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Abstract

Optimal binary linear codes of length 18 containing the [6,5, 2] ®
(3,1, 3] product code are presented. It is shown that these are (18,9,5]
and [18, 8, 6] codes. The soft-decision maximum-likelihood decoding
complexity of these codes is determined. From this point of view
these codes are better than the [18,9, 6] code.
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1 Introduction

Let [r, k, d] be a binary linear code of length n, dimension k¥ and minimum
Hamming distance d. It is known that codes containing simple subcodes,
such as Em = [m,m — 1,2], the length m single parity check code, can
be decoded efficiently [2, 4, 9). It is shown in [4] that if a code C of
length tm includes the product code Em, ® [t,1,¢], then one may employ
the acyclic Tanner graph [13] of this product subcode and the minimal
trellis diagram(MTD) (1, 5, 7, 8, 14] of the quotient code C/(Em®[t,1,t])
to efficiently decode C. This method is in fact an extension of the Wagner
rule [10] decoding algorithm. The efficiency of this approach is based on the
fact that the subcode E., ® [t, 1,t] has the best form of an acyclic Tanner
graph. The [24,12,8] Golay code and the extended [32,16,8] BCH code
contain the acyclic codes Eg ® [4,1,4] and Es ® (4, 1,4], respectively [4].
We refer the interested reader to [4] for more details.

A Tanner graph representing a linear block code with parity check ma-
trix H = [hi;] is a bipartite graph in which one of the two sets of vertices
denote the parity nodes (rows of H), and the other set denote the symbol
nodes (columns of H). A parity node u; is connected to a symbol node v; iff
hij # 0. A cycle-free Tanner graph is called an acyclic Tanner graph (ATG).

Suppose C = Cs + C' where Cs := [6,5,2] ® 3,1, 3]. The values of the
parity nodes of the Tanner graph of Cs are zero. The cosets of Cs in C have
structurally the same Tanner graphs but with different values on the parity
nodes. Let Ms and Mg denote generator matrices of Cs and its dual code
C#, respectively. The space of the parity nodes, referred to as the parity
space (PS), is generated by the matrix Mps := Mg-M", where M " is the
transpose of a generator matrix M’ of C'. The ATG of Cs together with
the MTD of the associated PS are a graphical representation of C that
can be employed in the decoding process (for a more detailed treatment of
this area of research, we refer the reader to [4]). Figure 1 shows one such
representation for an [18,9, 5] code containing Cs (this will be described in
more detail in Example 2).

In this paper we study optimal codes that contain Cj as a subcode.
In Section 2 we apply the results given in [11] to show that there is no
(18,9, 6] code containing Cs. It is then shown in Section 3 that there are
(18,9, 5] codes containing Cs whose soft-decision maximum-likelihood de-
coding complexity is half that of the [18,9, 6] code. These codes are divided
into three groups in terms of the MTD of the quotient code [18,9,5]/Cs.
We also present [18,8,6] codes whose average decoding complexity is 121
binary operations, which is about one-third the complexity for the [18,9, 6]
code.

We now provide some necessary background material. Let C be an [n, k]
linear block code over F». For nonnegative integers ¢ and j, the interval



[i,7] is said to be the span interval, or simply the span, of the codeword
c=(c1,""",en) €ECifcic;j #0,and ¢ =0if I <iorj <l Inthis case
the codeword c is said to be active in the interval [i,j — 1], and has span
length j —i + 1. A codeword c is said to be nowhere active if either i = j
or c is zero. The span length of the zero codeword is defined to be 0.

Let M be a k x m matrix whose entries are in the vector space F3.
Consider the set

S= {Mla Al‘h Tty Mm: Alla Mza R Mm}i

where M; (resp. M?), 1 < i < m, is the k x i matrix formed from the first
¢ (resp. last ) columns of M. Matrix M is said to be a minimal matrix
if the nonzero rows of each element of S are linearly independent Suppose
now that such a minimal matrix M is a generator matrix of a linear block
code C of length n = Im and dimension k. Then Theorem 5 of [5] states
that T, the m-section MTD of C, consists of 2/4tm! jdentical (in terms of
the graph structure) parallel subtrellises, where A,,,, is the number of rows
in M with support {1,/ — 1] when M is considered over Fi.

2 Structure of the [18,9, 6] binary code

In this section we show that the class of optimal binary codes containing
6,5,2] ® [3,1,3] does not include the [18,9, 6] binary code and hence we
focus on the [18,9,5)] and [18, 8, 6] codes.

Using enumeration and combinatorial methods it was shown in (6] that
there is no (18,9, 6] code containing Cs as a subcode. Here we present a
simpler proof using the fact that Simonis [11] has shown that the (18,9,6]
code is unique. In Table 2 of [11], the weight distribution of the cosets of
this code were given. We use this distribution to show that Cs cannot be
extended to the [18,9, 6] code.

Theorem 1 The [18,9,6] code C' does not contain Cis.

Proof. If C contains Cs then the coset r+C, with r = 111000000000000000
contains at least 6 words of weight 3. However from the weight distribution
given in Table 2 of [11], the number of weight 3 words in a coset does not
exceed 4, which is a contradiction. m

3 Optimal Codes Containing Cs

As mentioned previously, the existence of Cs in a binary code of length 18
reduces the decoding complexity substantially. In this section we consider



codes containing Cs that are optiinal either in terms of dimension or mini-
mum distance. In particular, we show that there exist [18, 8, 6] and 18,9, 5}
codes that contain Cs.

3.1 [18,8,6] codes containing Cs

It is shown that the 3-section MTD of the parity space of any (18,8, 6] code
with generator matrix

consists of 8 parallel paths and the decoding process requires 117 to 125
binary operations. First we show that in order to extend the generator
matrix Ms of Cs into a generator matrix M representing an [18,8, 6] code
it is enough to choose three additional words from a subclass A of the weight
6 and weight 7 words from which the trellis structure can be obtained.

3.1.1 Elimination of unnecessary words

For simplicity, a word of length 18 from M; is divided into 6 blocks of
length 3 denoted by by, ba, ---, bg from left to right. It is obvious that
Cs is invariant under block column permutations. Therefore we have the
following form for Ms

111 111 000 000 000 000
0c0 111 111 060 000 000
M5 = 000 000 111 111 000 GO0
000 000 OGO 111 111 000
000 000 0G0 000 111 111

Suppose there exists a binary 3 x 18 matrix M3 such that G, represents
an [18, 8, 6] binary code denoted by Cg. The requirement for a minimum
distance of 6 implies that the rows of M3 must be of Hamming weight
at least 6. It is shown here that we can restrict the elements of M3 to a
subclass of words of weights 6 and 7. Using Cs and row operations one can
easily verify the statements given in the following lemma.

Lemma 1 (1). A row ¢ € M3 with an even number of blocks of weight 2
(and arbitrary weights in the other blocks), can be replaced with another
word ¢’ such that in the block positions that ¢ has weight 2 the word ¢’
is of weight 1 and in other blocks they are identical. (2). If a row ¢ of
M3 has some blocks b; and b; of weight 3 and 1, respectively, then ¢ can
be replaced by a row ¢’ in which the blocks b; and b; have weight 0 and
2, respectively. (3). A row ¢ € M3 having two blocks of weight 3 can be
replaced with a word ¢’ in which the corresponding blocks have weight 0. m



3.1.2 Words of weight 6 and 7

Theorem 2.6 of [3] states “If C is an [n, k,d] code of length n = ga(k,d) +¢
with ¢ an integer, then C has a generator matrix G, every row of which has
weight between d and d+t,” where g2(k,d) := Z;:; [d/27]. For a [18,8, 6]
binary code we have n = 18 and ¢2(8,6) = Z;=o [6/27] = 16 and hence
d+t = 8. Therefore, this theorem implies that such a code has a generator
matrix G every row of which has weight 6, 7 or 8. In the following we show
that a [18, 8,6) code containing Cs has a generator matrix G every row of
which has weight 6 or 7.

If a word ¢ of weight 6 has two or three weight2 blocks then, by
Lemma 1, ¢ is equivalent to a word ¢’ (i.e. it can be replaced with ¢')
of weight less than 6. Hence these words are eliminated. Thus there are
only two types of weight 6 words that can be used to extend Mjs. One type
is the weight 6 words with exactly one block of weight 2 and four blocks
of weight 1, and the other type is the set of weight 6 words each of which
consists of six blocks of weight 1. A similar argument shows that the only
useful words of weight 7 are those consisting of one block of weight 2 and
five blocks of weight 1. The union of these three types of words is denoted
by A.

It is obvious that a word c of weight 8 has either at least two blocks
of weight more than 1 or one block of weight 3 and five weight 1 blocks.
According to Lemma 1 in either of these two cases ¢ can be replaced with
a word of weight at most 6. Thus there is no need to consider the set of
weight 8 words. According to Theorem 2.6 of [3] we do not need to consider
words of weight more than 8.

In summary, we may assume that the rows of M3 belong to A. This
together with Theorem 5 of [5], restated in the Introduction, results in the
following corollary.

Corollary 1 The 3-section MTD of the parity space of any [18, 8, 6] code
containing Cs consists of 8 parallel paths.

Based on this corollary and using the decoding method given in [4], these
[18,8, 6] codes can be decoded using 117 to 125 binary operations.

Example 1 The following matrix M3 in an [18,8,6] code that contains
Cs results in the weight distribution given below.

600 110 001 1060 010 001
Mjz=| 110 o010 o000 o001 010 o010

160 100 100 100 100 Ol0

Weight | 0,18 6,12 8,10
Count 1 46 81




3.2 [18,9,5] codes containing Cs

In this section, we consider 9-dimensional binary codes containing Cs with
the largest minimum distance. Based on the previous results, these codes
have minimum distance 5, and from the decoding complexity point of view
they are divided into three classes. These codes can be partitioned accord-
ing to the number of parallel subtrellises in the 3-section MTD of their
associated parity spaces.

Lemma 2 The number of parallel subtrellises (NPS) of the 3-section MTD
of the parity space of any [18,9,5] binary code containing Cs belongs to

{4,8,16}.
[ Ms
Gz = ( My )

is a generator matrix of a binary [18,9, 5] code Cy. By Theorem 5 of (5],
NPS is a power of 2. If this number is at most 2 then the supports of
at least 3 rows of the parity space lie in the interval [1,8] or (5,12]. It
follows then from Mps = Mg M)} that the first or the last 6 bits of the
corresponding rows of M, are all zero. Without loss of generality we may
assume that two rows of My, say r; and 79, are zero in their first 6 bits.
We show that this results in a codeword with d < 5.

By Lemma 1 and the condition that d > 5 the rows r; and r2 of My
must have weight 5 in their last four blocks and none of these blocks can
be of weight zero. It also follows from condition d = 5 that the number of
bit positions of these last four blocks in which both r; and r, are nonzero
is at most 2; but then r; + 72 will be of weight 6, 8, or 10. This together
with Cs produce a codeword of weight less than 5, a contradiction. Hence
NPS € {4,8,16}. m

Proof. Assuine that

Example 2 In this example we show that NPS can be any of the three
numbers 4, 8 and 16. For each of these three sets of codes we provide
an example. A code with NPS=i is given below by its corresponding 4-
dimensional matrix M,, denoted My(z). The weight distributions are also
listed.

100 100 110 100 Ol0 000

001 001 011 001 000 100)
600 011 010 001 001 010

000 000 001 001 O11 001
M,(4) = (

Weight | 0,18 5,13 6,12 7,11 8,10 9
Count 1 22 46 56 81 100




001 010 010 010 010 001
00 01 011 001
M,(8) = ( (1]38 (1338 ml) ?oo 010 000 )
000 011 010 601 001 010
Weight | 0,18 5,13 6,12 7,11 8,10 9
Count 1 20 46 64 81 88
011 001 001 000 100 001
000 601 001
M,(16) = ( (1]% ggg 100 g;(l) 000 100 )
010 011 000 001 010 001
Weight [ 0,18 5,13 6,12 7,11 8,10 9
Count 1 22 46 56 81 100

The Tanner graph of Cs together with the 3-section MTD of the parity
space generated by Mps = Mg My(4)! is shown in Figure 1.

A: Tanner Graph of C 5

My (4)

B: 3-section MTD of the Parity Space

Figure 1: A: The Tanner graph of the product code Cs. B: The 3-section
MTD of the parity space corresponding to the [18,9, 5] code represented

by M4 (4).

The corresponding decoding complexities are given in Table 1. The
average decoding complexity of the codes with NPS=4, using the decoding
method given in [4], is 181 binary operations while the lowest reported

decoding complexity for the [18,9, 6] code is 340 [12].
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