Two-Dimensional Bandwidth of Graphs *

Jianxiu Hao

Department of Mathematics Zhejiang Normal University Jinhua Zhejiang 321004, P.R. China

Abstract

The two dimensional bandwidth problem is to determine an embedding of graph G in a grid graph in the plane such that the longest edges are as short as possible. In this paper we study the problem under the distance of L_{∞} -norm. **Keywords:** graph labeling, two-dimensional bandwidth, L_{∞} -norm.

AMS: 05C78

1 Introduction

The bandwidth minimization problem for graphs has a wide range of applications, including sparse matrix computations, error-correcting code designs, data structures and the circuit layout of VLSI designs.

Many years ago, stimulated by the rectilinear network layout designs, the case of two-dimensional grid graphs has been studied in the literature ([1,2]). Here, the (two-dimensional) grid graph is a product of two paths $P_n \times P_n$ (where n is considered to be large enough, at least $n \geq |V(G)|$). In other words, the grid graph has vertex set

$$\{(i,j)|i,j\in Z, 1\le i,j\le n\},\$$

^{*}The Project Supported by Zhejiang Provincial Natural Science Foundation of China(102055)

and (i, j) is adjacent to (i', j') if

$$|i - i'| + |j - j'| = 1.$$

Note that the distance between two vertices (i, j) and (i', j') in grid graph H is

$$d_H((i,j),(i',j')) = |i-i'| + |j-j'|.$$

This is called the rectangular distance, i.e., Manhattan distance, as opposed to the normal Euclidean distance, in the plane. The bandwidth relative to this host graph is called the two-dimensional bandwidth, denoted by $B_2(G)$.

In [3], we studied the problem under the distance of L_{∞} -norm. Namely, the distance between two points (i, j), (i', j') in H is defined by

$$\partial_{H}((i,j),(i',j')) = \max\{|i-i'|,|j-j'|\}.$$

Then, the two-dimensional bandwidth is defined by

$$\beta_2(G, f) = \max_{uv \in E(G)} \partial_H(f(u), f(v)),$$

where f is a one-to-one mapping from V(G) to V(H), i.e., an injection $f:V(G)\to V(H)$, which can be viewed as an embedding of G into H, and

$$\beta_2(G) = \min_f \beta_2(G, f)$$

In this paper, we continue the study of the two-dimensional bandwidth under distance of L_{∞} -norm. For example, the following is an example of an embedding f of C_3 .

Figure 1. The embedding of C_3

By the definitions of $d_H((i,j),(i',j'))$ and $\partial_H((i,j),(i',j'))$, we obtain

$$d_H(vu) = |0-1| + |0-0| = 1,$$

$$\partial_H(vu) = \max\{|0-1|, |0-0|\} = 1.$$

Similarly,

$$d_H(uw) = 1, \partial_H(uw) = 1.$$

$$d_H(vw)=2, \partial_H(vw)=1.$$

Thus, by the definitions of $B_2(G)$ and $\beta_2(G)$, we obtain

$$B_2(C_3, f) = 2,$$

$$\beta_2(C_3, f) = 1.$$

The organization of the paper is as follows. In section 2, we restate some preliminaries, we present some results in section 3 and some remarks in section 4.

2 Preliminaries

For convenience, we restate some definitions and lemmas as follows (see [4] for further details).

Definition 2.1 In grid plane H, we define rectangle $H(\alpha, \beta)$ as a set of intersection points: we take α columns continuously and then take β rows continuously. It is easy to see that

$$|H(\alpha, \beta)| = \alpha \beta$$
.

$$\partial_H(H(\alpha,\beta)) = \max\{\alpha - 1, \beta - 1\},\$$

where

$$\partial_H(H(\alpha,\beta)) = \max_{x,y \in H(\alpha,\beta)} \partial_H(xy).$$

Definition 2.2 [4] The product of simple graphs G and H is the simple graph $G \times H$ with vertex set $V(G) \times V(H)$, in which (u, v) is adjacent to (u', v') if and only if either u = u' and $vv' \in E(H)$ or v = v' and $vv' \in E(G)$.

Lemma 2.3 [3] For a complete graph K_n of n vertices.

$$\beta_2(K_n) = \lceil \sqrt{n} - 1 \rceil.$$

3 On β_2 of Product Graphs

Theorem 3.1 Let $|V(G_1)| = m$, $|V(G_2)| = n$, $3 \le m \le n$, then

$$\beta_2(G_1 \times G_2) \le (m-1) \left\lceil \frac{-1 + \sqrt{4n(m-1) + 1}}{2(m-1)} \right\rceil.$$

Proof: At first, we embed G_2 in an $H(\alpha, \beta)$, then, we move it α columns, \cdots , $(m-1)\alpha$ columns rightly to obtain embeddings of m copies of G_2 . In order to let $H(\alpha, \beta)$ contain G_2 , we must let $|H(\alpha, \beta)| \geq n$. That is

$$\alpha\beta \ge n \tag{1}$$

The maximum distance among the corresponding points of the m copies of G_2 is $(m-1)\alpha$, the distance of $H(\alpha,\beta)$ under L_{∞} —norm is

$$\max\{\beta-1,\alpha-1\}.$$

We set the two numbers equal. That is, in this situation it is clear that

$$(m-1)\alpha = \max\{\beta - 1, \alpha - 1\} = \beta - 1$$
 (2)

Solving (2), we obtain

$$\beta = (m-1)\alpha + 1.$$

Substituting into (1) we obtain

$$(m-1)\alpha^2 + \alpha - n \ge 0.$$

From this inequality, we get the minimum value of α :

$$\alpha = \left\lceil \frac{-1 + \sqrt{4n(m-1)+1}}{2(m-1)} \right\rceil.$$

For this embedding f, we have

$$\beta_2(G_1 \times G_2, f) = (m-1)\alpha.$$

The theorem follows.

Theorem 3.2 Let G_1 and G_2 be two connected graphs, $|V(G_1)| \geq 2$. $|V(G_2)| \geq 2$, we have

$$\max\{\beta_2(G_1 \times K_2), \beta_2(G_2 \times K_2)\} \le \beta_2(G_1 \times G_2)$$

$$\le \max\{B(G_1), B(G_2)\},$$

where $B(G_i)$ (i = 1, 2) is the standard bandwidth as given in [4], page 248.

Proof: Since $G_1 \times K_2$ and $G_2 \times K_2$ are subgraphs of $G_1 \times G_2$, we obtain

$$\max\{\beta_2(G_2\times K_2),\beta_2(G_2\times K_2)\}$$

$$\leq \beta_2(G_1 \times G_2).$$

Let $V(G_1) = \{v_1, v_2, \dots, v_n\}$, $V(G_2) = \{u_1, u_2, \dots, u_m\}$. Let f be the optimal embedding of G_1 in a line with bandwidth $B(G_1)$. Without loss of generality, let $f(v_i) = i$, where $i = 1, 2, \dots, n$. Similarly, let g be the optimal embedding of G_2 in a line with bandwidth $B(G_2)$ and $g(u_j) = j$, where $j = 1, 2, \dots, m$. In a rectangular coordinate system, we construct an embedding π for $G_1 \times G_2$ as follows:

$$\pi((v_i, u_j)) = (j, i),$$

where $i = 1, 2, \dots, n, j = 1, 2, \dots, m$. Thus,

$$\beta_2(G_1 \times G_2) \le \beta_2(G_1 \times G_2, \pi)$$

$$= \max\{B(G_1), B(G_2)\}.$$

The theorem follows.

Theorem 3.3Let $m, n \ge 2$, denote $d = \lceil \sqrt{n} - 1 \rceil$.

(1) If $d^2 < n \le d(d+2) = (d+1)^2 - 1$, we have $\beta_2(K_n \times P_m) = d$;

(2) If
$$n = (d+1)^2$$
, we have $\beta_2(K_n \times P_m) = d+1$.

Proof: Case 1 When $d^2 < n \le d(d+2)$, by Lemma 2.3, we have

$$\beta_2(K_n) = \lceil \sqrt{n} - 1 \rceil = d.$$

Because $K_n \subseteq K_n \times P_m$, we have

$$\beta_2(K_n \times P_m) \ge \beta_2(K_n) = d.$$

On the other hand, we can embed K_n in a $(d+1)\times(d+1)$ square of maximum distance d. Place the points of K_n as far right as possible. In the leftmost column containing points, let the points be as far up as possible. Let $K_n^{(i)}$ be a copy of K_n , $i=1,2,\cdots,m$. If the leftmost column of the square contains none of the vertices of $K_n^{(i)}$, we embed the copy of $K_n^{(2)}$ just left one column of $K_n^{(1)}$, and so on (For example, $K_5\times P_3$ in Figure 2), we get the embeddings of $K_n^{(i)}$, $i=1,2,\ldots,m$. Connect the points between the corresponding points of $K_n^{(i)}$ and $K_n^{(i+1)}$, $i=1,2,\ldots,m-1$. Thus, we get an embedding of $K_n\times P_m$. It is easy to see that

$$\beta_2(K_n \times P_m) \le d.$$

If there is no column unoccupied, say x points being occupied in the leftmost column, where $x<\lceil \sqrt{n}-1\rceil+1=d+1$, we embed $K_n^{(2)}$ in the leftmost column of $K_n^{(1)}$ and let $K_n^{(2)}$ be under the x points, (For example, $K_7\times P_3$ in Figure 2). In the same way, we get the embeddings of $K_n^{(3)},\ldots,K_n^{(m)}$. Connect the points between the corresponding points of $K_n^{(i)}$ and $K_n^{(i+1)},\ i=1,2,\ldots,m-1$. Thus, we get an embedding of $K_n\times P_m$, and we obtain, if $n\leq d(d+2)$,

$$\beta_2(K_n \times P_m) \le d$$
.

In Figure 2, for clarity, the lines among the copies of K_i (i=5,7) are omitted.

Figure 2. The embeddings of $K_5 \times P_3$ and $K_7 \times P_3$

Case 2 If $\beta_2(K_n \times P_m) = d$, $K_n^{(1)}$ must be contained in a $(d+1) \times (d+1)$ square, using all the points of the square. But then $K_n^{(i)}$, for i > 1, must use other points, a contradiction. It follows that $\beta_2(K_n \times P_m) \ge d+1$. On the other hand, we embed K_n in a square, whose diameter is d, then, we move K_n parallelly d+1 columns, \cdots , (m-1)(d+1) columns. In this way, we get m copies of K_n . At last, we draw lines among the corresponding points, which is the embedding of $K_n \times P_m$. Thus,

$$\beta_2(K_n \times P_m) \le \lceil \sqrt{n} - 1 \rceil + 1.$$

The theorem follows.

Theorem 3.4Let $n, m \geq 3$, denote $d = \lceil \sqrt{n} - 1 \rceil$.

(1) If $n = d^2 + 1$, we have $\beta_2(K_{d^2+1} \times C_3) = d$.

If $d^2 + 2 \le n \le (d+1)^2$, we have $\beta_2(K_n \times C_3) = d+1$.

(2) If $m \ge 4$, we have $d \le \beta_2(K_n \times C_m) \le d+1$.

Proof: case 1 Let m=3.

Case 1.1 Let m = 3 and $n = d^2 + 1$. Since $K_n \subseteq K_n \times C_3$, by Lemma 2.3, we have

$$\beta_2(K_n \times C_3) \ge \beta_2(K_n) = \lceil \sqrt{n} - 1 \rceil = d.$$

On the other hand, we can embed $K_n \times C_3$ as follows: in a rectangular coordinate system, we embed the n points of $K_n^{(1)}$ at coordinates: (d-1,d); $(0,d+1), (1,d+1), \cdots, (d-1,d+1); (0,d+2), (1,d+2), \cdots, (d-1,d+2); \cdots$; $(0,2d), (1,2d), \cdots, (d-1,2d)$. Similarly, we embed the n points of $K_n^{(2)}$ at coordinates: $(2d-1,d); (d,d+1), (d+1,d+1), \cdots, (2d-1,d+1); (d,d+2), (d+1,d+2), \cdots, (2d-1,d+2); \cdots$; $(d,2d), (d+1,2d), \cdots, (2d-1,2d)$. We embed the n points of $K_n^{(3)}$ at coordinates: $(d-2,d), (d,d), (d+1,d), \cdots, (2d-2,d); (d-1,d-1), (d,d-1), \cdots, (2d-2,d-1); \cdots$; $(d-1,1), (d,1), \cdots, (2d-2,1); (2d-2,0)$. We use $K_5 \times C_3$ and $K_{10} \times C_3$ as an example. (For clarity, the lines among the copies of K_i are omitted, where i=5,10.)

Figure 3 The embeddings of $K_5 \times C_3$ and $K_{10} \times C_3$

Thus,

$$\beta_2(K_n \times C_3) \le d.$$

Therefore, $\beta_2(K_n \times C_3) = d$.

Case 1.2 Where m=3 and $d^2+2 \le n \le (d+1)^2$. At first, we make three square regions S_1 , S_2 and S_3 as follows: in a rectangular coordinate system, let

$$S_{1} = \{(x,y)|y \leq 2d+1\} \cap \{(x,y)|y \geq d+1\}$$

$$\cap \{(x,y)|x \geq 0\} \cap \{(x,y)|x \leq d\}.$$

$$S_{2} = \{(x,y)|y \leq 2d+1\} \cap \{(x,y)|y \geq d+1\}$$

$$\cap \{(x,y)|x \geq d+1\} \cap \{(x,y)|x \leq 2d+1\}.$$

$$S_{3} = \{(x,y)|y \geq 0\} \cap \{(x,y)|y \leq d\}$$

$$\cap \{(x,y)|x \geq 1\} \cap \{(x,y)|x \leq d+1\}.$$

Then, we place the points of $K_n^{(i)}$ in S_i , and as before let the points of $K_n^{(i)}$ be as far right as possible and, in the leftmost column, as far up as possible, where i = 1, 2, 3. At last, we connect the corresponding points $x^{(1)}$, $x^{(2)}$, $x^{(3)}$, where $x^{(1)} \in K_n^{(1)}$, $x^{(2)} \in K_n^{(2)}$, $x^{(3)} \in K_n^{(3)}$. From the embedding above, we obtain

$$\beta_2(x^{(1)}x^{(2)}) \le d+1, \beta_2(x^{(1)}x^{(3)}) \le d+1,
\beta_2(x^{(2)}x^{(3)}) \le d+1.$$

Clearly, for $xy \in E(K_n^{(i)})$, we have

$$\beta_2(xy) \leq d$$
.

where i = 1, 2, 3. Thus,

$$\beta_2(K_n \times C_3) \le d + 1.$$

Figure 4. The embedding of $K_n \times C_3$.

In the following, we want to prove that

$$\beta_2(K_n \times C_3) \ge d+1$$
.

Because $K_n \times C_3 \supseteq K_{d^2+2} \times C_3$, we only need prove that

$$\beta_2(K_{d^2+2} \times C_3) \ge d+1.$$

By way of contradiction, suppose that

$$\beta_2(K_{d^2+2} \times C_3) \le d.$$

By Lemma 2.3, we have

$$\beta_2(K_{d^2+2})=d.$$

Since K_{d^2+2} is a subgraph of $K_{d^2+2} \times C_3$, we obtain, under our supposition

$$\beta_2(K_{d^2+2}\times C_3)=d.$$

Since any three corresponding points from $K_n^{(1)}$, $K_n^{(2)}$ and $K_n^{(3)}$ form a triangle, we also want to keep the corresponding points between $K_n^{(1)}$ and $K_n^{(2)}$ at most distance d. Thus we must have one column of the square which contains $K_n^{(1)}$ to contain a point of $K_n^{(2)}$, without loss of generality, say, the leftmost column of $K_n^{(1)}$. Similarly, we must embed the first row of the square which contains $K_n^{(3)}$ into the last rows of the squares which contain $K_n^{(1)}$ and $K_n^{(2)}$. Thus at least two additional points are embedded among the first row of $K_n^{(3)}$, thus, the distance among the first row of $K_n^{(3)}$ is d+1, which is a contradiction. In the following, we use $K_{11} \times C_3$ as an example.

Figure 5

Case 2 Let us assume that $m \ge 4$. In the following, we want to prove that

$$\beta_2(K_n \times C_m) \le d + 1.$$

Since $K_n \times C_m \subseteq K_{(d+1)^2} \times C_m$, we only need prove that

$$\beta_2(K_{(d+1)^2} \times C_m) \le d+1.$$

Suppose that m is even, say m=2p, where p a is natural number. In a rectangular coordinate system, we make 2p square regions R_1, R_2, \dots, R_{2p} as follows:

$$R_{1} = \{(x,y)|x \geq 0\} \cap \{(x,y)|x \leq d\}$$

$$\cap \{(x,y)|y \geq 0\} \cap \{(x,y)|y \leq d\},$$

$$R_{2} = \{(x,y)|x \geq d+1\} \cap \{(x,y)|x \leq 2d+1\}$$

$$\cap \{(x,y)|y \geq 0\} \cap \{(x,y)|y \leq d\},$$

$$\cdots,$$

$$R_{p} = \{(x,y)|x \geq (p-1)(d+1)\} \cap \{(x,y)|x \leq p(d+1)-1\}$$

$$\cap \{(x,y)|y \geq 0\} \cap \{(x,y)|y \leq d\},$$

$$R_{p+1} = \{(x,y)|x \ge (p-1)(d+1)\} \cap \{(x,y)|x \le p(d+1)-1\}$$

$$\cap \{(x,y)|y \ge d+1\} \cap \{(x,y)|y \le 2d+1\},$$

$$\cdots,$$

$$R_{2p+1} = \{(x,y)|x \ge d+1\} \cap \{(x,y)|x \le 2d+1\}$$

$$\cap \{(x,y)|y \ge d+1\} \cap \{(x,y)|y \le 2d+1\},$$

$$R_{2p} = \{(x,y)|x \ge 0\} \cap \{(x,y)|x \le d\}$$

$$\cap \{(x,y)|y \ge d+1\} \cap \{(x,y)|y \le 2d+1\}.$$

We place the $(d+1)^2$ points of $K_{(d+1)^2}^{(i)}$ at the grid points of R_i , where $i=1,2,\cdots,2p$, in the same manner. We embed $K_9\times C_6$ as an example. For clarity, the lines among the copies of K_9 are omitted.

Figure 6. The embedding of $K_9 \times C_6$

From the embedding above, it is easy to see that

$$\beta_2(K_{(d+1)^2} \times C_{2p}) \le d+1.$$

When m is odd, we can prove similarly.

Since $K_n \subseteq K_n \times C_m$, by Lemma 2.3, we have

$$\beta_2(K_n \times C_m) \ge \beta_2(K_n) = d.$$

The theorem follows.

4 Concluding Remarks

Although they are special cases, product graphs are important in practical applications. In engineering, most special graphs are lattices, especially product graphs, such as $P_m \times P_n$. Therefore, many papers concerning bandwidth study product graphs, see [5], [6]. We hope that one can determine $\beta_2(K_n \times K_m)$.

Acknowledgement. The author would like to thank the referees for their many useful suggestions.

References

- F.R.K. Chung, Labelings of graphs, in: L.W.Beineke and R.J.Wilson(ed), Selected Topics in Graph Theory, 3(1988) 151-168.
- S.N. Bhatt and F.T. Leighton, A framework for solving VLSI graph layout problems, J. Computer and System Sciences, 28(2)(1981), 300-343.
- 3. Y.X. Lin, J.X. Hao and X.L. Li, Two dimensional bandwidth problem under Distance of L_{∞} Norm, OR Transactions, **4(3)**(2000), 8–12.
- 4. J.A.Bondy and U.S.R.Murty, *Graph Theory With Applications*, London, Macmillan Press Ltd, 1976.
- 5. J. Chvatalova, Optimal labelling of a product of two paths, *Discrete Mathematics*. **11(2)**(1975), 249–253.
- 6. M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs, *Discrete applied Mathematics*, **36**(1992), 153–168.