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Abstract

The two dimensional bandwidth problem is to determine an embedding of
graph G in a grid graph in the plane such that the longest edges are as short as
possible. In this paper we study the problem under the distance of Log-norm.
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1 Introduction

The bandwidth minimization problem for graphs has a wide range of ap-
plications, including sparse matrix computations, error-correcting code de-
signs, data structures and the circuit layout of VLSI designs.

Many years ago, stimulated by the rectilinear network layout designs,
the case of two-dimensional grid graphs has been studied in the literature
([1,2]). Here, the (two-dimensional) grid graph is a product of two paths
P, x P, (where n is considered to be large enough, at least n > |V(G)|).
In other words, the grid graph has vertex set

(GG € 21 <ij<n),
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and (i, §) is adjacent to (i, ) if

ji= i1+l -d1=1.
Note that the distance between two vertices (4, §) and ('i',j') in grid graph
His o )
This is called the rectangular distance, i.c., Manhattan distance, as opposed
to the normal EBuclidean distance, in the plane. The bandwidth relative 1o
this host graph is called the two-dimensional bandwidth, denoted by By(G).

In [3], we studied the problem under the distance of Loo-norm. Namely.
the distance between two points (i, j), (¢ ,.j ) in H is defined by

O ((4,). (1.3 ) = max{li —i|,]j —Jj|}.
Then, the two-dimensional bandwidth is defined by

H(C. f) = pnax I (f(u), f(v)),

where f is a one—to—one mapping from V(G) to V(H), i.c., an injection

[ V{(G) — V(H), which can be viewed as an embedding of G into H, and
32(G) = "lfillﬂz(c-f)

In this paper, we continue the study of the lwo-dimensional bandwidth

under distance of Leg-norm. For example, the following is an example of
an embedding f of Cy.
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Figure 1. The embedding of Cy
By the definitions of dg ((i,5), (£'+j)) and 9y ((i, §), (i'.§))s we obtain
dyg(vu) =[0—=1]+0-0] = 1.
Ay (vu) = max{[0—1],]0-0]} = 1.

Similarly,
dy(uw) = 1,04 (vw) = 1.

d”(‘U‘UJ) = 2, 0[[(1«'“7) = 1.
Thus, by the definitions of By(G) and ,32(G), we obtain
By(Cs, f) =2,

/32(03,_)") =1,
The organization of the paper is as follows. In section 2, we restate some

preliminaries, we present some results in section 3 and some remarks in
section 1.

2 Preliminaries

For convenience, we restate some definitions and lemmas as follows ( sce
[1] for further details ).

Definition 2.1 In grid plane H, we define rectangle H{«, 3) as a sct of
intersection points: we take o columns continuously and then take 3 rows
continuwously. It is easy to see that

|H (e, B)| = i3,
On(H(a,d)) =max{a—1,3~ 1},
where

I (H(@,9) = hax ﬁ)c‘)"(wy).

Definition 2.2 [4] The product of simple graphs G and H is the simple
graph G x H with vertez set V(G) x V(H), in which (u,v) is adjacent
to (v ,v') if and only if cither v = v and vo' € E(H) or v = v and
wu' € E(G).

Lemma 2.3 [3] For a complete graph K, of n vertices.

B2(Kp) = [\/'_’ -1].
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3 On 3, of Product Graphs

Theorem 3.1 Let |V(G))| =m, |[V(G2)|=n. 3 < m < n, then

32(Gy x Ga) < (m - 1) [—I + \/m]

2(m —1)

Proof: At first, we embed Gy in an H(a, 3), then, we move it o
columns, - -+, (m — 1) columns rightly to obtain embeddings of m copies
of Gy. In order to let H(a, 3) contain Gz, we must let |[H(a, 3)| > n. That
is

ad>n (n

The maximum distance among the corresponding points of the m copies of
Gy is (m — 1a, the distance of H (e, ) under Loo— norm is

max{ - l,a—1}.
We set the two numbers equal. That is, in this situation it is clear that
(m—Na=max{F-l,a-1}=3-1 (2)

Solving (2), we obtain
F=(m—-1o+1l.

Substituting into (1) we obtain
(m - Na?+a-n>0.

From this inequality, we get the minimum value of a:

oo =+ dnim-1) + l]

2(m—1)
For this embedding f, we have
#2(G1 x G, f) = (m — 1a.

The theorem follows. O

Theorem 3.2 Let Gy and Gy be two connected graphs, |V(G,)| > 2.
[V(G2)| > 2. we have

max{da(Gy x K3), 32(G2 x K'Z)} < #2(G1 x Ga)
< max{B(G,), B(G:2)},
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where B(Gy) (i = 1.2 ) is the standard bandwidth as given in [4]. puge
248.
Proof: Since G| x A and Gy x K are subgraphs of Gy x Gy, we obtain

max{;%(Gy x I3),%2(Gy x Ky)}
< (G x Gy).

Let V(Gy) = {v1 09, 00}, V(Gy) = {wr,ugy -+ um}. Let f be the
optimal embedding of Gy in a line with bandwidth B(G;). Without loss
of generality, let f(v;) = i. where i = 1,2,--+, n. Similarly. let g be the
optimal embedding of Gy in a line with bandwidth B(G3) and glu;) = j,
where j=1,2,---m. Ina rectangular coordinate system, we construct an
embedding 7 for G x Gy as follows:

m((vi, ;) = (4, 4),
where i=1,2,--- 0, j=1,2,---,m. Thus,
32(Gh x Gy) < i3(Gy x Gy, )
=max{B(G,), B(C,)}.

The theorem follows. (]
Theorem 3.3Lct m.n > 2. denote d = [/n —1].
(1) Ifd? <n<dd+2)=(d+1)2 = 1. we have Jo(K, x Py, = d:
(2) If = (d + 1)%, we have 33(Kp X Pp) =d+ 1.
Proof: Case 1 When d2 < n < d(d + 2), by Lemma 2.3, we have

o) = [ViT = 1] = d.
Because K, C K,, x P,,, we have
ﬁz(h—n X Pm) 2 /’2(]\'".) = d

On the other hand, we can embed K, in a (d + 1) x (d + 1) square of
maximum distance d. Place the points of K, as far right as possible. In the
leftmost column containing points, let the points be as far up as possible.
Let K be a copy of Kp, i = 1,2,---,m. If the leftmost column of the
square contains none of the vertices of I\',(,i), we embed the copy of K®
just left one column of K,(l'), and so on ( For example, K5 x P3 in Figure

2 ), we get the embeddings of K,(.i), i = 1,2,...,m. Connect the points

between the corresponding points of I\',(,i) and I\',(f * '), i=1,2,...,m—1.
Thus, we get an embedding of K, x Py,. It is casy to see that

/32([\’" X Pm) S d.
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If there is no column unoccupied, say 2 points being occupicd in the left-
most column, where & < [ — 17+ 1 = d + 1, we embed 1\.'('2) in the
leftmost column of I\',(L') and let K,(lz) be under the points, ( For example,
K7 x Py in Figure 2 ). In the same way, we get the embeddings of I\',(."’).

oo K™, Connect the points between the corresponding points of R
). B . . R
and K& ), i=1,2,....,m—1. Thus, we get an embedding of K, x P,,.

and we oblain, if n < d(d + 2),
F (K, x P,) <d.

In Figure 2, for clarity, the lines among the copies of K (i = 5,7 ) are
omitted.

w
L@ k
1 é) o
S
Ty S

) B VK S T )

Figure 2. The embeddings of K5 x Py and K7 x Py

Case 2 If 3o(K, % Py,) =d, K,(l') must be contained in a (d+ 1) x (d+1)
square, using all the points of the square. But then K for i > 1, must
use other points, a contradiction. It follows that J2(K, x Pp) > d+1. On
the other hand, we embed K, in a square, whose diameter is d, then, we
move K, parallelly d+ 1 columns, - -+, (m—1)(d+ 1) columns. In this way,
we get m copies of K,. At last, we draw lines among the corresponding
points, which is the embedding of K, x P,. Thus,

Bo(In % Pm) < [VA—1]+1.
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The theorem follows. a

Theorem 3.4Lct n,m > 3, denote d = [/ — 1].

(1) If n = d? + 1. we have 3(Kq2 ) x Cy) = d.

Ifd* +2 <n < (d+1)2, we have By(K,, x Cy) = d + 1.

(2) If m > 1, we have d < 3o(Kp, X Cp) < d + 1.

Proof: case 1 Let m = 3.

Case 1.1 Let e =3 and n = d? + 1. Since KnC K, x Cy, by Lemma
2.3, we have

R(Kn X C3) 2 3o(Kn) = [V - 1] =

On the other hand, we can embed K, x C; ds follows: in a rectangular
coordinate system, we embed the 1 points of K" at coordinates: (d=1,d);
(0, d+l) (Ld+1).- }(d—l d+1); (0,d+2), (1,d+2), .-+, (d—1,d+2);

; (0,2d), (1,2d), ---, (d = 1.2d). Similarly, we ombod Lh(‘ n points of
I\,(z ) at coordinates: (2(1— 1 d) (d,d+ 1), (d+1,d+1),---, (2d=1,d+ l),
(dd+2)(d+1,d+2), -, (2d - 1,d + 2) -5 (d, Zd) (d + 1,2d), -
(2d—-1,2d). We embed the n points of K at coordinates: (d—2,d), (d.d).
(d+1,d), -, (2d=2,d); (d = 1,d = 1), (d,d— 1), -, 2d = 2,d — 1) -
(d=1,1), (d, l), oy (2d-2,1); (2d - 2,0). We use I\'5 x Cy and Ky x C;;
as an example. ( For clarity, the lines among the copies of K are omitted,
where i = 5,10.)

:
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IFigure 3 The embeddings of K5 x Cs and K¢ x Cy
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Thus,
(K, x Cy) < d.
Therefore, J2(A, x C3) = d.
Case 1.2 Where i = 3 and d? + 2 < n < (d + 1)2. At first, we make
three square regions Sy, Sz and S3 as follows: in a rectangular coordinate
system, let

Sy ={(z.yly<2d+1}0{(x,p)ly = d + 1}
N{(x, )l = 0} N {(x, )| < d}.
Sy={(e,p)ly <2+ 1}0{(x.y)ly=d+1}
N{(z,y)e > d+ 1}N{(x,y)|le <2d+ 1}
Sz = {(z.y)ly 2 0} 0 {(x, y)ly < d}
N{(z, )|z > 1} N {(xy)le <d+ 1}

Then, we place the points of K,(,i) in S;, and as before let the points of K,(,i)
be as far right as possible and, in the leftmost column, as far up as possible,
where i = 1,2,3. At last, we connect the corresponding points a2
@ where 200 € K, 2@ ¢ K®. +® e K& From the embedding
above, we obtain

B (@z®P) < d + 1. da (e Va®) < d + 1,
;iz(af(2)1=(:‘)) <d+1.
Clearly, for xy € E(K,(:)). we have
Ba(ry) < d.
where ¢ = 1,2,3. Thus,

Bo(K, x C3) <d+ 1.

-(1) -(2)
n

n

K,({’ )
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Figure 1. The embedding of &',, x Cy.
In the following, we want to prove that
Jo(Wp, xCs) > d+1.
Because Ky, X Cy 2 Kyz 5 x Cs, we only need prove that
Fo(Kg2pa x Cy) > d+ 1.
By way of contradiction, suppose that
F2(Kgz 0 x Cy) < d.

By Lemma 2.3, we have
F2(Kazy2) = d.

Since Kyz 4 is a subgraph of Kgz, o x Cs, we obtain, under our suppo-

sition
F2(Kygz 2 % Cs) =d.

Since any three corresponding points from Kf,'), I\"f{z) and K& form a
triangle, we also want to keep the corresponding points between K and
K,(,z) at most distance d. Thus we must have one column of the square
which contains I\',(,') to contain a point of Is’,(;Z), without loss of generality.,
say, the leftmost column of K,(,'). Similarly, we must. embed the first row
of the square which contains K,(,:” into the last rows of the squares which
contain Kﬁ') and K. Thus at least two additional points are embedded
among the first row of K,({"), thus, the distance among the first row of K
is d 4+ 1, which is a contradiction. In the following, we use Ky x Cy as an
example.
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Figure 5

Case 2 Let us assume that mn > 1.

In the following, we want to prove that
Ba(Kp x Cp) Sd+ 1.
Since K,, X Cppy € K(q1)2 X Cr, we only need prove that
B2(Kgp1y2 X Cm) S d + 1.

Suppose that m is even, say m = 2p, where p a is natural number. In a

rectangular coordinate system, we make 2p square regions IRy, Ry, ---. Ry,
as follows: '

Ry = {(x, )l 2 0} N {(2, y)lx < d}
N{(z, y)ly 2 0} N {(x, y)ly < d},
Ry = {(z,p)lz > d+ 1} N0 {(2,y)le <2d+ 1}
N{(z,y)ly 2 0} N {(z, )|y < d},
Ry = {(z,9)lz > (p-1)(d+ D} n{(z,y)lz < pd + 1) - 1}
N{(z,y)ly = 0} N {(a, y)ly < d},
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Bppr ={(e.g)leZ (p- D(d+ D} {(ey)le < pld + 1) - 1}
N y)ly 2 d+ 130 {(ry)ly < 2d + 1},

Rop—y = {(w. )l 2 d 4+ 1} {(eoy)|e < 2d + 1)
N ylly = d+ 10 {(r,y)|ly < 2d + 1}.
Rap = {(g)le 2 0} N {(2, )| < d)

A yly 2 d+1}0 {2, u)ly < 2d+ 1}

We place the (d + 1)? points of I\'((:,).,.)z at the grid points of R;, where
i =1,2.---,2p, in the same manner. We embed Ky x Cy as an example,
For clarity, the lines among the copics of Ky are omitied.
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Figure 6. The embedding of Ky x Cg
From the embedding above, it is casy 1o sce that
p’-z([\'(,“ 1)2 X Cg,,) <d+ 1.

When m is odd, we can prove similarly.
Since K, C K,, x Cy,,, by Lemma 2.3, we have

,"32(]{,, X Cm) 2 /j')(l‘-n) =d.

The theorem follows. ]
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4 Concluding Remarks

Although they are special cases, product graphs are important in practi-
cal applications. In engineering, most special graphs are lattices, especially
product graphs, such as P, x P,. Therefore, many papers concerning band-
width study product graphs, see 5], [6]. We hope that one can determine
/fZ(I\.n X I\’nl)'

Acknowledgement. The author would like to thank the referces for
their many useful suggestions.

References

[

IF.R.K. Chung, Labelings of graphs, in: L.W.Beincke and
R.J.Wilson(ed), Selected Topics in Graph Theory, 3(1988)
151—1068.

. S.N. Bhatt and F.T. Leighton, A framework for solving VLSI graph

layout problems, J.Computer and System Sciences, 28(2)(1981).
300-—-343.

. Y.X. Lin, J.X. Hao and X.L. Li, Two dimensional bandwidth prob-

lem under Distance of Loo- Norm, OR Transactions, 4(3)(2000).
8—12.

. J.A.Bondy and U.S.R.Murty, Graph Theory With Applications.

London, Macmillan Press Ltd, 19706.

. J. Chvatalova, Optimal labelling of a product of two paths, Dis-

crete Mathematics, 11(2)(1975), 249-253.

M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues
of graphs, Discrete applied Mathematics, 36(1992), 153—168.

88



