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Abstract

We consider the nonexistence of e-perfect codes in the Johnson scheme J(n, w).
It is proved that for each J(2w + 3p, w) for p prime and p # 2,5, J(2w + 5p, w)
for p prme and p # 3 and J(2w + p*,w) for p prime, it does not contain non
trivial e-perfect codes.

1 Introduction

Let N be a finite set with n elements. Let (Y) := {u C N | Ju| = w} be the vertex
set. We define the Johnson distance p(u, v) = w — |uNwv}. For two subsets u,v € (V),
we define relations R; = {(u,v) | p(4,v) = i}. Then X = ((¥), {Ri}ogi<w) forms
an association scheme. X = J(n,w) is well known as the Johnson association scheme
or Johnson scheme[3].

C(c (',Z)) is called e-perfect code in J(n, w) if for v, u(v # u) € C,

(3) = Zseon

ceC
Se(u) N S.(v) =0,

where Se(c) := {v € (V) | p(v,c) < €}.

There exist some trivial perfect codes in J(n,w). Let us give the following examples:
() C = (%) is a O-perfect code in J(n,w). (ii) C = {c}, any c € (M) is a w-perfect
codein J(n, w). (iii) C = {¢,N\c},anyc € (ﬁ’) is a 251 -perfect code in J (2w, w),
where w is odd.

Delsarte conjectured the nonexistence of e-perfect codes in J(n,w) (except for some
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trivialities)[3). The known results are the following: E.Bannai2] showed the nonex-
istence for J(2w + 1,w), for e > 2. P.Hammond[6] showed the nonexistence for
J(2w + 1,w),J(2w + 2,w). C.Roos[7] found the bound for n, w,e. TEtzion[4, 5]
found the relationship between e-perfect code in J (n, w) and Steiner system design and
showed the nonexistence for J(2w + p, w), J(2w + 2p,w) p # 3, J (2w + 3p,w) p #
2,3,5, pprime, J(2w £ r,w) for 1 < r < 14,r # 6,9,12. Up to now no non trivial
e-perfect code in J(n, w) has been found. In this paper we show the nonexistence of
e-perfect codes in J(2w + 3p,w) p # 2,5, J(2w + 5p,w) p # 3and J2w + P’,w).

2 Perfect codes and Steiner systems

C.Roos [7] showed the following important result. This result is the existence bound
on e-perfect codes in J(n, w). For each given w, e, if we let n be larger than the bound,
an e-perfect code in J(n, w) does not exist. T.Etzion (5] improved this bound.

Proposition 2.1 ([7, 4]). If an e-perfect code in J (n,w) exists thenn < {w=1)(@et)

Johnson scheme is related with design theory[3], and so does the existence of e-
perfect codes in J(n,w). Specially, in T.Etzion[4], he found the relationship between
the existence of a Steiner system and the existence of e-perfect codes. The follow-
ing theorem is well known as the existence condition of a Steiner system design, for
example we can find it in [1].

Proposition 2.2. If S(I,m, n) exists, so does S(I —u,m —u,n —u) foreach0 < u <

| — 1. This result gives yet more necessary conditions on I, m,n since dx=: for each

m—u
leeu

0 < u < ! — 1 must be an integer.
We imply the following result from J(n,w) ~ J(n,n — w)

Lemma 2.3. The complement of an e-perfect code in J(n,w) is an e-perfect code in
J(n,n —w).

Finally, from the following results, we can show effectively the non existence of
non trivial e-perfect codes in J(n, w).

Proposition 2.4 ([4]). If an e-perfect code in J(n,w) exists then S(e + 1,2e + 1,w)
and S(e + 1,2e + 1,n — w) exist.

Proposition 2.5 ([4]). There are no e-perfect codes in J (2w + e + 1, w).

Proposition 2.6 ([S]). If an e-perfect code in J(n, w) exists and n < {2=1Ce31) gop
S(2,e+2,n — w + 2) exists.

Proposition 2.7 ({5)). If an e-perfect code in J(n,w) exists and w < n — w then
S(2,e+ 2,w + 2) exists.
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3 Main Results

Proposition 3.1 ([4, S)). Ifan e-perfect code in J(n,w) exists, thenw = e(mode+1)
andn—w=e(mode+1)

Proof. We immediately infer this result from Proposition 2.4 and Proposition2.2. O

The next Lemma is a subtle extension of [4].

Lemma 3.2. There are no nontrivial e-perfect codes in J(2w + 3p,w), p prime and
P#2,5

Proof. Let C be an e-perfect code in J(2w + 3p, w), p be a prime and p # 2,5 then,
by Proposition 3.1, e + 1 is either 1,3p, 3 or p.

@.
).
(iii).

(iv).

Ife + 1 = 1 then C is a trivial perfect code.
If e + 1 = 3p then the existence of C contradicts Proposition 2.5.

Ife +1 = 3, by Proposition 2.1, n < J(w — 1). First, let n = $(w - 1).
We have w=6p + 5. There must be S(3,5, 6p + 5) by Proposition 2.4 and there
must be S(2,4,6p + 7) by Proposition 2.7. By Proposition 2.2, (°%}7) /(4) and
(°7*)/ (3) must be integers. So

() _ (), opes

(2) (2) 2’
which means that #2855 must be an integer. It is not an integer. Hence, a
contradiction. Next, let n < $(w — 1). By Proposition 2.4, S(3,5,w) and
5(3,5,n ~ w) exist. S(2, 4, w +2) exists by Proposition 2.7. $(2,4,n —w +2)
exists by Proposition 2.6. By Proposition 2.2, we get n — w (= w + 3p),w =

2,26, 50 (mod 60). But there does not exist prime that can satisfy these condi-
tions.

Ife + 1 = p by Proposition 2.1, n < == Firg; Jern = {w=Cp=),

1
We have w = 3p* — p — 1. By Proposition 2.4, S(p, 2p — 1, w) exists, so do
5(2,p+ 1,w — p + 2). There exists S(2,p + 1, w + 2) by Proposition 2.7. By
Proposition 2.2, (*"27%) /(*+') and (¥}*)/(P!) must be integers. We get

2
G T v 10
GO AT S

So p+ 1 must divide 10, there are no primes which satisfy the above conditions.
Hence, a contradiction.

Next, letn < -(‘"—‘;){31&’1. There must be S(p, 2p—1,w) and S(p, 2p—1,n—w)
by Proposition 2.4, so do S(2,p+1,w—(p—2)) and S(2,p+1,n—w—(p—2)).
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S(2, p+1, w+2) exists by Proposition 2.7. By Proposition 2.2 for these designs,

(w-p+2)(w-p+1)/(p+1p, M
(w+2p+2)(w +2p+1)/(p+1)p, @
(w+2)(w+1)/(p+1)p, ®3)
(w+1)/p @

must be integers. By (4), let w be ap — 1 where a is an integer. Since (2)—-(3)=
(4p(a + 1) + 2)/(p + 1) and 3)—(1)= (2ap + 1 - p)/(p + 1) are integers,
(4pla+1)+2)/(p+1)-2(2ap+1-p)/(p+1) = 6p/(p + 1) must be an
integer. The prime numbers which satisy these conditions are 2 and 5. Hence, a
contradiction.

(m]

Lemma 3.3. There are no nontrivial e-perfect codes in J(2w + 5p,w), p prime and
P#3

Proof. Let C be an e-perfect code in J(2w + 5p,w), p be a prime and p # 3, then by
Proposition 3.1, e + 1 s either 1,5p, 5 or p.

@.
(i).
(ii).

(iv).

Ife 4+ 1 = 1then C is a trivial perfect code.
If e + 1 = 5p then the existence of C contradicts Proposition 2.5.

Ife+1 = 5, by Proposition 2.1,n < $(w—1). First, letn = $(w— 1), we have
w = 20p + 9. By Proposition 2.4, S(5,9,20p + 9) and S(5, 9, 25p + 9) exist,
s0 do S(2,6,20p + 6) and S(2,6,25p + 6). By Proposition 2.2, (*5%°)/(3)
and (*2+6)/(S) must be integers. We get the following equation from these

integers:
(%59 _ (*%5*°) | p(45p+11)
(2) 2 6
We know that Mé&lll must be an integer. The prime numbers which satisy

this condition are 2 and 3. If p = 2 then Zﬁi:L“l = 19 5 not an inte-

ger. Next, let n < 3(w — 1). By Proposition 2.4, S(5,9,ws) and S(5,9,n —
w) exist. By Proposition 2.6, S(2,6,n — w + 2) exists. By Proposition 2.7,
S(2,6,w + 2) exists. By Proposition 2.2 for S(5,9,w) and S(2,6,w + 2), we
obtain w = 4, 79, 199, 94, 184, 109 (mod 210). In a similar way, we getn —w =
4,79,199, 94, 184, 109 (mod 210) from S(5,9,n — w) and S(2,6,n — w + 2).
But there are no primes which satisfy these conditions.

Ife + 1 = p by Proposition 2.1, n < (=18=1) Firgt et n = {u=DCp=l),
we get w = 5p* — 3p — 1. By Proposition 2.4, S(p,2p — 1, w) exists, so do
S(2, p+ 1, w—p+2). By Proposition 2.7, S (?, p+lw 'f'2) exist. By Proposition
22, (“72*¥%)/(P31), (“37)/(P5?) must be integers. Since

(3 _ ()
COINGY

70
+ 50p — 65 + p—+—1,
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p + 1 must divide 70. Such prime is only 13. We have w = 805 for p = 13 and
know that (*}2) /("%?) is not in integers. Therefore, it is a contradiction. Next,
letn < {=1)=1) By Proposition 2.4, S(p, 2p—1,w) and S(p, 2p— 1,n—w)
exist, sodo S(2, p+1,w—(p—2)) and S(2, p+1, n—w—(p—2)). By Proposition
2.6, S(2,p+ 1,n — w + 2) exist. By Proposition 2.7, S(2,p+ 1,w + 2) exists.
By Proposition 2.2 for these designs,

(w-—p+2)(w-p+1)/(p+1)p, (5)
(w+4p+ 2)(w + 4p + 1)/ (p + 1)p, 6)
(w+5p +2)(w+5p+1)/(p+ Vp, )

(w+2)(w+1)/(p+ p, ®
(w+1)/p &)

must be integers. By (9), let w be ap — 1 where a is an integer. Since 5)—(8)=
—(2ap + 1 — p)/(p + 1) and (7)—(8)= 5(2ap + 1 + 5p)/(p + 1) are integers,
—5(2ap+1-p)/(p+1) +5(2ap+ 1+ 5p)/(p+ 1) = 30p/(p+ 1) must be an
integer. The prime numbers which satisy these conditions are 2,5 and 29. Since
(6)—(8)+4((5)—(8)) = 20p/(p + 1) must be an integer, the above three prime
numbers are not suitable. Hence, a contradiction.

a
Theorem 3.4. There are no nontrivial e-perfect codes in J (2w + p*,w), p prime.

Proof. Let C be an e-perfect code in J (2w + p*,w), p be a prime, then by Proposition
3.1, e+ lis either 1,p? or p.

(i). Ife+ 1 = 1 then C is a trivial perfect code.
(ii). If e + 1 = p? then the existence of C contradicts Proposition 2.5.

(iii). Ife +1 = p, by Proposition 2.1, n < {2=1Cp=1) Firgt, jet n = {2=1p=l),
We have w = p? —p? 4+ 2p— 1. By Proposition 2.4, S(p, 2p—1,p° —p* +2p~1)
and S(p,2p ~ 1,p° + 2p — 1) exist, So do S(2,p + 1,p> — p> + p+ 1) and
S2,p+L,p  +p+1).

3 3 2
(p +;+l) (p —p2+p+l) 4
= +2p° - 3p% + 5p—4+ —
) 3 p+1
p+ 1 must divide 4, there is only p = 3. By Lemma 3.2, such a C does not exist.
Next, let n < i"'—_lp)%ul. By Proposition 2.4, S(p,2p — 1,w) and S(p,2p —
1,n—w) exist, so do S(2,p+1,w—(p—2)) and S(2, p+1,n—w—(p-2)). By
Proposition 2.7, S(2,p + 1, w + 2) exists. By Proposition 2.2 for these designs,

(w—p+2)(w—-p+1)/(p+1)p, 10)
(w+p—p+2)w+p* —p+1)/(p+ p, (11)
(w+2)(w+1)/(p+ 1)p, (12)
(w+1)/p (13)
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must be integers. By (13), let w be ap—1 where a is an integer. Since (10)—(12)=
—(2ap+1-p)/(p+1) and (11)-(12)= (p-1)(1 —p+p®+2ap)/(p+1) are
integers, (p — 1)(1 —p+p* +2ap)/(p+ 1) — (p—1)(2ap+ 1-p)/(p+1) =
(p — 1)p?/(p + 1) must be an integer. There are no primes which satisfy this
condition. Hence, a contradiction.

a
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