) be a maximum strong attachment of H to C in G, and set
S =(V(C)NNz(H))=T. Let t = |T|, s = |S|. By Lemma 2.2, H is locally
4-connected {0 C in G. Hence t > 4 by Lemma 2.1. By Lemma 2.4, we
may assume I’ satisfies ( 1 ). Define subsets Py, P, of V(C) N Nz(H) by

Py:= No(b)NNg(z)NT and P, := Ng(b)n Ng(z)N S,

and let pp := |P| and p, := |Py|. Since Py C T and P, C S, we have pg < ¢
and p; < s.

Write V(C)NNg(H) = {c1,¢2,...,¢2} so that ¢, ¢s,...,¢x occur on C
in this order (we take cx4+1 = ¢1)-

Claim 1. (I) Let 1 < i < A, and suppose that ¢; € T. Then the following
hold.

() |E(Clei,cirr])] 2 4.

. r((VHE)| +1) — (po +p1 +2) s
(i) [E(Cleicin))] 2 T +2-t- oo
(i) If equality holds in (ii), then
VA D - otm+2) s
V= V() I var

H= Kl"'(ﬁ)l’ and V(ﬁ) C Ng(ci) N Ng(cigr).

(II) There exists an index i with ¢; € T for which strict inequality holds in
(I) (ii).

Proof. (I) (i) Since ¢; € T and T satisfies (1), there exist y E_l/(ﬁ) N
Nz(ci) and z € V(H) N Ng(ciy1) such that y # 2. Since |V(H)| > 4
and H is nonseparable, it follows that d*ﬁ(y, z) > 2. Hence by Lemma 2.6,
IE(Clei, cira])] 2 dip(y, 2) +2 > 4.

(i) Let H " denote the graph obtained from the subgraph induced by
V(H)U {ci,ciq1} in G by joining ¢; and ¢4 (if ¢; and ¢;4 are not joined
in G). Let

. /(H -
p o TVE+ )~ (o+pi+2) o, 8
(V(H)| [V (H)|
We first estimate (3__cy (77 degy’ (2))/|IV(H)|. Since Ng(b) N Ng(z) C
V(C), we have degz(b) = degg(b) + degg(z) — |Ng(b) N Ne(z)| — 2 =
degq; () + degg(z) — (po + p1 + 2), and hence

> degg(x) = ( 3 dego(2)) - (degg(b) + degg(z) — degz ()
=eV(H) z€eV(H)
r(IV(E)]| +1) = (po + 1 +2). @)
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Write T = {ul,u», ,u } with u; = ¢; so that Uy, Uz, . . ., Uy OCCUL ON Cin
this order. Set T" : (T {us})U{ci+1} and S" := (V(C) N Ng(H)) -
Since T satisfies (1), T' is also a maximum strong attachment of H to C,
and hence

|Eg(S . VH) < s (5)
by Lemma 2.3(i). Also we clearly have
|B&(T" — {ci,cins L, VA < (¢ = 2)|V(H)). (6)

Combining (4), (5) and (6), we obtain (¥.y ) degy (2))/|V(E)| > 7.
Consequently,

* 1 !
dip (Civcin) 2 e D degyi(2) 27 (7)
IV (H)| =eV(H)

by Lemma 2.5(i), and hence |E(C[ci,ciy1])| > r by the fact that C is
locally longest with respect to H.

(iii) _Suppose that equality holds in (ii). Then equality holds in (7).
Since H — {ci,cim} = H is connected, this together with Lemma 2.5(ii)
implies that H = K,,_, and V(H) C N (c;) N Ny (i41) C Ngle) N
NG(ct+l)

(II) Suppose that eqality holds in (I)(ii) for all ¢ with ¢; € T. Let r be
as in the proof of (I). Then by (I)(iii),

F = Kr' -1 (8)
and .
V(H) C Ng(civr) 9

for each ¢ with ¢; € T. Note that by Lemma 2.3(i), (9) implies ¢;4, € T.
Thus ¢4, € T for each i with ¢; € T'. Since T # 0, this forces T = V(C) N
Ng(H) which, in turn, implies that (9) holds for all 1 < i < A. Now since H
is locally 4-connected to C in G, degg(z) > 4, and hence V(C)NNg(x) # 0;
that is to say, there exists ¢; such that £ € Ng(c;). Take y € V( B {o]).
Since (9) holds for all ¢, we have y € Ng(cj41). Since di(b,y) = r - 2 by
(8), we now obtain |E(C[c;j, ¢j+1])| 2 iy (2, y)+2 = (1+d5(5,9))+2 =7 +1
by Lemma 2.6. Since T = V(C) N Ng(H), this contradicts the assumption
that equality holds in (I) (ii) for all { with ¢; € T'.

We return to the proof of Proposition B. If ¢ > r — 2, it immediately
follows from Claim1(I) (i) that ¢ > 4(r — 2). Thus we may assume ¢ <
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r — 2. Since C is locally longest with respect to H, |[E(Clei,cin])| >
2 for each 1 < i < A with ¢; € S, and hence Y o |E(Clei, ci1])| = 2s.
Consequently,

A
¢ > S IE(Cles, i)l = Y |E(Cles, cim])] + 2s. (10)
i=1 c, €T
With (I) (i), (I) (ii) and (II) of Claim1 in mind, we substitute

r(VEI+D) = o+ +2) o, S
|V (H)| |V (H)|

for four of the terms | E(C/c;, ¢i+1))| in the right-hand side of (10), including
a term for which strict inequality holds in Claim 1(I) (ii), and substitute 4
for the other t — 4 terms. Then we obtain

c > 4{’(1v<ﬁ>|+1>—<po+m+2>+z-t— 7 }

V)] V()]
+4(t—4)+2s
- 4r— __4m 4 (r-2)—
=4 8+<S |V(ﬁ)|)+|V(ﬁ)|(( 2) - m)

+s(1—|v(4—ﬁ)|).

Since [V(H)|(= [V(B)|) >4 and pp <t <7 —2and p, < s, this implies
¢ > 4(r — 2), as desired.

Case 2. [V(B)|=3or2.

Let T be a maximum strong attachment of H — {b} to C in G, and set
S = (V(C)NNg(H - {b})) = T. Let t = |T|, s = |S|. Since H is locally
4-connected to C in G and |V (H)| < 4, it follows from Lemma 2.1 that
there exist |V (H)| independent edges joining H and C, and hence

there exist |V (H)| — 1 independent edges joining H — {b} and C. (11)
In particular, t > 2. By Lemma 2.4, we may assume T satisfies ( 1 ). Let

Py = Ng(b)NT,P, = Na(b)NS,P, = Ng(b)n(V(C) - T - S);
po = |Pol,p1 = |P1],p2 = | P2l

Since Py C T and P, C S, we have pg <t and p; < s.
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Claim 2

) (VI -Dt+s+po+p+p2 2 |V(H)(r-2).
(i)  If equality holds in (i), then |V (H)| = 4.

Proof. If |V(H)| = 4, then B = K3, and hence ) . (g degy(z) = 8
= 2|V(H)|; if |V(H)| = 3, then B = K, and hence ) _.y (g deg;(2)
=4 < 2|V(H)|. Thus

Y degy(2) < 2V(H)|. (12)
seV(H)

On the other hand, since we clearly have |Eq(V (H) — {b},T)| < ([V(H)| -
1)t, and since |Eq(V(H) — {b},S5)| < s by Lemma 2.3(i), it follows that
|Ec(V(H) - {d},V(O)] < (IV(H)| - 1)t +s. Since |[Ec({b},V(C))| =
po + p1 + p2, this implies

(IV(H)| = 1)t +5+po+p1+p2 > |Ec(H,C)|. (13)

Since 3 _cyyy degp(2) + |Ec(H,C)| = X cv(m)desa(z) = r|V(H)|, (i)
now follows from (12) and (13). Further, if equality holds in (i), then
equality holds in (12), and hence it follows from the proof of (12) that
|V (H)| = 4, which proves (ii).

Write V(C)N Ng(H — {b}) = {c1,¢2,...,¢2} so that c1, ¢z, ..., cx OCCur
on C in this order (we take cy4+1 = ¢1).

Claim 3. Let 1 <i < ), and suppose that ¢c; € S. Then the following hold.

(i) |E(Clei i)l 2 2+ 2|P N V(Clei, civa))]-
@) Ifei € Pr,|E(Clei,cimn))| = 3+ 2/Pa N V(Clen cisn))l.

Proof. By Lemma 2.3(i) and (1), we can write V(H — {b}) N Ng(c:) (=
V(H — {b}) N Neg(cit1)) = {y}. Let ¢ = |[Po NV (C(ci,ci+1))|, and write
‘/(C[C,’, Ci+1 ]) N NG(H) = {ao,al,...,aq+1} with apy = ¢ and Qg1
= ci41 SO that ag,ay,...,aq41 occur on Cle;, cipq] in this order. Then
|E(Claj,a;j+1])| > 2 for each 0 < j < g, and hence |E(Clc;,cita])| >
Yo<i<q |E(Claj,a;11])| 2 2(g + 1). This proves (i). To prove (ii), suppose
that ¢; € P,. If ¢ = 0, then since b € Ng(c;) by the definition of P, we get
[E(Clei, civ1])| > diy(y,b) +2 > 3 = 3 + 2¢ by Lemma 2.6. If ¢ > 1, then
since b € Ng(a,) by the definition of P», we get |[E(C[ag,a1])| > d(y,b) +
2 > 3 by Lemma 2.6, and hence |E(Clci, civ1])| = Xocj<q |E(Claj, aj])l
> 3 4 2q. Thus (ii) is proved. T
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Claim 4.

(i) Letl <i< A\, and suppose thatc; € T.
Then |E(Clci,ci+1])] > 4 + 2|, NV (C(ci, i)

(it If|V(H)| =4, then there ezists an indez i with c; € T such that
|E(Clei, civa])] 2 5+ 2|P2 N V(C(ci, €it1))]-

Proof. (i) Takey € V(H — {b})NNg(c;) and z € V(H — {b}) " Ng(cis1)
so that y # 2. Let ¢ = |P. N V(C(ci,ci+1))|, and write V(C[c;, ciy1]) N
Ng(H) = {ap,a1,...,aq41} with ag = ¢; and @441 = ciy1 sothat ag,ay, ...,
g4 occur on Cfc;, ¢;4] in this order. Assume first that ¢ = 0. Since y # z
and b ¢ {y,z}, ybz is a yz-path in H, and hence d}(y,z) > 2. Conse-
quently, it follows from Lemma 2.6 that |[E(C[c;, cit1])| > dy(y,2) +2 >
4 = 4+ q. Assume now that ¢ > 1. Then b € Ng(a;) N Ng(a,), and hence
|E(Clao, a1])| > diy(y,8) +2 > 3 and |E(Clag, agr])| > dis(5,2) +2 > 3
by Lemma 2.6. Consequently,

|E(Cleiscin))l = Y 1E(Claj,a;m])| 23+2(¢-1) +3=4+2g.
0<i<q

(ii)) Suppose that |V(H)| = 4. By (11), there exist u,v € V(C) with
u # v such that z € V(H) N Ng(u) and V(B — {b}) N Ng(v) # §. Hence it
follows from Lemma 2.3(i) and (1) that there exists an index i with ¢; € T
such that

€ No(e) and V(B - {b}) N Naleir1) # 0.

For this ¢, let ¢, ag, a1, ..., ag4+1 be as in the proof of (i). Take y €
V(B — {b}) N Ng(ci+1) and write V(B — {b}) = {y,2}. Assume first that
g = 0. Since zbzy is an zy-path, dy(z,y) > 3. Consequently, it follows
from Lemma 2.6 that |E(Clci,cit1])| > dy(z,y) +2 > 5 =5+ 2¢. As-
sume now that ¢ > 1. Since bzy is a by-path, d}(b,y) > 2, and hence
|E(Clag, ag+1])| = dj(b,y) +2 > 4 by Lemma 2.6. Also |E(Clao,a1])] >
d*(z,b) + 2 > 3 by Lemma 2.6. Consecuently,

|ECles,cinl)l = D |E(Claj,am])| 23+2(g—1) +4=5+2¢.
0<j<q

Thus (ii) is proved.
We return to the proof of Proposition B. By Claim 3, 3__ ¢ |E(Clci,

cit1])] 2 2(s = p1) +3p1 + 2% 5| P2 O V(Cleiscivt))| = 25 + pr +
23 ..es|P2NV(C(ciy cirr))|- By Claim 4(i), 3o, cr | E(Clei, cirn])| > 4t +
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23 . er|P2NV(C(ci,civr))]- Consequently,

[

v

> 1E(Clei,cin))l

1<i<A

> 4t+2s+p+2 Z |P2 N V(C(ciycitr))]
1<i<A

= 4t +2s+p + 2ps. (14)

Assume for the moment that |V (B)| = 3. Then by Claim 2(i), 3t+s+po +
P+ D2 > 4(r - 2). Since pg < t, 0 < s and 0 < ps, this implies

4t +2s +p1 +2p2 > 4(r — 2). (15)

Assume now that [V(B)| = 2. Then multiplying both sides of Claim 2
(i) by 4/3, we obtain

8t 4s 4p0 4])1 4p2

3t3+t 3 t3 T3 > 4(r - 2).
Since pp < ¢, 0 < p; < s and 0 < po, this again implies (15). Thus (15)
holds in either case. Now combining (14) and (15), we obtain ¢ > 4(r — 2).

Suppose that ¢ = 4(r — 2). Then equality holds in both (14) and (15).

The equality in (14) implies that in Claim 4(i), equality holds for all i
with ¢; € T, and hence |V(H)| = 3 by Claim 4(ii). On the other hand,
the equality in (15) implies that equality holds in Claim 2(i), and hence
|V(H)| = 4 by Claim 2(ii). This is a contradiction, and this contradiction
shows that we have ¢ > 4(r — 2), completing the proof of Proposition B.
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