k-factor-covered Regular Graphs*

Jia Shen Heping Zhang'

Department of Mathematics, Lanzhou University, Lanzhou
Gansu 730000, P. R. China

Abstract

A graph G is called f-factor-covered if every edge of G is con-
tained in some f-factor. G is called f-factor-deleted if G — e con-
tains a f-factor for every edge e. Bébler proved that every r-regular,
(r — 1)-edge-connected graph of even order has a 1-factor. In the
present article, we prove that every 2r-regular graph of odd order
is both 2m-factor-covered and 2m-factor-deleted for all integers m,
1 <m < r~1, and every r-regular, (r — 1)-edge-connected graph
of even order is both m-factor-covered and m-factor-deleted for all
integers m, 1 <m < | Z].
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1 Introduction

Let G be a graph with vertex-set V(G) and edge-set E(G). For a vertex
v € V(G), Eg(v) denotes the set of edges of G incident to v, and the
degree of v is dg(v) := | Eg(v)]. Let f: V(G) — Z, be a function, where
Z, denotes the set of nonnegative integers. An f-factor of G is a spanning
subgraph F such that dp(v) = f(v) for all v € V(G). An f-factor is said
to be a k-factor if f(v) = k for all v € V(G), where k € Z, is a constant.
A necessary and sufficient condition for a graph to have an J-factor was
given by Tutte [11].

An f-factor-covered graph G is a graph such that every edge of G is
contained in some f-factor. An f-factor-deleted graph G is a graph such
that G — e contains an f-factor for every edge e € E(G).
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Petersen [9] showed that every cubic graph with no more than two cut-
edges has a 1-factor. In 1938, Bébler [1) generalized Petersen’s result as
follows: every r-regular and (r — 1)-edge-connected graph of even order has
a 1-factor. Further, Plesnik [10] obtained the following stronger result.

Theorem 1.1 (Plesnik, [10]) Let G be an r-regular and (r — 1)-edge-
connected graph of even order. Then G has e 1-factor that contains no any
given T — 1 edges.

In 1972, Little [4] introduced the concept of 1-factor-covered graph. By
virtue of Plesnik’s theorem, we can easily derive the following result.

Theorem 1.2 If G is an r-regular, (r — 1)-edge-connected graph of even
order, v > 2, then G is both 1-factor-covered and 1-factor-deleted.

On the other hand, Katerinis proved the following result, which exam-
ines the existence of a k-factor in a vertex-deleted subgraph of a regular
graph of odd order.

Theorem 1.3 (Katerinis, [3]) Let G be a 2r-regular, 2r-edge-connected
graph of odd order and m be an integer such that 1 < m < r. Then for
every u € V(G), the graph G — u has an m-factor.

This article presents further generalizations of Theorems 1.2 and 1.3.
First, we consider r-regular graphs G of odd order. Obviously r must be
even; if G has an m-factor, m must be even too. The following result is
proved in Section 2.

Theorem 1.4 If G is a 2r-regular graph of odd order, then G is both 2m-
factor-covered and 2m-factor-deleted for every integer m, 1 <m <r—1.

For r-regular graphs of even order, we obtain the following main result
of this article, which is a further generalization of Bébler’s theorem.

Theorem 1.5 Let G be an r-regular and (r — 1)-edge-connected graph of
even order. Then G is both m-factor-covered and m-factor-deleted for every
integer m, 1 <m < |§].

This main theorem can be proved by Kano’s theorem [2]. In Section 3
we give a direct proof by Tutte’s f-factor theorem [11]} and Liu’s character-
ization theorem [6] of both f-factor-covered and f-factor deleted graphs.
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2 Proof of Theorem 1.4

The following classical theorem is useful for the proof of theorem 1.4.

Theorem 2.1 (Petersen, [9]) (1) Evef‘y T-regular bipartite graph is the
union of edge-disjoint 1-factors.
(2) Bvery 2r-regular graph is the union of edge-disjoint 2-factors.

Proof of Theorem 1.4, By Theorem 2.1, we know that every 2r-regular
graph is the union of r edge-disjoint 2-factors, denoted by H;, Hs, ..., H,.
For an edge e € E(G), assume without loss of generality that e € H;. Then
e € UL, H;, and e ¢ UZE H;) 1 <m < 7, which are 2m-factors of G. O

=2

3 Proof of Theorem 1.5:

For X,Y CV(G), let f(X) := Yvex f(v) and dg(X) := 2vex dc(v). Let
Eg(X,Y) denote the set of edges with one end-vertex in X and the other
inY, and eg(X,Y) := |Eg(X,Y)|. '

To prove Theorem 1.5, we need Tutte’s f-factor theorem. We first recall
some definitions. For any given disjoint sets S, 7T C V(G), a component C
of G~ (SUT) is called an odd or even component of G — (SUT) according
to whether eg(V(C),T) + f(V(C)) is odd or even. Let 9c(S,T'; f) denote
the number of odd components of G — (S U ).

Theorem 3.1 (Tutte, [11]) Let G be a graph and f:V(G) > Z, afunc-
tion. G has an f-factor if and only if

86(5,T; f) = £(8) - £(T) + da_s(T) — qa(S,T; ) > 0

for all disjoint sets S, T C V(G). Moreover, 6c(S,T; f) = f(V(G)) (mod 2)
Jor all disjoint sets S, T C V(G).

The following result is a characterization of graphs which are both f-
factor-covered and f-factor-deleted.

Theorem 3.2 (Liu, [6]) Let G be a greph and f:V(G) = Z a function.
-Then G is both f-factor-covered and f-factor-deleted if and only if G is 2-
edge-connected and for all disjoint sets S,T C V(G),

36(S,T; f) := f(S) = F(T) + do-s(T) - qa(S,T; f) > (S, T),
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where €(S,T) = 2 if S or T is not independent or SUT # 0 and G—(SUT)
has an even component; £(S,T) = 0, otherwise.

Proof of Theorem 1.5. If r=2 or 3, Theorem 1.5 holds by Theorem 1.2.
Therefore we assume that r > 4 from now on. Suppose for a contradiction
that for some integer m, 1 < m < |§], G is not m-factor-covered and
m-factor-deleted. We know from Theorem 3 2 that there exist disjoint sets
S,T C V(G) such that

8¢(S,T;m) < (S, T) L 2.
Since by Theorem 3.1 d¢(S,T;m) = m|V| =0 (mod 2), we have
86(S, T;m) < 0.

That is
m|T| — dg-s(T) + g¢ (S, T;m) > m|S|. (1)

Then SUT # 0, for otherwise (S, T) = 0 and §¢(S, T; m) = 0, contradict-
ing £(S,T) > 6¢(S,T;m). '

Let W := G — (SUT) and let w(W) be the number of components of
W. There are two cases to consider.

Case 1. w(W) = 0. Since w(W) > gg(8S,T;m), (1) implies
m|T| — de_s(T) 2 m|S]|, (2)

and
T} 2 1S)-

Since G is r-regular, G itself is an r-factor. By Theorem 3.1 we have
r|T| — dg-s(T) < 7|S|.

Subtracting (2) from the above inequality, we have: that
(r —m)IT| < (r —m)|8],

so that
IT| < |SI.

Therefore |T| = |S|, which together with (2) implies that de_g(T) = 0,
and T is thus an independent set. Then we have

e(8,T) = dg(T) = r|T| = r|S| = dg(S),
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and
dG—T(S) =0,

that is, § is an independent set. Hence G is an r-regular bipartite graph.
We know from Theorem 2.1 that G is the union of  edge-disjoint 1-factors.
Since the union of m edge-disjoint 1-factors is an m-factor, by arguments
analogous to the proof of Theorem 1.4 we can see that G is both m-factor-
covered and m-factor-deleted, contradicting our supposition.

Case 2. w(W) > 1. Note that
ec(S,T) = dg(T) - dg-s(T).= r|T| - dg—s(T),

and

ec(S,W) eg(SUT,W) — eq(T,W)

(r — Dw(W) - ec(T, W),

v

since G is (r — 1)-edge-connected. Then we have

dg(S) = (S| (S, T) +ec(S, W)

b
> (r=1w(W) - eo(T,W) + 1iT| - dg_s(T).

Since
€c (T’ W) = dG—S(T) - 28(;(T, T))

we have

ISl 2 (r~Dw(W)+2e6(T,T) - 2dg_s(T) + 7|T|

= (r—3w(W) +2ec(T, T) +2w(W) - de-s(T) +m|T|]
+(r — 2m)|T)
(r = 3)w(W) + 2ec(T, T) + 2m|S| + (r — 2m)|T| (by (1)).

v

Since 7 > 4 by our assumption, eg(T,T) > 0 a.nd w(W) > 1, the above
inequalities imply that

(r = 2m)|S| 2> (r - 3) + (r — 2m)|T),
which implies that 2m < r and

151 > |T]. (3)
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We now consider two subcases as follows.

Subcase 2.1. m is even. For every oﬂd component C of W we have
m|V(C)| +ec(V(C), T)=1 (mod 2).
Since m is even, eg(V(C),T) must be odd. Hence
ec(V(C),T) 21,
so that
dg-s(T) 2 ¢c(S, T;m).
Combining the above inequality with (1), we have that
m|T| > m|S],
contradicting (3). .
Subcase 2.2. m is odd. For every odd component C of W, we have
m|V(C)| +ec(V(C),T)=1 (mod 2),
which is equivalent to
V() + eG(V(C),T).E 1 (mod 2).

Thus a component C of G — (SUT) is an odd component with respect to
some m-factor in G if and only if C is an odd component with respect to
some 1-factor in G. Then we have

96(S, T;m) = q6(S, T 1).
By Bibler’s theorem, G has a 1-factor. By Theorem 3.1, we have that
9c(S,T;1) + |T| - de-s(T') < S|,
that is,
96(S, T;m) +|T| - de-s(T) < |S|. (4)
Subtracting (4) from (1) we have that
(m = DIT| 2 (m - 1)|S|.

If m = 1, we know from Theorem 1.2 that G is 1-factor-covered and 1-
factor-deleted, contradicting our supposition. Then we have m > 1. Thus
we have

[T| > |S],
contradicting (3). This completes the proof of Theorem 1.5. O
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