On the number of elements dominated
by a subgroup
by John Ginsburg and Bill Sands!

ABSTRACT We obtain lower bounds for the number of elements dom-
inated by a subgroup in a Cayley graph. Let G be a finite group and let
U be a generating set for G such that U = U~! and 1 € U. Let H be an
independent subgroup of G. Let r be a positive integer, and suppose that,
in the Cayley graph (G, U), any two non-adjacent vertices have at most r
common neighbours. Let N[H] denote the set of elements of G which are
dominated by the elements of H. We prove that
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An interesting example illustrating these results is the graph on the sym-
metric group S,, in which two permutations are adjacent if one can be
obtained from the other by moving one element. For this graph we show
that 7 =4 and illustrate the inequalities.

1. Introduction

The ideas considered in this paper are motivated by earlier work on
permutation graphs. For any positive integer n, let S, denote the set of
all permutations on {1, 2, ...,n}. Consider the adjacency relation ~ defined
on S, as follows: for p and q in S, p ~ ¢ < there is an integer 7 such
that p — i = g — i.(here we are thinking of a permutation simply as an
ordered list and p — i denotes the permutation of length » — 1 obtained by
deleting ¢ from p.) We will refer to this graph as the permutation graph
on {1,2,...,n}. The connection between this graph and coding theory is
studied in [9], where it is shown that S, has independence number (n — 1)!
and chromatic number n. The clique number, local independence number
and a chordal ring property of S,, are established in [6]. Another important
parameter of S, is its domination number - the smallest size of a domi-
nating set. To our knowledge, this is not yet known for any values of n
larger than 5. It is easy to see that the domination number of S3 is 2; any
element of S3 and its reverse clearly dominate S3. The domination num-
ber of Sy is 4: for example, one verifies that the set of four permutations
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Dy = {1234,4321, 3412,2143} dominates Sy, and it is not hard to show that
no set of three permutations can dominate S;. One can form the set D,
by starting with the permutation 1234 and then successively applying the
following two operations to generate more permutations: (i) Interchange
both the first and fourth and the second and third entries.

(ii) Interchange both the first and third and the second and fourth entries.
These two operations produce 4 permutations, and sufficiently “move the
entries around” to give a dominating set. Equivalently, we have formed a
subgroup of the symmetric group Sy, generated by the set {(14)(23), (13)(24)},
where we are using ordinary cycle notation. Using this idea, and trying var-
ious reasonable looking generating sets, we have also been able to find a
minimum dominating set for Ss. In this case, it turns out that the subgroup
Ds of Ss generated by the two permutations (12)(45) and (24)(35) forms a
dominating set of size 10. One further shows that no set having fewer than
10 elements can dominate Ss. With these results in hand, we moved on to
n = 6, hoping to discover a general procedure to generate a subgroup D,
of S, which can be shown to dominate S, and have minimum size among
dominating sets. This turned out to be no more than a pleasant delusion.
With the help of the GAP program (5], we found that the smallest size of
a subgroup of Sg which dominates Sg is 60. This does not, however, give
the domination number of Sg: we have found a 48-element subset D of
Se which dominates Sg. Such a set D was first found by starting with a
particular subgroup Hg of size 24, and then applying the greedy algorithm
to dominate the set of elements of Sg not dominated by Hg, which resulted
in 24 more elements. A bit more attention produced a dominating set D
which is the union of Hg and a left coset of Hg. At this time, this is the
smallest size of a dominating set for Sg that we know of. Beyond this, find-
ing useful constructions and good upper bounds for the domination number
of S,, presents an interesting challenge which we hope to address in future
work. It seems likely that the group structure of S,, will play a significant
role in such investigations, unlike the purely combinatorial work in [9] and
[6]. With the given adjacency relation, S, is a Cayley graph (for readers
unfamiliar with this notion, we include the definition below). In light of
the types of dominating sets we have found so far for Sy, it is natural to
consider subgroups and cosets in general Cayley graphs. This is exactly our
focus in this paper. For a subgroup H of a Cayley graph G, we consider
the following basic question: how many elements of G does H dominate?
In the next section, we will obtain some useful estimates concerning this
and other related questions. In the third section of the paper, we will see
how these estimates look when applied to the permutation graph S, above
as well as other examples, and we will also have a bit more to say about
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the domination number of S,.

First we set down the basic concepts, notation, and terminology to be
employed. For more background on these concepts and other basic notions
of graph theory and group theory we refer the reader to [2] and [8].

Our set-theoretic notation is standard. In particular the cardinality of
a set S is denoted by |S)|.

For any real number z, the least integer which is > z is denoted by [z].

If f(n) and g(n) are real-valued functions of a positive integer n, as usual
we write f(n) = O(g(n)) if there is a positive constant ¢, and a positive
integer no so that f(n) < cg(n) for n > ng. In this case, we say that f(n) is
of order no larger than g(n). If both f(n) = O(g(n)) and g(n) = O(f(n))
we say that f(n) and g(n) have the same order.

In this paper the term graph refers to a finite, undirected graph with no
loops or multiple edges. For a vertex v in a graph G, we let dg(v) denote
the degree of v in G; that is, dg(v) is the number of vertices of G which are
adjacent to v. The largest degree of any vertex of G is denoted by A(G),
and the smallest degree of any vertex by §(G). A set of vertices S in G is
said to be independent if no two vertices of S are adjacent in G. Ng[v] de-
notes the closed neighbourhood of v in G. Thus Ng[v] consists of v together
with all the vertices of G which are adjacent to ». Similarly, for any set
of vertices S in G, we let Ng[S] denote the closed neighbourhood of S in

G: Ng[S] = U Ng(v]. We say that the elements of Ng[S] are dominated

veS

by the elemenets of S. A set of vertices S is said to be a dominating set
for G if every vertex of G is either in S or is adjacent to a vertex of S.
Equivalently, S is a dominating set if Ng[S] = G. The smallest cardinality
of a dominating set for G is called the domination number for G and is de-
noted by ¥(G). Whenever the graph G is understood from the context, we
will often drop the symbol G in the preceding notation and instead write
d(v), N[v], N[S] and y. Two parameters of a graph G which will be central
to our discussion are defined as follows:

71(G) = max{ |N[v] N N[w]| : v, w are vertices of G with v # w}

72(G) = max{ |N[v) N N[w]| : v,w are non-adjacent vertices of G with
v # w}

These will be denoted by r; and ro when G is understood. Note that ry(G)
is the largest number of common neighbours which any two distinct vertices
of G have, and r5(G) is the largest number of common neighbours which
any two distinct, non-adjacent vertices of G have.

All groups considered in this paper are assumed to be finite, and are
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written multiplicatively. For any group G we will let 1 denote the identity
element of G. If S is a subset of a group G we will let < S > denote the
subgroup of G which is generated by S. If < S >= G we say that S is a
generaling set for G.

For any subsets S and T of a group G, as usual we let
S l={z':z€S}and ST={zy:z€ S,y € T}. We also let S?2 =SS
and for a one-element set T = {a}, we write Sa.

If H is a subgroup of a group G we write H < G. As usual, for any
element g of G, the conjugate subgroup gHg~! is denoted by H9. If S is
any subset of G, we will let [S : H] denote the left index of S with respect
to H. That is, [S : H] is the number of distinct left cosets in the collection
{zH :z € S}.

Let G be a group, and let U be a generating set for G such that U = U~!
and 1 € U. The Cayley graph on G with respect to U is the graph whose
vertex set is G and having the adjacency relation ~ defined as follows: for
any elements z,y of G,

z ~y > thereis an element v € U — {1} such that y = uz.

The Cayley graph on G with respect to U is denoted by (G, U), or simply
by G if the generating set U is understood.

2. Lower bounds for the number of elements dominated by a sub-
group

The following two elementary results contain several useful facts.

Theorem 2.1. Let (G,U) be a Cayley graph. Let S C G and let H be a
subgroup of G. Then
(i) N[S]=US.

(ii) N[1] = U.

(i) INV[S]| < US|,

v) IN[H)| = [U : H]|H].

(v) H is independent — HNU = {1}.

(vi) For each element z of H, there are exactly k elements of H distinct from
z which have a common neighbour in G with z, where k = |[H N U?| — 1.

(vii) The elements of H have pairwise disjoint neighbourhoods in G
HNU?={1}.

Proof: The first three statements are obvious and (vii) follows directly from
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(vi). For statement (iv), note that N[H] =UH = U uH, which is equal

uel
to a union of [U : H] left cosets of H.

To prove (v), assume H is independent. Ifu is any element of HNU —{1}
then 1 and » = 21 are adjacent in G. Since H is independent, no such =
exists. Conversely, suppose that H NU = {1}. Let z and y be any two
distinct elements of H. If z and y are adjacent in G there is an element »
in U for which y = uz. But this implies that « = yz~! is an element of
HNU - {1}. Hence H is independent.

To prove (vi), let k = |[H NU?| — 1. Let z be any element of H. Let p
be any element of HNU? — {1}. Let y = pz. Then y € H and y # z. We
have p = uv for some elements v and v in U, and p € H. Since u™ 'y = vz,
we see that z and y have a common neighbour in G, namely vz. In the
other direction, suppose y is an element of H, distinct from z, for which z
and y have a common neighbour. Then there are elements » and v in U
such that uz = vy. This implies that the element p = v~!u belongs to H,
since v™'u = yz~!. Thus p € HNU? — {1} and y = pz. We have shown
that the elements of H — {z} which have a common neighbour in G with =
are precisely the clements of the set {pz : p € H NU? — {1}}, which gives
(vi). O

In the next theorem we use the parameters r(G) and r3(G) defined in the
introduction.

Theorem 2.2. Let (G,U) be a Cayley graph.
For each element p € U2, let M(p) = {(u,v) € U x U : wv = p}. Then

(i) 71(G) = max{|M(p)| : p € U? — {1}}, and
(if) r2(G) = max{|M (p)| : p € U* - U}

Proof: We prove the second statement. The first statement is done in a
similar way. Let k = ry(G). Then, for any two non-adjacent vertices z
and y of G, we have |[N[z] N N[y]| < k. Now, let p be any element of the
set U2 — U. Since p ¢ U, p is not adjacent to 1. So there are at most k
elements in the set N[1)NN[p]. Let (u,v) be any element of U x U such that
uwv = p. Then v = v~ !p and so v € N[1]N N[p]. We have (u,v) = (pv~1,v).
We see that M(p) C {(pv ',v) : v € N[1] N N[p]}. In fact, we have
M(p) = {(pv~!,v):v € N[1]jnN[p]}: let v € N[1]N N|p] and consider the
pair (pv~!,v). To show that this pair belongs to M(p) we need to check
that pv~! € U. Well, sincev € N [p] there is an element u € U with v = up.
Therefore pv=! = u~! € U. It follows that |M(p)| = |[N[1]Nn N|p]| < k. Let
k1 = max{|M(p)| : p € U%2 — U}. We have shown that k; < k. In the other
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direction, let z and y be any two non-adjacent vertices of G. We claim that
|N[z] N N{y]| < k;. If = and y have no common neighbour, this is trivial.
Otherwise, let z be any common neighbour of z and y. Then there are
elements u and v in U such that z = uz = vy. We have y = v~ !uz. Since
y and z are not adjacent, we have v~'u ¢ U. Note that v~lu = yz~1.
Let p = yz~!. Then p € U? — U. We now see that (v™!,u) € M(p). Let-
ting mo denote projection onto the second coordinate, we see that z = ux
for some u € ma(M(p)). We thus have Nz] N N[y] C m(M(p))z. Since
[m2(M(p))| < |M(p)| < ki, it follows that [N[z] N N[y]| < k. This implies
that k < k; as desired. O

We turn next to our first lower bound for the number of elements domi-
nated by a subgroup H in a Cayley graph (G, U). Clearly any such estimate
in general must account for the set H NU2. A simple lower bound results
by considering the function f from U x H to UH = N[H] which sends
(u, k) to uh. Letting s = |[H N U?| , we note that f is at most s to 1:
Let (uo, ho) be any element of U x H. If (u,h) is any element of U x H
such that uh = uphy then we have uglu = hogh™! € H N U2 Letting
p = uy 'u, we have (u,h) = (ugp,p~'ho). We see that the pre-images of
ugho under f are contained in the set {(uop,p ko) : p € H N U?}. (Note
that this inclusion may indeed be proper, since the element uop will in gen-
eral not be in U). This latter set has cardinality s, and so f is at most
s to 1. It|fo|lows that |U||H| = |U x H| < s|{UH| = s|N[H]| and hence

UllH| _ |UJiH|
e > IR - L
significantly improve this. Of course, since |N[H]| = [U : H]|H]|, esti-
mating |N[H]| amounts to estimating the index [U : H]. Suppose we let
m = [U : H], and let V C U be a complete system of distinct left rep-
resentatives for U with respect to H with |V| = m. (In other words, the
cosets vH, for v € V, are distinct and give all of the left cosets uH for
u € U). We have v~!u ¢ H for any two distinct elements u,v of V, and so
V-V — {1} C U%2 - (HNU?). Conversely, if V-1V — {1} C U2 - (HNU?)
then the cosets uH for v € V are all distinct, and so any direct way
of estimating [U : H] entails looking for large subsets V of U for which

Our first lower bound below will
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V-lv — {1} CU% - (HNU?).
We will make use of the following lemma.

Lemma 2.3. Let G be a group and let U C G. Let H be a subgroup of G

and let a = I_UI > |HNz™'U|. Then [U : H] > ['Z"‘
zcU

Proof: Let k = [U : H|, and let {z,,3,...,zx} be a complete system of
representatives for the left cosets zH for x € U. Under the equivalence
relation R which H induces on U, Ry < y~ !z € H, the equivalence class
ofany z € Uis UNnzH. Let m; = |UNz;H| for i < k. Note that
|HNz7'U| = |UNz;H| =m; for i < k. We have

Y IHnz | = Z > |HnzWU|= Zm, >

zeU i=1 zeUnz;H
_lup
Tk

Dividing by |U]| we get a >

, (Zm)

. We have made use of the Cauchy-Schwarz inequality here.

Izl, which gives the lemma. O

Theorem 2.4. Let (G,U) be a Cayley graph, and let H be a subgroup of
G. Then

- U2
O WUz [y | -

(ii) If H is independent then |N[H]| > [

Uz

H|.
QN0 = 1)+|U|} I

Proof: The two statements have similar proofs. We will present the argu-
ment for the second one.
Assume that H is independent and consider the set of ordered pairs

C = {(u,p) : p € (HNU?) - {1} ,u € U and there is an element v € U
such that wv = p}. Note that, since H is independent, by 2.1(v) above,
pe€ (HNU?) {1} - p ¢ U. For any p € (HNU?) — {1}, the num-
ber of elements u for which (u,p) € C is clearly |M(p)| , where M(p) is
defined in the statement of Theorem 2.2. It follows that, for every such
element p, there are at most r, elements u such that (u,p) € C. Therefore
ICl < r2(|H N U?| - 1).

On the other hand, let u be any element of U. For any element z in
(Unu~'H)—{u"!}, let p = uz. Clearly pe (HNU2)—{1} and (u,p) € C.
Conversely, if p is any element of (H NU2) — {1} for which (u,p) € C, we
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have p = uz for some z € U. For such an element z we have z = u~!p and
soz € UNu~'H. We also have = # »~!, and so it follows that p = uz
for some z € (UNu~'H) — {u~!}. Therefore the number of elements p for
which (u,p) € Cis |(UNu~'H) — {u'}| = [UNu~'H| - 1. Therefore we
have

ICl=Y_(Unu'H|-1)=Y" [UnuH| - |U].

uel uelU
It follows that Z [UnuH| — [U] < m(|JHNU? —1), and therefore that
uel
HnU?| -1
ZlUn uH| < 72 7 =D 4,
uGU I l

In other words, using the notation of Lemma 2.3, we have
ro(|JHNU?| -1)
a<
U]
1 U]

1 . 3 imli
a 2 RUHENU =D +|0] Now Lemma 2.3 implies that

+ 1, from which it follows that

U ] |H|. O
=(HNU2 - 1)+ U]

e = s ma > |2 |

A closer look at the proof of Theorem 2.4 gives the following corollary.

Corollary 2.5. Let (G,U) be a Cayley graph, and let H be a subgroup of
G. Then

V2
N[H]| = max H|.
) INIH]| 124/ [r1(|HnV—1V|—1)+|V| 4]

V2 \H]|
ro([HAV-TV[=1) + V] '

(ii) If H is independent then |N[H]| = max [

Proof: We can replace U by any subset V of U in the proofs of (i) and (ii) of
Theorem 2.4, taking care to replace U2 by V~'V as appropriate (note that
V is not assumed to satisfy V~! = V here). The only modification required
is to change slightly the definition of the set C to become the set of pairs
(u,p) for whichu € V=!,p € HNV~1V and for which there is a v € V with
uv = p. There results corresponding lower bounds for [V : H] and |V H|
which are identical to those in 2.4, with |[H N V~1V] in place of |H N U?|.
Since VH C UH, it follows that the left-hand side is at least as big as the
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ght in each of the two statements in the corollary. On the other hand, if we
1000se V' to be a complete set of distinct left representatives for U relative
» H, we then have H N V~1V = {1}. For this subset V of U, the right-
and sides of (i) and (ii) are just equal to |V||H| = [U : H]|H| = [N[H]|. O

The corollary suggests a useful direction to take in certain kinds of com-
»utational work. Suppose we are trying to estimate how many elements of
v Cayley graph (G,U) can be dominated by a subgroup of size m. We
night begin with some particular subgroup H of this size. We can then try
;o identify a subset V' of U(which is as large as possible) for which the ele-
ments of V~1V are easy to describe, and for which we can then try to find
a conjugate subgroup H' = gHg~! which contains as few of these elements
as possible. We can then use A’ and V in the right-hand side of 2.5 to give
a good lower bound. This approach will be illustrated for the permutation
graph in the next section. A related idea, which we have also found to
be useful for the permutation graph, is to try to construct a dominating
set from a subgroup together with one of its cosets. Since, for any given
element g of G, N[gH] = UgH = U ugH, the elements of G dominated

uelU

by gH which are not already domirfa.ted by H consist of the elements of
the cosets ugH for w € U—UHg™!. That is, N[gH]— N[H] = VgH, where
V = U-UHg™". Since [VgH| = |(VgH)g~}| = [V(gHg™)| = [VH',
where H' = gHg™!, we can estimate |N[gH] — N[H]| using the above lower
bound applied to the subgroup H’ and the subset V = U — UHg™'. (We
remark that |V| = |Vg| = [Ug — UH| = |N|[g] — N[H]| is the number of
elements of G which are dominated by g but which are not dominated by
any of the elements of H.) This leads to the following corollary.

Corollary 2.6. Let (G,U) be a Cayley graph, and let H be a subgroup of
G.Let ge G—H,andlet V=U—-UHg™!. Then

W v
N 2 || 1+ A= -

If both H and gHg~! are independent the same results hold with 3 in place
of 1.

The preceding lower bounds can also be used to give crude estimates for
the domination number y(G). For any subset S of G, the set SU(G - N[S])
is a dominating set for G, and so ¥(G) < |S}] + |G — N[S]]. If we take S
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to be a subgroup of G (or the union of a subgroup and one or more of its
cosets) we can then use the above lower bounds to get an upper bound for
|G — N[S]| and hence for ¥(G). One might attempt to find a subgroup H
(and coset gH) for which this will result in as small a dominating set as
possible. In this regard, note that one can in general improve on the set
SU(G — N[8]). Indeed, if D is any subset of G which dominates G — N[9)]
then SU D is a dominating set for G. Given a set S, one can then try to
find a small subset D of G which dominates the set T = G — N[S]. One
direct approach is the greedy algorithm: one inductively selects elements
1,2, ..., Ti,... in G so that, of all the elements z € G, the element z;
dominates the largest number of elements of T — N[{z; : j < i}]. After the
procedure is completed, the set D = {z,, 3, ...} dominates all the elements
of G — N[S]. This algorithm is applied in Theorem 2.2 of [1] where it is
used to derive a basic estimate for the domination number of an arbitrary
graph.

The idea of trying to construct small dominating sets in Cayley graphs
(G,U) using subgroups and their cosets suggests the following type of
greedy algorithm: starting with a subgroup H, inductively choose cosets
zoH = H, z1H, z2H, ..., z;H, ... so that, of all cosets zH, the coset z; H
dominates the largest number of elements of the set G — N [UJ <« TiH ]

By starting with a “good” subgroup H, this type of procedure can indeed
result in a small dominating set, as we have found with the permutation
graphs discussed in the next section.

It is much easier to obtain another type of lower bound on |N[H]], con-
taining the same ingredients as the one in Theorem 2.4 above, by directly
using the inclusion-exclusion principle, as in the following lemma.

Lemma 2.7. Let G be any graph. Let S be any set of vertices in G. Let
a=6(G)+1 and let m = |9)]. Let b and c be non-negative integers. Sup-
pose that, for each vertex z € S, there are at most b elements of S distinct
from = which have a common neighbour in G with z. And suppose that
[N[z] N N[y]| < c for any two distinct vertices z,y of S. Then

b
INIS]| = m (a— 5“)
Proof: We use the first two terms in the inclusion-exclusion principle to esti-

mate'U N[:z:]l. WehaveiU N[:c]| > Y IN[z]l - > INRINN[] .

z€ES z€S zES {=,y}CS

The second sum is over all two-element subsets of S. Our assumptions imply
that there are at most mb/2 such subsets {x, y} for which |[N[z]nN[y]| # 0,
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and that |N[z] N N[y]| < c for any such pair. So the second sum is at most
(mb/2)c. The first sum is at least ma. The result follows. O

Theorem 2.8. Let (G,U) be a Cayley graph, and let H be a subgroup of
G. Then

H
N> e -

(HOU?| -1).

If H is independent the same result holds with r, in place of r;.

Proof: Referring to Theorem 2.1(vi) above, we see that Lemma 2.7 applies
with a = [U|,m = [H|,b=|HNU? -1, and ¢ =r(G) .

Just as we did in 2.6 above, we can extend the lower bound in 2.8 so that
it applies to a subgroup together with one of its cosets.

Corollary 2.9. Let (G, U) be a Cayley graph, and let H be a subgroup of
G. LetgeG—H,andlet V=U —UHg™!. Then

IHI !

IN[HUgH]| > (IUI+|V])IH| - (HNU?|+|(gHg~ )NV ~1V|-2).

If H and gHg™! are independent t.he same result holds with r, in place of
T1.

The lower bounds obtained in 2.4 and 2.8 above are in general non-
comparable. For example, in the case when the integer ri(|H N U?| — 1)
is even, comparing the right-hand sides of these two estimates, we can see
that

[ [u)? ]IHI
n(HNU2 = 1) + U]

— r([HNU?-1)?2 < [U|(|HNU? -1).

IHITI (lHnU2| )

< |UlH| -

If [HNU? -1 = 0 then the neighbourhoods of the elements of H are
pairwise disjoint and both estimates give |U||H|. If |HNU?| -1 # 0, then
cancelling gives the equivalent statement ry (|HNU?|—1) < |U|. This latter
statement may or may not hold, depending on the particular subgroup H.
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3. Illustrating the lower bounds

In order to illustrate the lower bounds in 2.4 and 2.8 above for a particular
graph or class of graphs we of course need to first find the parameters r;
and r; for those graphs. And to be able to compare these lower bounds
to the actual number of elements dominated, the Cayley graphs and their
subgroups which are used must either be simple enough or small enough to
enable the exact computation of the number of elements dominated. We
begin with two simple examples.

Examples
(i) Cyclic groups

Let n > 5 and let C, be a cyclic group of order n, with generator z. Let
U = {1,z,z~'}. Note that U? = {1,z,z!,z2,z72}. The Cayley graph
(Cr,U) is an n-cycle. In this case, we have 1y = 2 and v = 1, and a
subgroup H of C, is independent if and only if H is a proper subgroup.
Clearly a proper subgroup H can intersect U2 in either 1 or 3 elements,
with the latter being possible only if n is even. If H N U? = {1}, as we
remarked above, both of our estimates coincide with |[N[H]| = |U||H]|. In
the case when n is even and |H N U?| = 3, H is equal to < z2 > and
|H| = n/2. In this case we have N[H] = C,,. Again both of our estimates
coincide with |N[H]| : our first lower bound (2.4(ii) above with r; = 1)
is [9/5]|H| = 2|H| = |C,| = |N[H]|, and the second(2.8 with ro = 1) is
3|H| - (|H|/2)(2) = 2|H| =|N[H]| . O

(ii) The permutation graph with respect to adjacent transposi-
tions

Let n > 3, and let G,, be the symmetric group on {1,2,...,n}. The iden-
tity element of G,, will be denoted by .. Note that we multiply permuta-
tions from left to right. Let U be the set of all adjacent transpositions of
{1,2,...,n} together with the identity. In the Cayley graph (G,,U), two
permutations are adjacent exactly when one can be obtained from the other
by interchanging two adjacent elements. We have |[U| = n. The set U2 con-
sists of U together with all 3-cycles of the form (4,7 + 1,7+ 2) and their in-
verses, and all products of the form (i, i+1)(4,j+1) for1 <i < j—1 < n-2.
Thus U2—{.} consists of n—1 2-cycles, 2n—4 3-cycles, and (n—2)(n—3)/2
products of 2 disjoint 2-cycles. We have |U?| = (n + 2)(n — 1)/2, and it is
also easy to show that r; = r» = 2. For any subgroup H of the symmetric
group, let £3(H) be the number of adjacent transpositions which belong to
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H, let t3(H) denote the number of 3-cycles of the form (4, i+ 1,4 +2) which
belong to H, and let ¢; 2(H) be the number of permutations of the form
(4, i+1)(4,5+1) for 1 <i < j—1 < n—2 which belong to H. We note that
H is independent if and only if H contains no adjacent transpositions, and
that |HNU?| =1+ to(H) + 2t3(H) + t2,2(H). In general the computation
of |N[H]| is non-trivial, and any assessment of our lower bounds is severely
limited by our having no general way to describe all the possible subgroups
H{(and their elements) corresponding to the possil;le sizes of |H NU?|. Our
. n

first lower bound for |N[H]}| is [n+2t2(H) T ata(A) £ 2t2,2(H)—‘ |H],
and our second is n|H| — |H|(t2(H) + 2t3(H) + ta 2(H)).

Here are some sample calculations we have found with the help of GAP
[5]. For n = 4, the subgroup H =< (12)(34), (13), (24) > has cardinality
8 and dominates G4. That is N[H] = G4.(In fact this is the smallest size
of a dominating subgroup for G4.) We have |[H N U?| = 2. Our first lower
bound is [ﬂﬁm]|H| = 3|H| = 24 = |N[H]|. The second lower bound
also gives |N[H]| exactly. For the 4-element subgroup K =< (14),(23) >,
we have |K N U?| = 2 and |[N[K]| = 12. Our lower bounds are again ex-
act: in the first case [-ﬂ%’ﬁﬂlﬂ = 3|K| = 12 = |N[K]|, and in the
second 4|K| — |K|(2 — 1) = 3|K| = |[N[K]]. On the other hand, consider
the subgroup L =< (12),(34) >, which is a conjugate of K. We have
|ILNU? = 4 and |N[L]| = 8. Our first lower bound is again equal to
[NV[L]| in this case, but the second is 4|L| — |L|(4 — 1) = |L| = 4. An
example for n = 5 where both lower bounds fall short is the subgroup
M =< (24)(35), (23)(45), (234) >. We have |M| = 12,|M NU?| = 6, and
|N[M]| = 36. Our first lower bound for |N[M]| is rﬂeTs:)T-E“M| =2M|=
24. In this example, since |M NU?| is so large in relation to |U], the second
lower bound is pathetic: 5|M| — |M|(6 — 1) = 0.

If one wants to estimate, for a given integer m, how many elements of
G can be dominated by a subgroup of size m, note that our lower bounds
will be best when to(H) + 2t3(H) + t2,2(H) is smallest. Therefore we want
to find, of all subgroups H of Gy of size m, one for which the quantity
S(H) = ta(H) + 2t3(H) + t22(H) is minimum. At present, owing to our
lack of knowledge on these kinds of parameters for arbitrary subgroups of
Ghn, we have no general results to help with this question. In this graph,
and even more so in our next example, explicit computation also seems to
be a forbidding task for n > 10 . The GAP program [5] provides generating
sets for representatives of all of the conjugacy classes of the subgroups of
the symmetric group. While the set of representatives may be sufficiently
small to work with, the number of conjugates one must consider is pro-
hibitive. Further work is required to determine, in terms of H, how large
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N[H']| can be, or how small f(H’) can be, for any conjugate H' of H.
The conjugacy class representatives do, however, enable some deductions.
For example, suppose we are looking at a specific subgroup H of G, with
|H| = m, say, and its conjugacy class. Now most of the elements of U2 are
products of 2 disjoint 2-cycles, (n — 2)(n — 3)/2 to be exact. Suppose we
let W denote the set of such elements of U2. If we can find a conjugate
H' = H9 of H which contains none of the elements of W, then it also fol-
lows that H’ could contain at most two adjacent transpositions. And since
(t4+1,i4+2,i+3)-(4,i+1,i+2) = (i,i + 1)(i + 2,7+ 3), H’' could contain
no more than half of the 2n — 4 three-cycles of U? — {+}. So we would have
|H'NnU?| -1 < 24+n—2=n. Our first lower bound would then show
that there is a subgroup H’ of size m for which |[N[H']| > (n/3)m. Can we
tell whether such a conjugate can be found? A sufficient condition can be
formulated as follows. First note that if p; and p2 are both products of 2
disjoint 2-cycles, there are 8(n —4)! elements g of Gy, for which p{ = pa. So
there are at most 8(n —4)!(n —2)(n—3)/2 = 4(n — 2)! elements g for which
p] is equal to an clement of W. Now let co2(H) be the number of elements
of |H| which are the disjoint product of two 2-cycles. It then follows that
there are at most 4(n — 2)! c2(H) elements g of G, for which H9 contains
an element of W. So if 4(n—2)! c32(H) < n! thereis a conjugate of H which
is disjoint from W. So we simply check whether c22(H) < n(n —1)/4. If
this holds, such a conjugate exists. In the same way, we can find a sufficient
condition so that some conjugate of H intersects U2 in only the identity
element: namely, that 2(n — 1)ca(H) + 6¢c3(H) +4c2(H) < n(n—1), where
co(H) and c3(H) denote the number of 2-cycles and 3-cycles respectively
which belong to H. We thus have the following result.

Theorem 3.1. Let H be a subgroup of G, with |H| = m. Let ca(H)
and c3(H), respectively, denote the number of 2-cycles and 3-cycles which
belong to H, and let cyp(H) be the number of elements of |H| which are
the disjoint product of two 2-cycles.

(i) If co2(H) < n(n—1)/4 then there is a subgroup H’ of G, with |[H'| =m
for which |N[H’]] = (n/3)m.

(ii) If 2(n—1)co(H) +6c3(H) +4c22(H) < n(n—1) then there is a subgroup
H' of G,, with |H'| = m for which |[N[H']| = nm.

Computationally these kinds of conditions can provide at least some

useful information, for somewhat larger values of n, by checking if such con-
ditions hold for the subgroup conjugacy class representatives. This kind of
approach can clearly be refined, and we hope to do so in future work.

We remark that little seems to be known in general about the domina-
tion number of G,,. A related question was considered in [3]: does there
exist a subset C of G, such that every element p of G, can be uniquely
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represented as p = uz for some element u € U and some element z € C?
Such a set C must have size (n — 1)! . Elegant arguments using group
representations are used in [3] to show that the answer is negative for a
large class of values of n. The same type of question was investigated in a
much earlier paper [11], also using group representations, with the set of all
transpositions(together with ¢) in place of the set U. Although our lower
bounds are somewhat crude, they can provide some useful initial estimates
for 4(Gn), at least for small values of n. For example, in Gs, for any sub-
group H, we can apply the greedy algorithm to obtain a dominating set
Dy for G5 — N[H]. The smallest value of |H| + |Dy| that we find in this
way, over all subgroups H of Gs, is 31, and so v(Gs) <31. O

(iii) The permutation graph

Let n > 3, and let S, be the symmetric group on {1,2,...,n}. Asin ex-
ample (ii) above, we denote the identity element of S,, by ¢. Let U consist of
¢ together with all cycles of the form (%, i+1,i42, ..., ), where 1 < i < j < m,
and their inverses (5,7 — 1,5 — 2, ...,7). These cycles will be referred to as
consecutive cycles. We refer to the Cayley graph (S,,U) as the permuta-
tion graph. (As usual, we will leave out the commas in using cycle notation
whenever it will not lead to ambiguity.) We have |U| = 1+ (n — 1)?, and
it can be shown that [U?|= 1(n? — 6n® + 13n% — 10n +6). The elements
of U? are either cycles or products of two disjoint cycles. With some work,
one can find explicit formulas, for k = 2,3, ..., n, for the number c(U?) of
cycles of length k which belong to U2, and, for 2 < k < I < m, for the
number c,,((U?) of elements of U? which are equal to the disjoint product
of a k-cycle and an Il-cycle. For example, all transpositions in S,, belong to
U? and c3(U?) = n(n —1)/2, and, for n > 4, the number of n-cycles which
belong to U? is cn(U?) = n% —n — 6. We will not need such formulas here.

In addition to giving a permutation by means of its disjoint cycle de-
composition, we will also exhibit a permutation p as the ordered list
p(1),p(2), ..., p(n). If I is any subset of the set {1,2, ...,n}, we will let p— I
denote the permutation of length n — |I| obtained from p by deleting all
of the elements of I from p and concatenating the remaining elements. If
I = {i}, we write p — i instead of p — {i}. For example, if p is 5,1,4,2,3
then p —21is 5,1,4,3, and p — {1,2} is 5,4, 3.

Let p € S, and let u = (i,i+1,i+2, ...,5). Note that, as an ordered list,
¢ = up is the permutation obtained from p by moving the element p(5) from
its position in p into a new position immediately to the left of the element
p(2), and leaving all the other elements of p in their same relative order. If
p(7) = k, we will say that ¢ is obtained from p by moving k. To illustrate,
in S5, let u = (234) and let p = (15342). As a list, p is 5,1,4,2,3, and so
up is the list obtained by moving the fourth element of the list p immedi-
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ately to the left of the second element of p, resulting in the list up given
by 5,2,1,4, 3. This is equivalent to the equation (234)(15342) = (153). We
can therefore express the adjacency relation in the Cayley graph (Sn,U) as
follows: for p # ¢ in S, we have

p~qin(S,,U) » p—-k=q—k for some k <n.

That is, p ~ g in (Sp, U) if ¢ can be obtained from p by changing the posi-
tion of one element of p relative to the others. As we discussed in section
1 above, it is this form in which the adjacency relation has been employed
in earlier work on this graph ([6], [9]).

Our first task is to determine the parameters r; and ro for S,,. Their
values illustrate that, for some Cayley graphs, our lower bounds for inde-
pendent subgroups of a given size will be much better than for arbitrary
subgroups of the same size.

Lemma 3.2. Let n > 3. Then
(i) 71(Sa) =2(n —1) and (ii) r2(Sn) =4.

Proof: (i) In part (ii) we will show that two independent vertices of Sy, have
at most 4 common neighbours, so for part (i) it is enough to show that two
adjacent vertices of S,, can have at most 2(n — 1) common neighbours, and
that 2(n — 1) is attained. Let p and g be adjacent in S,. We consider
two cases. First, if q results from p by interchanging the #’th and i + 1’th
elements of the list p, it is easy to see that p and g have exactly 2(n — 1)
common neighbours: any permutation obtained from p by moving either
the i’th or i + 1’th element of p, into any position, is a common neighbour
of p and ¢, and these are the only common neighbours.

Secondly, suppose q results from p by moving the i’th element of p by
more than one position, say to the left, so that it occupies position 7 in g,
where 7 > j + 1. It is no loss of generality to assume that p is the identity
1,2,3,..,n andsogqis 1,2,..,7—-1,%4,5,7+1,..,i—-1,i+ 1,14+ 2,...,n.
Any permutation obtained from p by moving ¢ is a common neighbour of
p and q. There are n such permutations (including p and ¢ of course).
If ¢ > j + 2 these are the only common neighbours: moving any element
of p other than 7 will not result in a permutation which is adjacent to g.
If i = j + 2 there is one additional common neighbour: the permutation
1,2,...,5—1,54+ 1,7+ 2,5,5 + 3,...,n which can be obtained from p by
moving j and from ¢ by moving j + 1. So in this case there are n + 1
common neighbours. Since 2(n — 1) > n + 1, this proves (i).

(ii) If we reverse the first three entries in the identity permutation 1,2, 3, ...,n,

leaving the others fixed, we get the permutation 3,2,1,4,5,...,n which is
not adjacent to .. These two permutations have four common neighbours,
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namely the four permutations of the form a, b,¢,4,5,...,n where a,b,c is
any ordering of the numbers 1,2,3 other than 1,2,3 and 3,2, 1, and where
the integers from 4 to n are in their usual order. To prove (ii), we must
show that any two non-adjacent permutations in S, have no more than 4
common neighbours in S,. So, let p and ¢ be elements of S,, which are not
adjacent.

There is another way to characterize non-adjacency in S, which will be
useful here. We will use the following terminology. Let p, g be elements of
Sn, and let i and j be integers in the set {1,2,...,n}. We say that i < j in
p if 1 occurs to the left of j in the list p, and we say that the pair {%,j} is
opposite in p and ¢ if < § in one of the two permutations and 5 < ¢ in the
other. Similarly, a triple of integers {%,,12,43} is said to be opposite in p
and q if, for some permutation ry, 72,73 of 1,2,3 we have i,, < i,, < in, in
one of the two permutations and %r, < i,, < 1%, in the other. Lemma 4.1
in [6] establishes the following:

p is not adjacent to ¢ if, and only if, one of the following two conditions
holds: Either there are two disjoint pairs {iq,71}, {i2,72}, both of which
are opposite in p and g, or there is a triple of elements {4, 2, 43} which is
opposite in p and g.

In applying these conditions we will say that the two pairs {1, 51}, {¢2,52},
or the triple {1,142, i3}, as the case may be, witness that p is not adjacent
to g.

Again we can assume, without loss of generality, that p is the identity
permutation 1,2,3,...,n . We first note that, if p and ¢ have a common
neighbour, then there are integers ¢ and j such that p - {1, 5} = ¢ — {¢,35}.
Therefore we can assume that q is obtained from the list 1, 2, ..., n by choos-
ing two integers ¢ and j with ¢ < 7, and moving them relative to the other
integers in 1,2, 3, ...,n so that they occupy positions k and ! respectively,
leaving the other n — 2 integers in their usual relative order.

Our proof that |[N[p] N N{g]| < 4 is carried out by considering several
cases. Case 1 is when k = i. The case when | = j is dual to case 1 by
writing all lists backwards. Case 2 is when k < ¢ and Case 3 when k > 1,
in both of which we can assume that [ # j. Special subcases of these,
such as when j = 7 + 1, are also best treated separately. Since the argu-
ments are similar in all of these cases, we will just give the details for a
typical one. We give the proof for the case when the following conditions
hold: k < i, k < l,and i+ 1 < j. In this case we can display ¢ ~ j as
1,2,..,4,..,t—-1,74+1,...,,5—1,741,..,n. In this list 7 can be anywhere
to the left of 7 — 1. In the list g, j is inserted into this latter list and can
be anywhere to the right of i except (because g is not adjacent to p), not
in its usual position immediately after 5 — 1. Now, let 7 be a permutation
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which is adjacent to g in S,,. So 7 can be obtained from ¢ by moving one of
the entries of q relative to the others. When can 7 also be adjacent to the
identity permutation p? Suppose the integer which is moved in obtaining
7 from ¢ is i. If 1 is moved into a position between : — 1 and i + 1 then 7
is also adjacent to p. If j happens to be between i — 1 and 7 4 1 in ¢ then
there are two possibilities for placing ¢ in this way, either immediately to
the left or immediately to the right of j. If j is not between ¢ —1 and ¢ + 1
in g, then there is only one. Suppose that 7 is obtained from g by moving
i into some position which is not between i — 1 and 7 + 1. Then one of
the following four sets of two pairs will witness that 7 is not adjacent to
p: {1' - 11i}$ {.7 - lvj}v or {1’ - liz}!{J)J + l}) or {iai + 1}){.7 - ltj}s or
{#,i+1}, {4,7 +1}. So there are at most 2 common neighbours 7 of p and
g which can be obtained from ¢ by moving i. On the other hand, if 7 is
obtained from g by moving 7, then 7 will also be adjacent to p if 7 is moved
into position between j — 1 and j + 1. Since ¢ is not between j — 1 and
J + 1, there is only one such 7. If 7 is obtained from ¢ by moving j into
any position other than between 7 — 1 and j + 1, then we can see that 7 is
not adjacent to p, as witnessed by either the two pairs {z — 1,1}, {j — 1,5},
or by the two pairs {i — 1,1}, {5,5 + 1}. So there is at most one common
neighbour 7 of p and q which can be obtained from ¢ by moving j. Finally,
if 7 is obtained from ¢ by moving some integer k which is different from
both ¢ and 3, again, either {i—1,1} and {7 — 1,35} or {i—1,4} and {4,5+1}
witness that 7 is not adjacent to p. All together, p and g have at most three
common neighbours 7.

The same kind of argument can be used in all the other cases. Given
g not adjacent to p, we first identify either two pairs or a triple of integers
which witnesses the non-adjacency, as described above. Any neighbour 7
of ¢ which is also adjacent to p must be obtainable from ¢ by moving one of
the four integers of the two pairs, or one of the three integers in the triple,
as the case may be. By considering the possible acceptable positions into
which these three or four integers can be moved, one shows that at most 4
common neighbours result. 0O

Using 79 = 4, for any independent subgroup H of Sy our two lower bounds
for [N[H]| are, respectively:

[n4—4n3+8n2—8n+4

2 _ _ A U? )
n2—2n—2+4|HﬂU2|-||H| and {n®-2n+4-2|H U? ] |H|

We will get a lower bound of the same order as n?|H| in the second case
when |H N U?| = O(n), but in the first case when |H N U?| = O(n?), and
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so the first lower bound will be more useful in general.

Using the value r; = 2(n — 1) for arbitrary (not necessarily independent)
subgroups H, our first lower bound for |N[H]| is

[ nt —4n3 4+ 8n%2 —8n+4 I
n? —4n+4+ (2n-2)|HNU?|

This lower bound will be of the same order as n2|H| provided |H NU?| =
O(n).

Here are some examples, for small values of n, comparing our first lower
bound with the actual values. In Sy, the 4-element subgroup
H =< (1423) > is an independent dominating set: |[H N U] = 1 and
IN[H]}| = 24. We have |H N U? = 4. Our lower bound for |N[H]|

is [4—(41_1—?%-' (4) = 20. This subgroup has a conjugate H9, for g =
(243), which is also independent, also dominates Sy, but for which |[H9 N

U?| = 3. Our lower bound for |N[HY]| is exact: [4—(5(%] (4) = 24.
Another dominating subgroup of S; is the 8-element subgroup K =<
(12), (34),(13)(24) > . We have |[N[K]| = 24, |[KNU| =3 and |[KNU?| = T.

Our lower bound is again exact: [a%-l (8) = 24.

In Ss, consider the 6-element subgroup H =< (345), (45) > . One finds
that [H NU| =5 and |H N U?| = 6, and that |N[H]| = 54 = 9|H|. Using
r1 = 2(5 ~ 1) = 8, our lower bound is |[N[H]| > 36 = 6|H|. Calculating
the value |H9 N U?| for all conjugates of H in Ss(with the help of GAP),
we find that the minimum value is 4 and occurs for g = (124)(35). For this
value of g, the subgroup H? happens to be independent, and we find that
|N[H9]| = 66 = 11|H9|. Our lower bound for |N[H9]| is [ﬂ%] (6) =
60 = 10|H9|. Another interesting example in Sy is the 8-element subgroup
K =< (23),(45), (24)(35) >. We have |N|K]| = 64 = 8| K|, |[KNU| =3
and |K NU?| = 7, and our lower bound is 5|H| = 40. If we calculate
the value |K9 N U?| for all conjugates of K in S5, we find that the min-
imum value is 3 and occurs for g = (12). For this value of g, we have
IN[K9)| = 88 = 11|K9|, |K9 N U| = 2 and our lower bound for |N[KY]| is
9|H| = 72. One further finds that the value |[N[K?9]| = 88 is in fact the
maximum of | N[H]| over all 8-element subgroups of Ss.

For n = 6, GAP gives three different conjugacy classes for subgroups of
Sg of size 36. A representative of the first of these is
H =< (23),(123),(56), (456) >, for which we find that |H N U| = 9 and
|H NU?| = 27, and that |[N[H]| = 216 = 6|H|. Using r; = 2(6 — 1) = 10,
our lower bound for |N[H]| is just 108 = 3|H|. Among all the conjugates
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H?9 of H, there is one which is independent, for g = (1245)(36). For this
conjugate we have |HINU| = 1,|H9NU?| = 16, and |N[H]| = 360 = 10| H]|,
and using r2 = 1, our lower bound for |N[H9]| is 288 = 8| H|. The largest
number of elements of Sg dominated by any of the conjugates of H turns
out to be 396, realized with g = (124635).

The other two conjugacy classes can be examined similarly. For the sec-
ond, we take the representative H =< (123), (456), (23)(56), (14)(2536) >.
We find that |HNU| = 5 and |[HNU?| = 13, and that |N[H]| = 432 = 12|H]|,
and our lower bound for |N[H]| is very weak: 180 = 5|H|. Again, by
examining all of the conjugates H9 of H in Sg, we find one which is in-
dependent, for g = (125364). For this conjugate we have |[HINU| =1
and |H9 N U?| = 10, and |N[H]| = 540 = 15|H|, and our lower bound
for IN[H9]| is 396 = 11|H|. By further computing |[N[HY]| for all of
the conjugates of H in Sg, and for all the subgroups in the third con-
jugacy class, we find that the largest number of elements of S¢ domi-
nated by a subgroup of size 36 is 612 = (17)(36), which is realized by
H =< (123), (456), (23)(56), (14)(2536) > and g = (124635). This sub-
group K = HY is independent and |K N U? = 8. Our lower bound gives
IN[K]| > 468 = (13)(36). The only way our lower bound could possibly
give a larger value for a subgroup K of size 36 is if we were to use a sub-
group K for which |[K NU| =1 and |K N U?| = 7, but no such subgroup
exists in Sg. O

Our numerical examples indicate that independence is greatly to be de-
sired to obtain good lower bounds. We can find a sufficient condition for
a conjugate of H to be independent in S, using the same method as we
did for G, in (ii). We note that, for k = 3,4,...,n, the set U contains
2(n—k+1) cycles of length k, and U contains n — 1 cycles of length 2. Let
H be a subgroup of S, and, for k = 2,3, ..., n, let ¢x(H) be the number of
cycles of length k which belong to H. If p; and ps are k-cycles, there are
k(n—k)! elements g of Sy, for which p] = pa. So, if k > 2, there are at most
2(n—k+1)k(n—k)! = 2k(n—k+1)! elements g for which p] is equal to an el-
ement of U and there are at most (n—1)2(n—2)! = 2(n—1)! such g for k = 2.
n

It follows that there arc at most 2c2(H)(n-1)! + Z 2kci(H)(n—k+1)!

k=3
elements g for which H9 contains an element of U — {+}. For any other g,

the conjugate H9 will be independent. So we get the following sufficient
condition.
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Theorem 3.3 Let H be a subgroup of Sy, and for k > 2, let c,(H) be the
number of cycles of length & which belong to H.
n

If 2co(H)(n—1)! + Z 2kcg(H)(n—k+1)! < n! then there is a conjugate

k=3
of H which is independent in S,,.

The condition in 3.3 can be useful for estimating how many elements of
Sn can be dominated by a subgroup of a given cardinality. If the condi-
tion holds for a given subgroup of size m, we can then find an independent
subgroup of size m for which we can then use our lower bound. While
this condition is easy to check for any given subgroup, it is not a necessary
condition for a subgroup to have an independent conjugate. For example,
in Sy, the subgroup H =< (345),(45) > has an independent conjugate,
whereas the condition fails for H. Moreover, we do not as yet know for
which m there is a subgroup H of S, of size m for which the condition
holds. This in itself appears to be a challenging question.

In a similar way, one can formulate conditions implying that some conju-
gate of H has a prescribed small intersection with U?, utilizing the number
ck(U?) of cycles of length k which belong to U2, and, for 2 < k <l < n, the
number cx (U 2) of elements of U? which are equal to the disjoint product
of a k-cycle and an I[-cycle (as mentioned at the beginning of example (iii),
these comprise all of the elements of U2). We will not pursue such condi-
tions here.

In general, the most we can expect from our lower bound is an estimate
for |IN[H]| having order n2|H|. One way to try to find a subgroup H which
gives an estimate of this order is to first identify a subset V' of U, with |V|
of order n?, for which we can formulate a simple condition for a subgroup
H to satisfy the condition that |H NV~V| = O(n). A subgroup H sat-
isfying such a condition would then give a2n estimate of order n2|H|, since

Vi

INUE = 1A 2 VA > [ i

One promising possibility is the set V' consisting of all “increasing” cycles
in U of length > n/2, that is, all cycles of the form (i,i + 1, ..., j), where
1<i<j<mnandj—i>(n/2)—1. We have |V|=n(n+2)/8 if nis even
and |V| = (n+1)(n+3)/8 if n is odd. For any distinct elements z and y of
V, the product z~!y is a cycle of a particular form. To describe this form,
let us use the following notation. If A and B are disjoint ordered subsets of
{1,2,...,n}, then (A, B) will denote the cycle of length | A|+|B| obtained by
listing all the elements of A, in their given order, before all of the elements
of B, which are listed in their given order. We allow the possibility that
one of A or B is empty, with the obvious meaning for (A4, ) and (¢, B).
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For example, in S7, let A = {3,2}, and let B = {5,6,7}. Then (A, B) is the
5-cycle (32567). Let us say that a cycle in Sy, is special if it can be written
in the form (A, B) where A is either empty or is a consecutive increasing
or consecutive decreasing subset of the set {1,2, ..., [7/2]} and B is either
empty or is a consecutive increasing or consecutive decreasing subset of the
set {[n/2]+1, [n/2] +2, ...,n}. It is easy to see that z~'y is a special cycle
for any distinct elements x and y of V.( We remark that V!V does not
contain all special cycles, but we do not need the exact number of elements
belonging to V!V here.) This leads to the following condition.

Theorem 3.4. Let H be a subgroup of S,, and let s(H) be the number of

special cycles which belong to H. If s(H) = O(n) then |N[H]| is of order
n?|H|.

The condition in 3.4 of course leads to more questions. For what orders
of subgroups of S,, does there exist a subgroup H with s(H) = O(n)? Can
we always find one of order (n — 2)! 7 We hope to take up such questions
in future work.

4. Concluding remarks

How many elements of the permutation graph S, can be dominated by
a subgroup of size m?

What is the smallest size of a subgroup of S,, which dominates S,, ?

The results in section 2 and example 3(iii) above unfortunately do not
lead to definitive answers to either of these questions. For those results to
provide good general estimates, what is further required is an understanding
of the values of functionals of the form )", axckx(H) on the subgroups H of
Sy,. For the second question, let s, be the smallest size of a subgroup of S,
which dominates S,,. Direct computational methods are possible for small
values of n, and it can be determined that s4 = 4,s5 = 10, and s¢ = 60.
Since S,—; dominates S,, we have s, < (n — 1)! . And if N[H] = S,,
it obviously follows that n! < |H|(1 + (n — 1)), and so |H| must have
order at least (n — 2)! . Beyond this scant information, we are not aware of
any other general estimates or constructions. A compelling question here
is whether s, = O((n — 2)!). A similar open question concerns (S,),
the domination number of S,. We note that, when applied to S, the
basic upper bound for domination number in arbitrary graphs, Theorem
2.2 of [1], implies that v(S,) = O((n — 2)!logn). As we mentioned in the
introduction, we have found that y(S;) = 4 and (Ss) = 10. In both cases,
there is a minimum dominating set which is a subgroup. For n = 5, after
having found a dominating subgroup of size 10, we showed that v(Ss) > 10
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by solving a corresponding integer program. We are grateful to James
Currie for his considerable help in this and subsequent computational work.
As for n = 6, we have 7(Sg) < 48. We can exhibit a subgroup H =<
(15)(23), (23)(46), (134)(265), (13)(25) > of S having 24 elements, and a
coset aH, (with a = (12)), for which H U aH dominates Ss. We have been
unable to determine whether 48 is minimum. One other computational
result is worth mentioning: (S7) < 240. A construction in [7] utilizes
the subgroup K =< (1234567),(12)(36) >. Here we have |K| = 168,
and K dominates 4872 elements of S7. Applying the greedy algorithm, 72
additional elements of S7 are found which dominate S7 — N[K]. In all cases
of which we are aware, S, has a dominating set of cardinality 2(n — 2)! and
it seems reasonable to conjecture that v(S,) < 2(n —2)! for n > 4. An
interesting related question is whether n divides v(S,) for n > 4.

There is a simple connection between covering designs and dominating
sets in S, which gives further reason to conjecture that y(S,) = O((n—2)!).
Let » and k be positive integers with k < n. Recall that a collection of
subsets C of the set {1, 2, ...,n} is called an (n, k+1, k) coveringif |C| = k+1
for all C € C and if every k-element subset of {1,2,...,n} is contained in
a set belonging to C. Let 2,4 be the minimum cardinality of an (n,k +
1, k) covering. We will also use the following notation, where we are again
thinking of a permutation just as an ordered list. Suppose A is a subset of
{1,2,...,n}. lf pis a permutation of the elements of A and ¢ is a permutation
of the elements of {1, 2,...,n} — A, we will let px q denote the permutation
of {1,2,...,n} obtained by concatenating the two lists.

Theorem 4.1
(i) Let n and k be positive integers with k£ < n. Then
Y(Sn) S znk k! (n—k —1)!

(i) 1€ 2n,fn/21 = O (2 (7)) then 7(Sa) = O((n - 2)1)

Proof: (i) Let C be an (n,k + 1, k) covering of the set {1,2,...,n} such
that |C| = zn k. For each C in C, consider the set S¢ consisting of all
permutations of C, which is isomorphic to Si,;. By Theorem 3.1 of [9),
the graph Si,; has an independent set of cardinality k! . This implies that
there is a subset Ic of S¢, with |I¢| = k! having the property that every
k-permutation of elements of C is a subsequence of exactly one permutation
belonging to Ic. Let C' = {1,2,...,n} — C and let Sc: be the set of all
permutations of C’. Foreach C €C,let Tc = {pxq:p € Io and q € Sc-}.

Finally let T = U Tc. Clearly |T| = 2z x k! (n — k —1)! . To prove (i) we

cecC
show that T is a dominating set in S;,: Let r be any element of S,. Let
A be the set of elements of {1,2,...,n} which occur as the first k elements
in the list r, and let 7]k denote the restriction of r to these elements(so r|k
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is the list 7(1),7(2), ...,7(k)). There is a set C € C with A C C, and there
is an element p of I¢ such that 7|k is a subsequence of p. Let i be the
element of C — A, and let g be the restriction of the list r to the elements
of {1,2,...,n} — C. Clearly r can be obtained from p * ¢ by moving the
element %, and so r is adjacent to p*x g in S,. Since pxq € T, we have
shown that T is a dominating set in S,,.

(ii) For simplicity, suppose n is even, say n = 2m. If cis a positive constant
and zomm < ¢ 5= ("), then, with k = m, part (i) implies that ¥(S,) <

cgzm—n:l)—! <2(n-2)! 0O

Ro6dl’s celebrated theorem in [10] implies that, for a fixed k, znx is
asymptotic to £15 (%) as n — co. (We refer the reader to [4] for a discussion
of coverings and related topics.) This, as well as known sizes for various
covering designs(as in [12], for example) lends plausibility to the conjecture
that v(S,) = O((n — 2)!).
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