Catalan Numbers, Lucas numbers, and Circuits

Qing-Lin Lu 1,2

- Department of Mathematics Xuzhou Normal University Xuzhou 221116, P. R. China
- Department of Mathematics
 Nanjing University

 Nanjing 210093, P. R. China
 E-mail: qllu1@vip.163.com

Abstract

Shapiro [8] asked what simple family of circuits will have resistances C_{2n}/C_{2n-1} (or something similar) where $C_m = \frac{1}{m+1} \binom{2m}{m}$ is the *m*th Catalan number. In this paper we give a construction of such circuits; we also discuss some related problems.

1. Introduction

Consider the following circuits

Figure 1

where all resistors are one ohm. It is easy to see that these circuits have resistances

$$2/1, 5/2, 13/8, 34/21, \cdots, F_{2n}/F_{2n-1},$$

where $\{F_n\}_{n\geq 0} = \{1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots\}$ is the Fibonacci sequence.

In [8], Shapiro posed some open questions, the first of which is the following problem.

Question. What simple family of circuits will have resistances C_{2n}/C_{2n-1} (or something similar) where $C_m = \frac{1}{m+1} \binom{2m}{m}$ is the *m*th Catalan number?

In this paper, we answer this question by giving a construction of the circuits satisfying the required condition.

2. Answer to the Question

Theoretically there exist simple circuits with f(2n)/f(2n-1) for any positive-valued rational function f(n), because a circuit with resistances m/n, a positive rational number, can be constructed in this way: first connect n resistors in parallel (this circuit has resistances 1/n), then connect m such circuits in series. (Note that all resistors must be one ohm.)

However, the above construction may not be the best one. For example, a circuit with resistances $\frac{2n+1}{n+1} (=1+\frac{n\times 1}{n+1})$ can be constructed in a simpler way: first, connect n resistors in series; then, connect it with one resistor in parallel; finally, connect it with one resistor in series. Note that this simpler construction needs only n+2 resistors, whereas the above construction needs (2n+1)(n+1) resistors.

So, in what follows we are only interested in the function f(n), which satisfies the following condition: the circuits with resistances f(n) can be constructed according to the value of n or f(k) (0 < k < n) (In the later case we can construct the circuits recursively). We call such a function f(n) simple. We also require the resistors used as few as possible.

Theorem 1. Let a, b, c, d and e be nonnegative integers. Then both $\frac{cn+d}{an+b}$ and $\frac{cn^2+dn+e}{an+b}$ are simple.

Proof. We need only to prove that $\frac{cn+d}{an+b}$ is simple. Note that the resistances of a circuit constructed by connecting two resistors in parallel with resistances R_1 and R_2 , respectively, are $\frac{1}{1/R_1+1/R_2} = \frac{R_1R_2}{R_1+R_2}$. Since

$$\frac{cn+d}{an+b} = \frac{cn}{an+b} + \frac{d}{an+b}$$
$$= \frac{1}{a+b} + \frac{d}{an+b},$$

we need at most ac + bcn + d(an + b) = ac + bd + (ad + bc)n resistors to construct the required circuit.

Corollary 1. Let C_n be the *n*th Catalan number. Then both C_{2n}/C_{2n-1} and C_n/C_{n-1} are simple.

Proof. The conclusion follows from Theorem 1 and the following computation:

$$\begin{array}{rcl} \frac{C_{2n}}{C_{2n-1}} & = & \frac{1}{2n+1} \cdot \binom{4n}{2n} \left/ \frac{1}{2n} \cdot \binom{4n-2}{2n-1} \right. \\ & = & \frac{1}{2n+1} \cdot \frac{(4n)!}{(2n)!(2n)!} \left/ \frac{1}{2n} \cdot \frac{(4n-2)!}{(2n-1)!(2n-1)!} \right. \\ & = & \frac{2(4n-1)}{2n+1} \\ & = & 2 \times \frac{2n \times 1}{2n+1} + \frac{(2n-1) \times 2}{(2n-1)+2}. \end{array}$$

and

$$\begin{array}{ll} \frac{C_n}{C_{n-1}} & = & \frac{1}{n+1} \cdot \binom{2n}{n} \left/ \frac{1}{n} \cdot \binom{2n-2}{n-1} \right. \\ & = & \frac{4n-2}{n+1} \\ & = & 2 \times \frac{n \times 1}{n+1} + \frac{(n-1) \times 2}{(n-1) + 2}. \end{array}$$

The corresponding circuits are shown in Figures 2-3.

Figure 2 Circuit with resistances C_{2n}/C_{2n-1}

Note: denotes the circuit constructed by connecting n resistors in series.

Corollary 2. Let $f(n) = \binom{2n}{n}$ be the central binomial coefficient. Then

both f(2n)/f(2n-1) and f(n)/f(n-1) are simple. Proof. Since $f(n) = \binom{2n}{n}$, the conclusion follows from Theorem 1 and the following computation:

$$\frac{f(2n)}{f(2n-1)} = {\binom{4n}{2n}} / {\binom{4n-2}{2n-1}}$$
$$= \frac{4n-1}{n}$$
$$= 3 + \frac{(n-1) \times 1}{(n-1) + 1}$$

and

$$\frac{f(n)}{f(n-1)} = \frac{4n-2}{n}$$

$$= 2+2 \times \frac{(n-1) \times 1}{(n-1)+1}.$$

The corresponding circuits are as in Figures 4-5.

Figure 4

Figure 5

3. Lucas Numbers and Circuits

Let $\{u_n\}_{n\geq 0}$ be the Lucas sequence [7] defined by $u_0=1$, $u_1=A$, and $u_{n+1}=Au_n+Bu_{n-1} (n\geq 1)$, where A and B are positive integers. (For other definitions about Lucas numbers see [3], [5], [6], [9].) In the case A=B=1, $\{u_n\}_{n\geq 0}$ is simply the Fibonacci sequence; in the case A=2 and B=1, $\{u_n\}_{n\geq 0}$ gives the Pell sequence.

Theorem 2. If A = kB + 1 where k is a nonnegative integer, then both u_{2n}/u_{2n-1} and u_n/u_{n-1} are simple. Proof. Since A = kB + 1, we have

$$\frac{u_{2n}}{u_{2n-1}} = \frac{(kB+1)u_{2n-1} + Bu_{2n-2}}{u_{2n-1}} \\
= kB+1 + \frac{Bu_{2n-2}}{(kB+1)u_{2n-2} + Bu_{2n-3}} \\
= kB+1 + \frac{B \cdot u_{2n-2}/u_{2n-3}}{B + (kB+1)u_{2n-2}/u_{2n-3}} \\
= kB+1 + \frac{1}{\frac{1}{B} + \frac{1}{u_{2n-2}/u_{2n-3}} + \frac{1}{1} + \dots + \frac{1}{1}}.$$

Note that the resistances of a circuit constructed by connecting n resistors in parallel with resistances R_1, R_2, \dots, R_n , respectively, are

$$\frac{1}{1/R_1 + 1/R_2 + \dots + 1/R_n}.$$

It is easy to see that the circuits in Figure 6 have resistances

$$u_2/u_1, u_4/u_3, \cdots, u_{2n}/u_{2n-1}.$$

For u_n/u_{n-1} , the proof is similar.

Figure 6

Note: \overline{k} denotes the circuit constructed by connecting k resistors in parallel. When k = 0, $\overline{0}$ denotes empty circuit.

Remark 1. In the case k = 0 and B = 1, Figure 6 reduces to Figure 1, as expected.

Remark 2. For the applications of Lucas numbers in ladder networks and electric line theory we refer the reader to [2] and [4], and the literature they cited.

At the end of this paper, we pose a open question: What simple family of circuits will have resistances M_n/M_{n-1} (or something similar) where M_n is the *Motzkin* number (cousin of *Catalan* number)?

Note: Motzkin numbers [1] are defined by

$$M_0 = 1, \ M_{n+1} = M_n + \sum_{k=0}^{n-1} M_k M_{n-1-k} \ (n \ge 0),$$

the recurrence of which is similar to that of Catalan numbers.

Acknowledgement

The author is indebted to Professor Zhi-Wei Sun for his helpful suggestions in the preparation of this paper, and the referee for his constructive comments.

References

- [1] M. Aigner, Motzkin numbers, Europ. J. Combin. 19(1998), 663-675.
- [2] G. Ferri, The appearance of Fibonacci and Lucas numbers in the simulation of electrical power lines supplied by two side, The Fibonacci Quarterly, 35(1997), 149-155.
- [3] P. Hilton, J. Pedersen, and L. Somer, On Lucasian numbers, The Fibonacci Quarterly, 35(1993), 43-47.
- [4] J. Lahr, Fibonacci and Lucas numbers and Morgan-Voyce polynomials in ladder networks and in electric line theory, in Fibonacci Numbers and Their Applications 3, Dordrecht: Kluwer, 1986.
- [5] W.L. McDaniel, The irrationality of certain series whose terms are reciprocals of Lucas sequence terms, The Fibonacci Quarterly, 32(1994), 346-350.
- [6] R.S. Melham, Alternating sums of fourth powers of Fibonacci and Lucas numbers, The Fibonacci Quarterly, 38(2000), 254-258.
- [7] A.G. Shannon and R.S. Melham, Carlitz generalizations of Lucas and Lehmer sequences, The Fibonacci Quarterly, 31(1993), 105-111.
- [8] L. Shapiro, Some open questions about random walks, involutions, limiting distributions, and generating functions, Adv. in Appl. Math. 27(2001), 585-596.
- [9] M. Yabuta, Perfect squares in the Lucas numbers, The Fibonacci Quarterly, 40(2002), 460-466.