A Note on a Theorem of Fan Concerning Average Degrees and Long Cycles

Tomokazu Nagayama

Department of Mathematical Imformation Science, Tokyo University of Science, Shinjuku-ku, Tokyo, 162-8601, Japan

We remedy the gap in the proof of the following theorem stated in [1]:

Theorem. Let C be a cycle of length c in a graph G, and let H be a component of G-C. Suppose that C is locally longest with respect to H, and H is locally k-connected to C, where $2 \le k \le 4$, and $|V(H)| \ge k-1$ and, in addition, the average degree of H in G is r. Then $c \ge k(r+2-k)$, with equality only if r is an integer and either H is a complete graph of order r+1-k and every vertex of H has the same k neighbours on C, or H is a complete graph of order k-1 and every vertex of H has the same r+2-k neighbours on C.

1 Introduction

In this paper, we consider only finite, undirected graphs without loops or multiple edges.

Let G be a graph. The vertex set of G is denoted by V(G), and the edge set of G is denoted by E(G). For a subset X of V(G), G-X denotes the subgraph obtained from G by deleting the vertices in X together with the edges incident with them. For $x \in V(G)$, we let $N_G(x)$ denote the set of vertices adjacent to x in G, and set $\deg_G(x) := |N_G(x)|$. For $X \subset V(G)$, we let $N_G(X)$ denote the union of $N_G(x)$ as x ranges over X. For disjoint subsets X, X' of V(G), we define $E_G(X,X') := \{xx' \in E(G) | x \in X, x' \in X'\}$. A subgraph of G is often identified with its vertex set. Thus when G is a subgraph of G, we write G - H and G in G for G - G and G in G is often identified with its vertex set. Thus when G is a subgraph of G, we write G - H and G is often identified with its vertex set. Thus when G is a subgraph of G, we write G is often identified with its vertex set. Thus when G is a subgraph of G, we write G is often identified with its vertex set. Thus when G is a subgraph of G, we write G is often identified with its vertex set. Thus when G is a subgraph of G, we write G is often identified with its vertex set.

A cycle C is denoted by a sequence $b_1b_2...b_mb_1$ of its vertices such that $V(C) = \{b_1, b_2, ..., b_m\}$ and $E(C) = \{b_1b_2, b_2b_3, ..., b_{m-1}b_m, b_mb_1\}(n = a_1, b_2, ..., b_m)$

|V(C)|). Similarly, a path R is denoted by a sequence $b_1b_2...b_m$ of its vertices such that $V(R) = \{b_1, b_2, ..., b_m\}$ and $E(R) = \{b_1b_2, b_2b_3, ..., b_{m-1}b_m\}$. Let $C = b_1b_2...b_mb_1$ be a cycle. For i,j with i < j < i + m, we let $C[b_i, b_j]$ denote the path $b_ib_{i+1}...b_j$, and let $C(b_i, b_j)$ denote the path $b_{i+1}b_{i+2}...b_{j-1}$ (subscripts are to be read modulo m). Note that if j = i + 1, then $C(b_i, b_j)$ denotes an empty path.

Let again G be a graph. Let C be a cycle of G, and let H be a component of G-C. We say that C is locally longest with respect to H in G if we cannot obtain a cycle longer than C by replacing a segment C[u,v] by a uv-path all of whose inner vertices lie in H (a uv-path means a path connecting u and v).

Let C be a subgraph of G, and let x be a vertex in G-C. An (x,C)-path is a path connecting x to some vertex $v \in V(C)$ such that v is the only vertex of C on the path. Two (x,C)-paths are said to be disjoint if they have only the vertex x in common. Let H and C be two subgraphs of G with $V(H) \cap V(C) = \emptyset$. We say that H is locally k-connected to C in G if for every vertex $x \in V(H)$, there are k pairwise disjoint (x,C)-paths in G.

Let W be a subset of V(G). The average degree of W in G is the number

$$\frac{1}{|W|} \sum_{z \in W} \deg_G(z).$$

If H is a subgraph of G with vertex set W, we also call this number the average degree of H in G.

In this paper, we are concerned with the following theorem:

Theorem A. Let C be a cycle of length c in a graph G, and let H be a component of G-C. Suppose that C is locally longest with respect to H, and H is locally k-connected to C, where $2 \le k \le 4$, and $|V(H)| \ge k-1$ and, in addition, the average degree of H in G is r. Then $c \ge k(r+2-k)$, with equality only if r is an integer and either H is a complete graph of order r+1-k and every vertex of H has the same k neighbours on C, or H is a complete graph of order k-1 and every vertex of H has the same r+2-k neighbours on C.

Theorem A appears as Theorem 2 in Fan [1] but, as we shall describe below, there is a gap in the proof of the theorem given in [1]. In [1], the proof of Theorem 2 is carried out by induction on the number of blocks of H. The problem occurs when H contains at least two blocks, and there is an endblock B of H such that $\sum_{z \in V(B-\{b\})} \deg_G(z) \leq (r-1)|V(B-b)|$ where b is the unique cutvertex of H contained in B. That is to say, in [1], it is asserted that if we let \overline{G} denote the graph obtained from G by contracting B, and let \overline{H} denote the subgraph of \overline{G} arising from H through

the contraction of B, then we obtain the desired conclusion by applying the induction hypothesis to C and \overline{H} in \overline{G} . However, in the case where k=4 and |V(H)|=|V(B)|+1, we cannot apply the induction hypothesis because $|V(\overline{H})|=2< k-1$. We here remedy this gap by proving the following proposition:

Proposition B. Let C be a cycle of length c in a graph G, and let H be a component of G-C. Suppose that C is locally longest with respect to H, H is locally 4-connected to C, and the average degree of H in G is r. Suppose further that there exists an endblock B of H such that |V(H)| = |V(B)| + 1. Then c > 4(r-2).

We conclude this section by defining some more terms which we use in the proof of Proposition B.

Let u and v be two distinct vertices of a graph G. We define the *codistance* $d_G^*(u,v)$ between u and v to be the maximum length of a uv-path in G (a uv-path means a path connecting u and v); if no uv-path exists, we set $d_G^*(u,v)=0$.

Let C be a cycle of a graph G, and let H be a subgraph of G-C. A strong attachment of H to C in G is a subset $T=\{u_1,u_2,\ldots,u_t\}\subset N_G(H)\cap V(C)$, where u_1,u_2,\ldots,u_t occur on C in this order, such that either $t\leq 1$, or $t\geq 2$ and for each $1\leq i\leq t$, there exist $y,z\in V(H)$ with $y\neq z$ such that $u_iy,u_{i+1}z\in E(G)$ (we take $u_{t+1}=u_1$). A strong attachment T of H to C is said to be maximum if it has maximum cardinality over all strong attachments of H to C.

2 Preliminary Results

In this section, we collect lemmas which we use in the proof of Proposition B. Most of the lemmas in this section are taken from Fan [1].

Lemma 2.1 [1; Proposition 1]. Let H and C be two disjoint subgraphs of a graph G, and suppose that H is locally k-connected to C in G. Then E(C, H) contains t independent edges, where $t = \min\{k, |V(H)|\}$.

Lemma 2.2 [1; Proposition 3]. Let H and C be two disjoint subgraphs of a graph G, and suppose that H is locally k-connected to C in G. Let B be a block of H. Let \overline{G} be the graph obtained from G by contracting B into a single vertex, and let \overline{H} be the subgraph of \overline{G} arising from H through the contraction of B. Then \overline{H} is locally k-connected to C in \overline{G} .

Lemma 2.3 [1; Lemma 1]. Let C be a cycle of a graph G, and let H be a subgraph of G - C. Let $T = \{u_1, u_2, \ldots, u_t\}$ be a maximum strong attachment of H to C, where u_1, u_2, \ldots, u_t occur on C in this order, and suppose that $t \geq 2$. Set

$$S = (N_G(H) \cap V(C)) - T.$$

Then the following hold.

- Every vertex in S is joined to exactly one vertex of H.
- (ii) Let $1 \le i \le t$, and write

$$V(C[u_i, u_{i+1}]) \cap N_G(H) = \{a_0, a_1, \dots, a_q, a_{q+1}\}\$$

with $a_0 = u_i$ and $a_{q+1} = u_{i+1}$ so that $a_0, a_1, \ldots, a_{q+1}$ occur on $C[u_i, u_{i+1}]$ in this order (in the case where i = t, we take $u_{t+1} = u_1$). Then there is an index m with $0 \le m \le q$ such that

$$V(H) \cap N_G(a_j) = V(H) \cap N_G(a_0)$$
 for all $0 \le j \le m$

and

$$V(H) \cap N_G(a_j) = V(H) \cap N_G(a_{q+1})$$
 for all $m+1 \leq j \leq q+1$.

For convenience, we restate (ii) of the above lemma in the following form.

Lemma 2.4 Let G, C, H, $T = \{u_1, u_2, \ldots, u_t\}$ be as in Lemma 2.3. Then there exists a maximum strong attachment T' of H to C which satisfies the following property:

if we write
$$T' = \{v_1, v_2, \dots, v_t\}$$
 so that v_1, v_2, \dots, v_t occur on C in this order, then for each $1 \leq i \leq t$, we have $V(H) \cap N_G(w) = V(H) \cap N_G(v_{i+1})$ for all $w \in V(C[v_i, v_{i+1}] - \{v_i\}) \cap N_G(H)$, where we take $v_{t+1} = v_1$.

Proof. For each $1 \le i \le t$, write

$$V(C[u_i,u_{i+1}])\cap N_G(H):=\{a_{i,0},a_{i,1},\ldots,a_{i,q(i)+1}\}$$

with $a_{i,0} = u_i$ and $a_{i,q(i)+1} = u_{i+1}$ so that $a_{i,0}, a_{i,1}, \ldots, a_{i,q(i)+1}$ occur on $C[u_i, u_{i+1}]$ in this order. It follows from Lemma 2.3 (ii) that for each i, there exists an index m(i) with $0 \le m(i) \le q(i)$ such that

$$V(H) \cap N_G(a_{i,j}) = V(H) \cap N_G(a_{i,0})$$
 for all $0 \le j \le m(i)$, (2)

and

$$V(H) \cap N_G(a_{i,j}) = V(H) \cap N_G(a_{i,q(i)+1})$$
for all $m(i) + 1 \le j \le q(i) + 1$. (3)

Set

$$T' := \{a_{1,m(1)}, a_{2,m(2)}, \dots, a_{t,m(t)}\}.$$

Then we see from (2) that T' is a strong attachment, and (2) and (3) together imply that T' satisfies (1).

Lemma 2.5 [1; Theorem 1]. Let u and v be two distinct vertices of a nonseparable graph G of order at least 3. Suppose that the average degree of the vertices other than u and v is r. Then the following hold.

- (i) $d_G^*(u,v) \geq r$.
- (ii) Equality holds in (i) if and only if r is an integer,
 each of x and y is joined to all vertices in V(G) {u, v},
 and each component of G {u, v} is a complete graph of order r 1.

The following lemma follows immediately from the definition of a locally longest cycle:

Lemma 2.6. Let C be a cycle of a graph G, and H be a component of G-C, and suppose that C is locally longest with respect to H. Let u, v be distinct vertices on C, and suppose that there exist $y \in V(H) \cap N_G(u)$ and $z \in V(H) \cap N_G(v)$ such that $y \neq z$. Then $|E(C[u,v])| \geq d_H^*(y,z) + 2$.

3 Proof of Proposition B

Let G, C, H, c, r, B be as in Proposition B. Write $V(H) = V(B) \cup \{x\}$, and let b be the unique cutvertex of H; thus $E(H) = E(B) \cup \{bx\}$. We divide the proof into two cases according to the order of B.

Case 1.
$$|V(B)| \ge 4$$
.

Let \overline{G} denote the graph obtained from G by contracting the edge bx into a single vertex. Let \overline{b} denote the new vertex of \overline{G} arising from bx through its contraction, and let \overline{H} denote the subgraph of \overline{G} arising from H (so $\overline{H} \cong B$). Note that $V(C) \cap N_G(H) = V(C) \cap N_{\overline{G}}(\overline{H})$. Note also that from the assumption that C is locally longest with respect to H in

G, it follows that C is locally longest with respect to \overline{H} in \overline{G} . Let $T \subset V(C) \cap N_{\overline{G}}(\overline{H})$ be a maximum strong attachment of \overline{H} to C in \overline{G} , and set $S = (V(C) \cap N_{\overline{G}}(\overline{H})) - T$. Let t = |T|, s = |S|. By Lemma 2.2, \overline{H} is locally 4-connected to C in \overline{G} . Hence $t \geq 4$ by Lemma 2.1. By Lemma 2.4, we may assume Γ satisfies (1). Define subsets P_0 , P_1 of $V(C) \cap N_{\overline{G}}(\overline{H})$ by

$$P_0 := N_G(b) \cap N_G(x) \cap T$$
 and $P_1 := N_G(b) \cap N_G(x) \cap S$,

and let $p_0 := |P_0|$ and $p_1 := |P_1|$. Since $P_0 \subset T$ and $P_1 \subset S$, we have $p_0 \leq t$ and $p_1 \leq s$.

Write $V(C) \cap N_{\overline{G}}(\overline{H}) = \{c_1, c_2, \dots, c_{\lambda}\}$ so that $c_1, c_2, \dots, c_{\lambda}$ occur on C in this order (we take $c_{\lambda+1} = c_1$).

Claim 1. (I) Let $1 \le i \le \lambda$, and suppose that $c_i \in T$. Then the following hold.

- (i) $|E(C[c_i, c_{i+1}])| \ge 4$.
- (ii) $|E(C[c_i, c_{i+1}])| \ge \frac{r(|V(\overline{H})| + 1) (p_0 + p_1 + 2)}{|V(\overline{H})|} + 2 t \frac{s}{|V(\overline{H})|}$
- (iii) If equality holds in (ii), then

$$\begin{split} |V(\overline{H})| &= \frac{r(|V(\overline{H})|+1) - (p_0 + p_1 + 2)}{|V(\overline{H})|} + 1 - t - \frac{s}{|V(\overline{H})|}, \\ \overline{H} &\cong K_{|V(\overline{H})|}, \ \ and \ V(\overline{H}) \subset N_{\overline{G}}(c_i) \cap N_{\overline{G}}(c_{i+1}). \end{split}$$

(II) There exists an index i with $c_i \in T$ for which strict inequality holds in (I) (ii).

Proof. (I) (i) Since $c_i \in T$ and T satisfies (1), there exist $y \in V(\overline{H}) \cap N_{\overline{G}}(c_i)$ and $z \in V(\overline{H}) \cap N_{\overline{G}}(c_{i+1})$ such that $y \neq z$. Since $|V(\overline{H})| \geq 4$ and \overline{H} is nonseparable, it follows that $d_{\overline{H}}^*(y,z) \geq 2$. Hence by Lemma 2.6, $|E(C[c_i,c_{i+1}])| \geq d_{\overline{H}}^*(y,z) + 2 \geq 4$.

(ii) Let H' denote the graph obtained from the subgraph induced by $V(\overline{H}) \cup \{c_i, c_{i+1}\}$ in \overline{G} by joining c_i and c_{i+1} (if c_i and c_{i+1} are not joined in \overline{G}). Let

$$r^{'} := \frac{r(|V(\overline{H})| + 1) - (p_0 + p_1 + 2)}{|V(\overline{H})|} + 2 - t - \frac{s}{|V(\overline{H})|}.$$

We first estimate $(\sum_{z\in V(\overline{H})}\deg_{H'}(z))/|V(\overline{H})|$. Since $N_G(b)\cap N_G(x)\subset V(C)$, we have $\deg_{\overline{G}}(\overline{b})=\deg_G(b)+\deg_G(x)-|N_G(b)\cap N_G(x)|-2=\deg_G(b)+\deg_G(x)-(p_0+p_1+2)$, and hence

$$\sum_{z \in V(\overline{H})} \deg_{\overline{G}}(z) = \left(\sum_{z \in V(H)} \deg_{G}(z) \right) - (\deg_{G}(b) + \deg_{G}(x) - \deg_{\overline{G}}(\overline{b}))$$
$$= r(|V(\overline{H})| + 1) - (p_{0} + p_{1} + 2). \tag{4}$$

Write $T = \{u_1, u_2, \ldots, u_t\}$ with $u_1 = c_i$ so that u_1, u_2, \ldots, u_t occur on C in this order. Set $T' := (T - \{u_2\}) \cup \{c_{i+1}\}$ and $S' := (V(C) \cap N_{\overline{G}}(\overline{H})) - T'$. Since T satisfies (1), T' is also a maximum strong attachment of \overline{H} to C, and hence

$$|E_{\overline{G}}(S', V(\overline{H}))| \le s \tag{5}$$

by Lemma 2.3(i). Also we clearly have

$$|E_{\overline{G}}(T' - \{c_i, c_{i+1}\}, V(\overline{H}))| \le (t-2)|V(\overline{H})|.$$
 (6)

Combining (4), (5) and (6), we obtain $(\sum_{z \in V(\overline{H})} \deg_{H'}(z))/|V(\overline{H})| \ge r'$. Consequently,

$$d_{H'}^{*}(c_{i}, c_{i+1}) \ge \frac{1}{|V(\overline{H})|} \sum_{z \in V(\overline{H})} \deg_{H'}(z) \ge r'$$
 (7)

by Lemma 2.5(i), and hence $|E(C[c_i, c_{i+1}])| \ge r'$ by the fact that C is locally longest with respect to \overline{H} .

(iii) Suppose that equality holds in (ii). Then equality holds in (7). Since $H' - \{c_i, c_{i+1}\} = \overline{H}$ is connected, this together with Lemma 2.5(ii) implies that $\overline{H} \cong K_{r'-1}$ and $V(\overline{H}) \subset N_{H'}(c_i) \cap N_{H'}(c_{i+1}) \subset N_{\overline{G}}(c_i) \cap N_{\overline{G}}(c_{i+1})$.

(II) Suppose that equality holds in (I)(ii) for all i with $c_i \in T$. Let r' be as in the proof of (I). Then by (I)(iii),

$$\overline{H} \cong K_{r'-1},\tag{8}$$

and

$$V(\overline{H}) \subset N_{\overline{G}}(c_{i+1}) \tag{9}$$

for each i with $c_i \in T$. Note that by Lemma 2.3(i), (9) implies $c_{i+1} \in T$. Thus $c_{i+1} \in T$ for each i with $c_i \in T$. Since $T \neq \emptyset$, this forces $T = V(C) \cap N_G(\overline{H})$ which, in turn, implies that (9) holds for all $1 \leq i \leq \lambda$. Now since H is locally 4-connected to C in G, $\deg_G(x) \geq 4$, and hence $V(C) \cap N_G(x) \neq \emptyset$; that is to say, there exists c_j such that $x \in N_G(c_j)$. Take $y \in V(B - \{b\})$. Since (9) holds for all i, we have $y \in N_G(c_{j+1})$. Since $d_B^*(b, y) = r' - 2$ by (8), we now obtain $|E(C[c_j, c_{j+1}])| \geq d_H^*(x, y) + 2 = (1 + d_B^*(b, y)) + 2 = r' + 1$ by Lemma 2.6. Since $T = V(C) \cap N_G(\overline{H})$, this contradicts the assumption that equality holds in (I) (ii) for all i with $c_i \in T$.

We return to the proof of Proposition B. If t > r - 2, it immediately follows from Claim1(I) (i) that c > 4(r - 2). Thus we may assume $t \le$

r-2. Since C is locally longest with respect to \overline{H} , $|E(C[c_i, c_{i+1}])| \ge 2$ for each $1 \le i \le \lambda$ with $c_i \in S$, and hence $\sum_{c_i \in S} |E(C[c_i, c_{i+1}])| \ge 2s$. Consequently,

$$c \ge \sum_{i=1}^{\lambda} |E(C[c_i, c_{i+1}])| = \sum_{c_i \in T} |E(C[c_i, c_{i+1}])| + 2s.$$
 (10)

With (I) (i), (I) (ii) and (II) of Claim1 in mind, we substitute

$$\frac{r(|V(\overline{H})|+1)-(p_0+p_1+2)}{|V(\overline{H})|}+2-t-\frac{s}{|V(\overline{H})|}$$

for four of the terms $|E(C[c_i, c_{i+1}])|$ in the right-hand side of (10), including a term for which strict inequality holds in Claim 1(I) (ii), and substitute 4 for the other t-4 terms. Then we obtain

$$c > 4 \left\{ \frac{r(|V(\overline{H})| + 1) - (p_0 + p_1 + 2)}{|V(\overline{H})|} + 2 - t - \frac{s}{|V(\overline{H})|} \right\}$$

$$+ 4(t - 4) + 2s$$

$$= 4r - 8 + \left(s - \frac{4p_1}{|V(\overline{H})|}\right) + \frac{4}{|V(\overline{H})|} \left((r - 2) - p_0\right)$$

$$+ s\left(1 - \frac{4}{|V(\overline{H})|}\right).$$

Since $|V(\overline{H})| (= |V(B)|) \ge 4$ and $p_0 \le t \le r - 2$ and $p_1 \le s$, this implies c > 4(r-2), as desired.

Case 2. |V(B)| = 3 or 2.

Let T be a maximum strong attachment of $H - \{b\}$ to C in G, and set $S = (V(C) \cap N_G(H - \{b\})) - T$. Let t = |T|, s = |S|. Since H is locally 4-connected to C in G and $|V(H)| \leq 4$, it follows from Lemma 2.1 that there exist |V(H)| independent edges joining H and C, and hence

there exist |V(H)| - 1 independent edges joining $H - \{b\}$ and C. (11)

In particular, $t \geq 2$. By Lemma 2.4, we may assume T satisfies (1). Let

$$P_0 = N_G(b) \cap T, P_1 = N_G(b) \cap S, P_2 = N_G(b) \cap (V(C) - T - S);$$

 $p_0 = |P_0|, p_1 = |P_1|, p_2 = |P_2|.$

Since $P_0 \subset T$ and $P_1 \subset S$, we have $p_0 \leq t$ and $p_1 \leq s$.

Claim 2

- (i) $(|V(H)|-1)t+s+p_0+p_1+p_2 \ge |V(H)|(r-2).$
- (ii) If equality holds in (i), then |V(H)| = 4.

Proof. If |V(H)| = 4, then $B \cong K_3$, and hence $\sum_{z \in V(H)} \deg_H(z) = 8$ = 2|V(H)|; if |V(H)| = 3, then $B \cong K_2$, and hence $\sum_{z \in V(H)} \deg_H(z)$ = 4 < 2|V(H)|. Thus

$$\sum_{z \in V(H)} \deg_H(z) \le 2|V(H)|. \tag{12}$$

On the other hand, since we clearly have $|E_G(V(H) - \{b\}, T)| \le (|V(H)| - 1)t$, and since $|E_G(V(H) - \{b\}, S)| \le s$ by Lemma 2.3(i), it follows that $|E_G(V(H) - \{b\}, V(C))| \le (|V(H)| - 1)t + s$. Since $|E_G(\{b\}, V(C))| = p_0 + p_1 + p_2$, this implies

$$(|V(H)|-1)t+s+p_0+p_1+p_2 \ge |E_G(H,C)|. \tag{13}$$

Since $\sum_{z \in V(H)} \deg_H(z) + |E_G(H,C)| = \sum_{z \in V(H)} \deg_G(z) = r|V(H)|$, (i) now follows from (12) and (13). Further, if equality holds in (i), then equality holds in (12), and hence it follows from the proof of (12) that |V(H)| = 4, which proves (ii).

Write $V(C) \cap N_G(H - \{b\}) = \{c_1, c_2, \dots, c_{\lambda}\}$ so that $c_1, c_2, \dots, c_{\lambda}$ occur on C in this order (we take $c_{\lambda+1} = c_1$).

Claim 3. Let $1 \le i \le \lambda$, and suppose that $c_i \in S$. Then the following hold.

- (i) $|E(C[c_i, c_{i+1}])| \ge 2 + 2|P_2 \cap V(C(c_i, c_{i+1}))|$.
- (ii) If $c_i \in P_1$, $|E(C[c_i, c_{i+1}])| \ge 3 + 2|P_2 \cap V(C(c_i, c_{i+1}))|$.

Proof. By Lemma 2.3(i) and (1), we can write $V(H - \{b\}) \cap N_G(c_i)$ (= $V(H - \{b\}) \cap N_G(c_{i+1})$) = $\{y\}$. Let $q = |P_2 \cap V(C(c_i, c_{i+1}))|$, and write $V(C[c_i, c_{i+1}]) \cap N_G(H) = \{a_0, a_1, \dots, a_{q+1}\}$ with $a_0 = c_i$ and $a_{q+1} = c_{i+1}$ so that a_0, a_1, \dots, a_{q+1} occur on $C[c_i, c_{i+1}]$ in this order. Then $|E(C[a_j, a_{j+1}])| \geq 2$ for each $0 \leq j \leq q$, and hence $|E(C[c_i, c_{i+1}])| \geq \sum_{0 \leq j \leq q} |E(C[a_j, a_{j+1}])| \geq 2(q+1)$. This proves (i). To prove (ii), suppose that $c_i \in P_1$. If q = 0, then since $b \in N_G(c_i)$ by the definition of P_1 , we get $|E(C[c_i, c_{i+1}])| \geq d_H^*(y, b) + 2 \geq 3 = 3 + 2q$ by Lemma 2.6. If $q \geq 1$, then since $b \in N_G(a_1)$ by the definition of P_2 , we get $|E(C[a_0, a_1])| \geq d_H^*(y, b) + 2 \geq 3$ by Lemma 2.6, and hence $|E(C[c_i, c_{i+1}])| = \sum_{0 \leq j \leq q} |E(C[a_j, a_{j+1}])| \geq 3 + 2q$. Thus (ii) is proved.

Claim 4.

- (i) Let $1 \le i \le \lambda$, and suppose that $c_i \in T$. Then $|E(C[c_i, c_{i+1}])| \ge 4 + 2|P_2 \cap V(C(c_i, c_{i+1}))|$.
- (ii) If |V(H)| = 4, then there exists an index i with $c_i \in T$ such that $|E(C[c_i, c_{i+1}])| > 5 + 2|P_2 \cap V(C(c_i, c_{i+1}))|$.
- Proof. (i) Take $y \in V(H \{b\}) \cap N_G(c_i)$ and $z \in V(H \{b\}) \cap N_G(c_{i+1})$ so that $y \neq z$. Let $q = |P_2 \cap V(C(c_i, c_{i+1}))|$, and write $V(C[c_i, c_{i+1}]) \cap N_G(H) = \{a_0, a_1, \ldots, a_{q+1}\}$ with $a_0 = c_i$ and $a_{q+1} = c_{i+1}$ so that $a_0, a_1, \ldots, a_{q+1}$ occur on $C[c_i, c_{i+1}]$ in this order. Assume first that q = 0. Since $y \neq z$ and $b \notin \{y, z\}$, ybz is a yz-path in H, and hence $d_H^*(y, z) \geq 2$. Consequently, it follows from Lemma 2.6 that $|E(C[c_i, c_{i+1}])| \geq d_H^*(y, z) + 2 \geq 4 = 4 + q$. Assume now that $q \geq 1$. Then $b \in N_G(a_1) \cap N_G(a_q)$, and hence $|E(C[a_0, a_1])| \geq d_H^*(y, b) + 2 \geq 3$ and $|E(C[a_q, a_{q+1}])| \geq d_H^*(b, z) + 2 \geq 3$ by Lemma 2.6. Consequently,

$$|E(C[c_i, c_{i+1}])| = \sum_{0 \le j \le q} |E(C[a_j, a_{j+1}])| \ge 3 + 2(q-1) + 3 = 4 + 2q.$$

(ii) Suppose that |V(H)|=4. By (11), there exist $u,v\in V(C)$ with $u\neq v$ such that $x\in V(H)\cap N_G(u)$ and $V(B-\{b\})\cap N_G(v)\neq\emptyset$. Hence it follows from Lemma 2.3(i) and (1) that there exists an index i with $c_i\in T$ such that

$$x \in N_G(c_i)$$
 and $V(B - \{b\}) \cap N_G(c_{i+1}) \neq \emptyset$.

For this i, let q, a_0 , a_1 , ..., a_{q+1} be as in the proof of (i). Take $y \in V(B - \{b\}) \cap N_G(c_{i+1})$ and write $V(B - \{b\}) = \{y, z\}$. Assume first that q = 0. Since xbzy is an xy-path, $d_H^*(x, y) \geq 3$. Consequently, it follows from Lemma 2.6 that $|E(C[c_i, c_{i+1}])| \geq d_H^*(x, y) + 2 \geq 5 = 5 + 2q$. Assume now that $q \geq 1$. Since bzy is a by-path, $d_H^*(b, y) \geq 2$, and hence $|E(C[a_q, a_{q+1}])| \geq d_H^*(b, y) + 2 \geq 4$ by Lemma 2.6. Also $|E(C[a_0, a_1])| \geq d^*(x, b) + 2 \geq 3$ by Lemma 2.6. Consequently,

$$|E(C[c_i, c_{i+1}])| = \sum_{0 \le j \le q} |E(C[a_j, a_{j+1}])| \ge 3 + 2(q-1) + 4 = 5 + 2q.$$

Thus (ii) is proved.

We return to the proof of Proposition B. By Claim 3, $\sum_{c_i \in S} |E(C[c_i, c_{i+1}])| \ge 2(s-p_1) + 3p_1 + 2\sum_{c_i \in S} |P_2 \cap V(C(c_i, c_{i+1}))| = 2s + p_1 + 2\sum_{c_i \in S} |P_2 \cap V(C(c_i, c_{i+1}))|$. By Claim 4(i), $\sum_{c_i \in T} |E(C[c_i, c_{i+1}])| \ge 4t + 2\sum_{c_i \in S} |P_2 \cap V(C(c_i, c_{i+1}))|$

 $2\sum_{c_i \in T} |P_2 \cap V(C(c_i, c_{i+1}))|$. Consequently,

$$c \geq \sum_{1 \leq i \leq \lambda} |E(C[c_i, c_{i+1}])|$$

$$\geq 4t + 2s + p_1 + 2 \sum_{1 \leq i \leq \lambda} |P_2 \cap V(C(c_i, c_{i+1}))|$$

$$= 4t + 2s + p_1 + 2p_2. \tag{14}$$

Assume for the moment that |V(B)|=3. Then by Claim 2(i), $3t+s+p_0+p_1+p_2\geq 4(r-2)$. Since $p_0\leq t,\,0\leq s$ and $0\leq p_2$, this implies

$$4t + 2s + p_1 + 2p_2 \ge 4(r - 2). \tag{15}$$

Assume now that |V(B)| = 2. Then multiplying both sides of Claim 2 (i) by 4/3, we obtain

$$\frac{8t}{3} + \frac{4s}{3} + \frac{4p_0}{3} + \frac{4p_1}{3} + \frac{4p_2}{3} \ge 4(r-2).$$

Since $p_0 \le t$, $0 \le p_1 \le s$ and $0 \le p_2$, this again implies (15). Thus (15) holds in either case. Now combining (14) and (15), we obtain $c \ge 4(r-2)$.

Suppose that c = 4(r-2). Then equality holds in both (14) and (15). The equality in (14) implies that in Claim 4(i), equality holds for all i with $c_i \in T$, and hence |V(H)| = 3 by Claim 4(ii). On the other hand, the equality in (15) implies that equality holds in Claim 2(i), and hence |V(H)| = 4 by Claim 2(ii). This is a contradiction, and this contradiction shows that we have c > 4(r-2), completing the proof of Proposition B.

Acknowledgment

I would like to thank Professor Yoshimi Egawa for his assistance in the preparation of this paper.

References

[1] G. Fan, Long cycles and the codiameter of a graph, 1, J. Combinatorial Theory, Series B 49, 151-180 (1990).