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A graph G consists of a set V of vertices and a set E of edges, each of which
is associated with an unordered pair of vertices from V. Throughout this
paper, n denotes the number of vertices of a graph, and m is the number
of edges. A graph is embeddable on a surface M if it can be drawn on
M without crossing edges. Archdeacon’s survey [2] provides an excellent
introduction to topological graph theory (the study of graph embeddings)
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Abstract

A projective plane is equivalent to a disk with antipodal points
identified. A graph is projective planar if it can be drawn on the
projective plane with no crossing edges. A linear time algorithm
for projective planar embedding has been described by Mohar. We
provide a new approach that takes O(n?) time but is much easier to
implement. We programmed a variant of this algorithm and used it
to computationally verify the known list of all the projective plane
obstructions.

One application for this work is graph visualization. Projective
plane embeddings can be represented on the plane and can provide
aesthetically pleasing pictures of some non-planar graphs. More im-
portant is that it is highly likely that many problems that are com-
putationaly intractible (for example, NP-complete or #P-complete)
have polynomial time algorithms when restricted to graphs of fixed
orientable or non-orientable genus. Embedding the graph on the
surface is likely to be the first step for these algorithms.

Background

and includes many interesting open questions.

A graph can be used to model many things. Some examples with appli-
cations in computer science include modelling program structure, networks,
or how documents on the web are linked together using hyperlinks. A graph
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A

G Planar embedding of G

Figure 1: A graph and a planar embedding

visualization tool can help researchers to better understand the structure of
such things. Usually, it is best to avoid having many crossing edges as this
can complicate the picture of a graph. Algorithms for embedding graphs
on surfaces are often used to help get a nice picture of a graph.

A graph is planar if it can be embedded on the plane. A planar embed-
ding of a graph is a description of how it can be embedded in the plane.
A graph and one planar embedding of it are pictured in Figure 1. A planar
embedding is commonly represented by giving the clockwise order of the
neighbours of each vertex (the combinatorial embedding). This paper is
concerned with combinatorial embeddings. The aesthetic issues of where
to place the vertices and edges are discussed in a wide body of literature
including the recent book by Battista, Eades, Tamassia and Tollis [4]. It
is well-known that a planar graph without loops or multiple edges has at
most 3n — 6 edges. Thus in discussing time complexities for algorithms,
linear time should be interpreted as time in O(n).

There are several linear time algorithms for finding a planar embedding
of a graph. The first of these was developed in 1974 by Hopcroft and
Tarjan [21]. Booth and Lueker derived another approach which uses a
data structure called a PQ-tree [6]. Other algorithms include those of de
Fraysseix and Rosentiehl [11] and Williamson [35, 36]. More recently, Boyer
and Myrvold have proposed a new approach [7]. All of these algorithms
are fairly complex. Two slower approaches to planarity testing that are
easier to program are the O(n?) algorithms of Demoucron, Malgrange, and
Pertuiset [12] and Klotz [23].

A torus is the surface created by attaching one handle to the sphere.
A simple toroidal graph can have at most 3n edges. There are several
algorithms which give a polynomial time torus embedding routine (for ex-
ample, [15] and [27]). The fastest of these is the linear time algorithm of
Juvan, Marinéek, and Mohar [22]. So far as we know, these have not been
programmed and except possibly for [22], are solely of theoretical interest.
An exponential algorithm was proposed by Neufeld and Myrvold [29], and
computational experiments showed that it worked well in practice, at least
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for small graphs.

A projective plane is equivalent to a disk with antipodal points identified.
A simple graph embeddable on the projective plane can have at most 3n—3
edges. The first algorithm for embedding graphs in the projective plane was
attempted by Perunicic and Duric [30]. Unfortunately, their algorithm is
incorrect in that it sometimes fails to find a projective plane embedding of
a graph when one exists as noted by Mohar [26, p. 483] and independently
observed by Williamson (private communication to Mohar [26, p. 483]).

Mohar created a linear time algorithm for embedding graphs on the
projective plane in 1993 [26]. This algorithm is fairly complex, and it would
not be easy to program. The review of this paper in Mathematical reviews
[37] states that “The process described is very complex (to program it would
be a major undertaking)”. Further, it states that “The reviewer has not had
the time to check the numerous details needed to verify linearity”. The new
algorithm that we present in this paper is substantially simpler. However
it is also slower, O(n?) instead of O(n). If desired, the complexities of the
linear time planarity algorithms can be avoided by using the much simpler
algorithm of Klotz [23] for planar embedding and also finding Kuratowski
subgraphs without compromising the O(n?) time bound.

Mohar’s main motivation for building a fast projective plane embedding
algorithm was the goal of finding a fast algorithm for checking embeddabil-
ity of graphs in any surface. He uses a projective plane embedding algorithm
together with a torus embedder as building blocks for the general case [27].
Clearly, a simple algorithm that is easy to program would help with these
efforts.

Fiedler, Huneke, Richter, and Robertson have recently shown that the
orientable genus of an arbitrary graph can be determined in polynomial
time if the graph is projective planar [14]. This provides another practical
application of a projective plane embedder.

Problems which are hard are often tractable if attention is restricted
to graphs of fixed genus. For example, the problem of counting perfect
matchings in a graph can be solved in polynomial time for graph of fixed
orientable [16] or nonorientable [32] genus even though it is #P-complete in
general [9]. To date, there has been little progress in generalizing techniques
for planar graphs to fixed genus. Most such algorithms likely require an
embedding of the graph. An algorithm for embedding that can easily be
programmed opens the door to future research in this area that can be
applied to practical applications.

Section 2 gives an introduction to orientable and nonorientable surface
embeddings. Then the new algorithm is outlined in Section 3. The vari-
ous components of the algorithm are then described in more detail in the
sections that follow. The algorithm was programmed and used to compu-
tationally verify the set of projective plane obstructions [1]. The details

137



are given in Section 8. The paper concludes with some ideas for future
research.

2 Traversing faces

Algorithmic aspects for embedding on surfaces, especially nonorientable
surfaces, are rarely addressed in texts on topology. To aid future work
in this area, the critical concepts have been included in this section. For
further information on combinatorial embeddings, Henle’s A Combinatorial
Introduction to Topology [20] provides an excellent introduction.

One way to draw a picture of a graph on an orientable surface having
genus g > 1 is to start with a disk as pictured in Figure 2 [20, p. 109]. For
each pair of arcs with the same label, an edge which exits through a point
on one copy of the arc enters at the same place on the other copy of the
arc as demonstrated with points u, v, and w in Figure 3.

To draw a graph of genus g > 1 on a nonorientable surface, a similar
scheme is used. In this case, the arcs are as shown in Figure 4 {20, p. 112].

The orientable surfaces of genus 0 and 1 are called respectively a plane,
and a torus. An orientable surface of genus g > 2 is called a g-handled
torus because it can be obtained from the plane by adding g handles. The
nonorientable surfaces of genus 1 and 2 are called respectively a projective
plane and a Klein bottle.

The orientable (nonorientable) genus of a graph H is equal to the min-
imum g such that H can be embedded on an orientable (nonorientable)
surface of genus g without edges crossing. The orientable (nonorientable)
genus of an embedding H of a graph H is equal to the minimum g such that
a picture of H which respects the clockwise order of H can be embedded
on an orientable (nonorientable) surface of genus g without edges crossing.

An embedding of a graph on a surface can also be represented in a
completely combinatorial fashion. One common scheme is to give a rotation
system. A rotation system (also called a combinatorial embedding) is an
adjacency list for a graph with the neighbours of each vertex cyclically
ordered. If the surface is nonorientable, each edge also has an associated
signature which is either +1 or —1. Intuitively, the cyclic adjacency list
gives the clockwise order of the neighbours in the picture of the graph. The
edges which go “over the boundary” have a -1 sign. The others have a +1
sign. Graphs embedded on an orientable surface can be treated uniformly
by assigning a +1 signature to each edge.

There is a simple algorithm for walking around and recording each of the
faces of such an embedding. The approach we present is a generalization of
the standard approach for orientable surfaces. This approach is described
by Archdeacon {2, p. 10] but extra detail is included here to make it easier
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Figure 2: Representing a genus g orientable surface.

u

Figure 3: Corresponding points on two copies of an arc.
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Figure 4: Representing a genus g nonorientable surface.

to implement.

Let IT}(a) be a function whose value is the neighbour which follows a in
the cyclic list of neighbours for vertex b, and let IT; *(a) be the neighbour
that precedes a. It is obvious from this definition that if » = %1 and
¢ = II}(a) then ¢ = II;"(c). The signature of an edge e is denoted by
sgn(e).

Before describing the algorithm, the approach used to perform a facial
walk is given. Each stage of a facial walk has a record which stores an arc
(a,b) (directed edge) and a direction » = *1 denoted by [(a,b),r]. The
next record is [(b,c), s] where

e c=1II}(a), and
o s =17 *sgn((b,c)).

The walk terminates when [(a,b), 7] is revisited. The sequence of arcs tra-
versed in the facial walk can be taken from the records where the last one
(the repeated one) is ignored.

It is well known that in traversing the faces, each edge should be used
two times. In an orientable surface, each edge is used once in each direction.
For a nonorientable surface, the situation is more complex. If you traverse
the faces using the picture of the graph, each edge is used twice, but some
edges may be traversed twice in the same direction. This is formalized in
the following theorem.

Theorem 2.1 The walk starting at [(b,c), 8] visits vertices in the reverse
order from the walk starting at [(c,b), —s * sgn((b,c))).

Proof. Consider a walk W, that goes from a to b to ¢ with [(a, b), ] followed
by [(b,c), s]. The reverse walk W, should go from c to b to a. Assume the
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records used are |(c, b), ] followed by [(b,a),u]. The first step of W, implies
that ¢ = II5(a). Further, it is obvious from the definition of IT}(a) that if
¢ = IIj(a) then a = II; "(c). Thus in the reverse walk Wy, t = —r. The
theorem states that —s*sgn((b, c)) should equal ¢ = —r. From the definition
of a facial walk, s = r x sgn((b,c)). So —s * sgn((b,c)) = —r * sgn((b, c))?.
Because the value of sgn(b,c) is either +1 or —1, sgn((b, c))? = 1. Hence
—s % sgn((b,c)) = —r =t as required.

The proof of the above theorem demonstrates that just as there is only
one way to step forwards in a facial walk, from a given record there is only
one way to select its predecessor. From this, it is easy to prove that the
starting record must be the first record repeated in a facial walk. This is
obvious from a topological point of view, but it is also possible to give a
combinatorial proof.

Theorem 2.2 Every facial walk eventually terminates, and at the end, the
only record that has been repeated is the starting record.

Proof. Because there are only a finite number of possibilities for the records,
eventually one must be repeated. Suppose that in the walk, the first time
a repeated record is encountered is with [(a,b),r]. If this is not the first
record of the walk, then the record which occurs before it the first time
must also occur before it the second time. This contradicts the assumption
that [(a,b),] is the first repeated record. g

Because the walk starting at [(b,c), s] is equivalent to the one starting
at [(c,b), —s * sgn((b,c))] only one of these should be used in the process
of traversing all the faces. To traverse all the faces, the records considered
at the start are [(b,c),+1] and [(b,c), —1] for each edge (b,c) where b < c.
If a record [(c,b),s] is encountered having ¢ > b, it is considered to be
equivalent to [(b,c), —s * sgn((b, c))].

The algorithm for traversing all the faces can now be described. There
are two records for each edge (b, c) : [(b, ¢), +1] and [(b, ¢), —1] where without
loss of generality, b < c. First initialize all records to be unvisited. Then,
while unvisited records remain, pick an unused record and traverse the face
that it contains. As the face is traversed, each record encountered is marked
as visited.

If a doubly linked cyclic adjacency list is used, then each step of a walk
takes only constant time. In traversing all the faces, the number of steps
is twice the number of edges of the graph. Hence, it is possible to traverse
all the faces in O(m) time.

It is well known that any face of an embedding of a nonorientable graph
must contain an even number of edges which go over the boundary. Again,
a simple combinatorial proof is possible.
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Theorem 2.3 Any face of an embedding contains an even number of edges
with —1 sign.

Proof. Suppose the facial walk starts with the record [(a,b),r]. For each
subsequent record of the walk, the direction term is multiplied by the sig-
nature of the edge that is used. Thus to return to [(a,b), ], the number of
edges in the walk with —1 signature must be even.

Any combinatorial embedding that has only +1 signatures on the edges
is an orientable embedding, otherwise, it is a nonorientable embedding. The
genus of a orientable embedding (nonorientable embedding) is the smallest
g such that the embedding is realizable with g handles (g crosscaps). The
genus of an embedding of a connected graph can also be defined combina-
torially by the following formula.

Theorem 2.4 [20] The genus g of the embedding H of a connected graph
H equals
2—-n+m-f
2
for an orientable surface and

2—-n+m-f

Jor a nonorientable surface where n is the number of vertices, m is the
number of edges, and f is the number of faces. g

The orientable (nonorientable) genus of a graph H is equal to the min-
imum g such that H has an orientable (nonorientable) combinatorial em-
bedding of genus g. The formula given above together with the observation
that each face has at least three edges gives the well known upper bounds
for the maximum number of edges of a simple graph embedded on a suface
of genus g. For an orientable surface with g handles, a simple graph which
is embeddable on this surface has at most 3n — 6 + 6g edges and for a
nonorientable surface with g crosscaps, the maximum is 3n — 6+ 3g. Hence
the maximum number of edges is 3n — 6 for a plane, 3n for a torus, 3n — 3
for a projective plane and 3n for a Klein bottle.

The output of an embedding algorithm is a combinatorial embedding
(with signs associated with the edges for nonorientable surfaces). It is easy
to check that the embedding has the required genus using the face walking
algorithm described in this section, together with Theorem 2.4.

3 The basic idea

Both Mohar’s algorithm [26] and our own take a similar approach to em-
bedding graphs in the projective plane. If a graph is planar, it is also
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K, K,

Figure 5: The planar obstructions K5 and K33

projective planar, and a planar embedding also constitutes an embedding
in the projective plane. A subgraph is homeomorphic to Ks (or K33) if it is
as pictured as in Figure 5, except that each edge could possibly be replaced
by a path. If a graph is not planar, the linear time planarity algorithms
can be modified (see for example [36]) to find a subgraph homeomorphic
to K33 or K5 which we call K. An alternative approach which avoids the
complexities of the linear time planarity testers without increasing the run-
ning time of our algorithm is to apply the simpler O(n?) algorithm of Klotz
23). '
| ]For each way of embedding K on the projective plane, the basic idea
is to try and embed the rest of the graph in the faces of the embedding of
K. Observe that if just one face is considered at a time, the embedding
is locally planar (see Figures 6 and 7). This section describes the different
ways to embed K33 or Kj in the projective plane (taken from Mohar [26]).
We define two embeddings of K in the projective plane to be equivalent
if their faces are the same (ignoring any sense of clockwise as this has no
meaning on a nonorientable surface). The following theorem describes the
non-equivalent embeddings of K33 and Ks. These ways of labellings the
embeddings were hard coded into our computer program.

Theorem 3.1 [26] The unlabelled embeddings of K33 in the projective
plane are as draum in Figure 6 and those of K5 are as pictured in Fig-
ure 7 (a) and (b). Further, the number of non-equivalent ways to label
these is siz for K33, twelve for K5 as shown in Figure 7(a), and fifteen for
Ky as shown in Figure 7(b). g

A bridge of a graph G with respect to an embedded subgraph H is a
subgraph of G which is either (1) an edge not in H whose endpoints are both
in H plus its endpoints or (2) a connected component of G — H together
with the edges which connect a vertex in the connected component to a
vertex in H and their endpoints. The vertices that a bridge shares with H
are called its attachment points.
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Figure 6: K33 embedded in the projective plane

A bridge can be drawn in a face F if its points of attachment all lie on
F'. Abridge B can be embedded in a face F if there is a planar embedding of
BUF. A k-face bridge with respect to an embedded subgraph K is a bridge
that can be embedded in k faces. Starting with a 2-vertex connected graph,
all bridges for K where K is an embedding of K5 or K. 3,3 in the projective
plane are either 1-face, 2-face or 3-face bridges.

The major difference between our algorithm and Mohar’s is in the pro-
cess used to embed the rest of the graph. The new algorithm considers
various assignments of the 3-face bridges to faces (Section 4). After a pre-
liminary determination of bridges which cannot embed in each face together
(Section 5), an algorithm for 2-SAT is used to determine an assignment of
bridges to faces that can be extended to an embedding of the graph if one
exists. This process is described in Section 6. Finally, the time complexity
of the new algorithm is analyzed in Section 7. Section 9 suggests some
areas for future research.

4 The 3-face bridges

Assume that a Kuratowski subgraph K is embedded in one of the ways
listed in Theorem 3.1. Even when the input graph is 2-vertex connected,
there can be bridges of the graph which are embeddable in three faces. This
section describes the possibilities for 3-face bridges and explains how these
are handled by our new algorithm.

The possible sets of attachments for the 3-face bridges are:

For K3 3 as pictured in Figure 6 :
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Figure 7: K5 embedded in the projective plane

¢ {a,d} (faces: 0, 1, 3),
o {b,e} (faces: 0, 1, 2), and
o {c, f} (faces: 0, 2, 3).

For Ky as pictured in Figure 7(a) :

e {a,c} (faces: 0, 1, 5),
¢ {a,d} (faces: 0, 1, 2),
o {b,d} (faces: 0, 2, 3),
o {b,e} (faces: 0, 3, 4), and
o {c,e} (faces: 0, 4, 5).
For K5 as pictured in Figure 7(b) :

e {b,c} (faces: 0, 1, 3),
o {b,e} (faces: 0, 1, 2),
e {c,d} (faces: 0, 1, 4), and
e {d,e} (faces: 0, 1, 5).
The 3-face bridges with the same sets of attachment points can be
treated as a unit. Thus, there is only some constant number of ways that
the 3-face bridges can be assigned to faces. Our aim is to choose a selection

of these cases which covers all possibilities, and leaves at most two faces as
options for each bridge (this is required to apply 2-SAT as per Section 6).
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The 3-face bridges are assigned to a type which corresponds to their
attachment points. For K33 as pictured in Figure 6, observe that at most
one type of 3-face bridge can be embedded into the face numbered 0 at one
time. Thus, there are four choices for placement of the 3-face bridges- the
fourth choice corresponding to embedding none of the 3-face bridges in face
0.

We now do the same type of analysis for the embeddings of K5 as
pictured in Figure 7(a). Note that for all 3-face bridges, one of the possible
face choices is face 0. Thus, it is sufficient to choose the bridges which are
assigned to face 0 as this leaves only two choices for the bridges which are
not. There are five ways to assign two 3-face bridges into face 0 (the pair
must have a common attachment point), five ways to assign one to this
face, and one choice which has no 3-face bridges in face 0. Thus, in total
there are eleven possibilities.

For K as pictured in Figure 7(b), observe that bridges with attachment
sets {b,e} and {c,d} cannot both be embedded into face 0 at the same
time. Similarly, bridges with attachment sets {b,d} and {c,e} cannot both
be embedded into face 1 at the same time. There are nine ways to assign
bridges to faces so that face 0 contains either one or none of the bridge
types {b,e} and {c,d}, and face 1 contains either one or none of the bridge
types {b,d} and {c,e}. Further, these leave at most two choices for a face
for each bridge that is not assigned. Thus, only these nine possibilities need
to be considered.

In summary, the number of types of 3-face bridges can be at most three
for K33, five for K5 as drawn in Figure 7(a), and four for K5 as drawn in
Figure 7(b). The number of assignments of these to faces that are consid-

ered is four for K33, eleven for K5 as drawn in Figure 7(a), and nine for
K5 as drawn in Figure 7(b).

5 Computing conflicts between bridges

Two bridges are compatible for a face if both can be embedded inside the
face simultaneously. Otherwise, they are said to be conflicting. For the
plane, it is a well known fact that if a set of bridges are pairwise compatible
for a face, then they can all be embedded in the face simultaneously. This
applies here because the faces are homeomorphic to a face on the plane.
This section describes how the new algorithm determines the conflicting
pairs of bridges.

There can be a linear number of bridges, and hence the number of bridge
pairs can be quadratic. In order for the entire algorithm to run in O(n?)
time, information about bridge conflicts must be computed in O(n?) total
time. We now explain how this can be accomplished.
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The vertices of the face are processed in cyclic order. A finite state ma-
chine (FSM) is used for each pair of bridges (B;, B;) to determine whether
they conflict. Using finite state machines enables us to determine all the
bridge conflicts “in parallel” as we are traversing the face, and this is criti-
cal for obtaining the O(n?) time complexity for this algorithm. The FSM
makes its transitions depending on whether the face vertex being processed
is an attachment of B;, Bj, or both. If it is an attachment to neither,
nothing happens to the FSM for (B;, B;) at this stage.

The states of this FSM are:

Start: the start state.

Seen_i: have seen attachments to B; but not to B;.

Seen_j: have seen attachments to B; but not to B;.
Seen_shared: initially there is a shared attachment point.
Seen_shared?2: first two attachment points are both shared.

Seen_i_then_j: have seen an attachment for B;, now examining attach-
ments for B;.

Seen.j-then_i: have seen an attachment for Bj;, now examining attach-
ments for B;.

Only_i: only attachments to B; are allowed.
Only_j: only attachments to B; are allowed.
Conflicting: the bridges conflict.

If the FSM terminates in the state Conflicting, then the bridges conflict.
Otherwise, they do not. The transitions are shown in Table 1.

There can be on the order of n cycle vertices that must be processed.
For each cycle vertex v, the number of FSM’s updated (in O(1) time each)
is on the order of O(na * nb) where na is the number of bridges attaching
at v, and nb is the number of bridges embeddable in the face. So the total
work is O(nt * nb + n) where nt is the total number of attachments to the
face. This is in O(n?) because a graph having at most 3n — 3 edges can
have no more than O(n) attachments or bridges.

6 Using 2-SAT to assign bridges to faces

Our aim is to assign bridges to faces of the embedded Kuratowski subgraph
in order that the input graph can be embedded in the projective plane. In
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Current state Next state if face vertex attaches to:

B; but not B; Bj but not B; | B; and Bj
Start Seen._: Seen_j Seen_shared
Seen_z Seen_1 Seen_i_then_j | Seen_i_then_j
Seen_j Seen_j_theni | Seen_j Seen.j-then_:
Seen.shared | Seen_j_theni | Seen_i_then_j | Seen_shared2
Seen_shared2 | Only Only_j Conflicting
Seen_i_then_j | Only2 Seen_i_then_j | Only_
Seen_j_thens | Seen_j theni | Only_j Only_j
Only Only.: Conflicting Conflicting
Only_j Conflicting Only_j Conflicting
Conflicting Conflicting Conflicting Conflicting

Table 1: Transitions of the FSM for determining bridge conflicts.

the special case that each bridge can be assigned to at most two faces, a
2-SAT system can be created that either provides such an assignment of
bridges to faces, or indicates that it is impossible as described below.

A literal is a variable, say z or its complement Z. Clauses are sets of
literals. The satisfiability problem (SAT) is to determine whether there
is an assignment of true/false values to the variables so that at least one
literal in each clause evaluates to true. -

It is well-known that SAT is NP-complete [10}, even in the case that each
clause contains at most three variables (3-SAT) (17, pp. 46-50]. However,
if each clause has at most two variables (2-SAT), the problem has a simple
algorithm that takes time which is linear in the input size [13)].

Let f be a face of K and b be a bridge of K that can be embedded
in f. The literal (b, f) if assigned the value true indicates that bridge b is
assigned to face f. If a bridge b can only be assigned to face f, then the
clause {(b, f), (b, f)} is added to the 2-SAT system (or equivalently, you
could just set the value of (b, f) to true). For a bridge b that is embeddable
in faces f, and f, the two clauses {(b, f1),(b, f2)} and {(b, f1), (b, f2)}
together ensure that b is assigned to exactly one of these faces. For each
pair of conflicting bridges b, and b, for a face f, the clause {(b,, f), (b2, f)}
ensures that they are not assigned to f simultaneously.

There can be at most O(n) bridges, and at most O(n?) conflicts between
pairs of bridges. Thus, the algorithm for 2-SAT [13] takes O(n?) time to
determine an assignment of bridges to faces if one exists.
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7 Our algorithm and its time complexity

This section first gives a high level description of our new algorithm. This
is followed by an analysis of the time complexity.

The first step of our algorithm is to find the maximal 2-vertex connected
subgraphs (blocks) of the input graph as is standard in any embedding
algorithm. This can be done in O(n) time using a modified depth first
search (see for example [18]). It is well-known that if all the blocks are
planar except one which could be projective planar, then G is projective
planar.

Thus, the pseudocode below is for a simple graph G which has no cut
vertices. It either computes a projective planar embedding of G or returns
false to indicate that no such embedding exists.

Projective plane embedding algorithm

(1) If m > 3n — 3 return false.

( 2) If G is planar, return a planar embedding of G.

( 3) Find a subgraph K homeomorphic to K3 3 or K.

( 4) For each labelled projective planar embedding K of K do:

(5) Find all the bridges of K and determine which faces they
can be embedded in.

(6) If a bridge b cannot be embedded in any face of K go to (12).

(7 Compute the conflicts between pairs of bridges.

(8 For each arrangement of 3-face bridges do:

(9 If there is an assignment of bridges to the faces of X,

(10) return a projective planar embedding.

(11)  End for (8).

(12) End for (4).

(13) Return false.

If there are more than 3n—3 edges, the input graph cannot be projective
planar, and the algorithm terminates at Step 1. For the remaining steps,
the number of edges is at most 3n — 3 which is in O(n) and this is critical
in the analysis.

If the graph G is planar, it is also projective planar. This is detected
at Step 2 using any of the O(n) planarity testing algorithms (for example,
(7]). If the graph is not planar, a Kuratowski subgraph K can be extracted
in O(n) time (see for example [36]). Klotz [23] provides a much simpler
approach that runs in O(n?) time.

The loop at Step 4 is executed at most six times if K is homeomorphic
to K33 and 27 times for K5 (Theorem 3.1). In either case, there is only a
constant number of iterations.
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At Step 5, the bridges can be found in O(n) time using a modified BFS
algorithm. Determining the faces that each bridge can be embedded in
(Steps 5 and 6) can be accomplished using a planarity tester. If the graph
tested for planarity is the bridge with its points of attachment connected in
a cycle which respects the cyclic order of the face, the total time for all the
tests is in O(n) using a linear time planarity tester. The number of faces
considered is four for K3 3 or six for Ks. Thus, the total work at this step
is O(n).

The method for computing conflicts between pairs of bridges (Step 7)
is described in Section 5. As noted, the time is in O(n?).

For Step 8, the number of arrangements of the 3-face bridges is a con-
stant as indicated in Section 4. Step 9 is solved using a procedure for 2-SAT
as described in Section 6. As noted earlier, the time taken is in O(n2).

In Step 10, the projective planar embedding can be described by indi-
cating a planar embedding for the contents of each of the faces. To embed a
collection of bridges inside a face f, connect a new vertex w to each vertex
of the face. Add the bridges and then invoke a standard planarity tester.
Without loss of generality, assume w is embedded outside the face. Any
bridges embedded in the outside of the face can attach only at two adjacent
points on the face. These bridges can be easily flipped to the inside of the
face to obtain an embedding of the face with all the bridges on the inside.
Thus, it takes O(n) time in total to find the projective planar embedding
once the bridges are assigned appropriately to faces.

Because each of the loops in the above code only involves a constant
number of iterations, the time for the whole algorithm is in O(n2?). To
improve it to linear time, it would be necessary to speed up Steps 7 and 9.
Note that the complexities of the linear time planar embedding algorithms
can be completely avoided while retaining the overall O(n?) time complexity
by using one of the straightforward O(n?) planar embedding algorithms
[12, 23]. Klotz [23] also provides the required Kuratowski subgraph in
O(n?) time. Unlike many of the algorithms of theoretical interest, the
constant overhead in this algorithm is very reasonable.

8 Computational Results

We programmed a variant of this algorithm. Simplicity, correctness, and
speed of implementation were more important to us than the execution
speed of the final code. For this reason, the simple O(n?) planarity algo-
rithm of Demoucron, Malgrange, and Pertuiset {12] was used for planar
embedding. A Kuratowski subgraph was isolated by a simple O(n3) ap-
proach: '

Input: a non-planar graph G.
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Output: a subgraph of K homeomorphic to either K5 or K3 3.
Set K to be equal to G.

For each edge e of K do:
If K — e is planar, keep ¢ in K,
otherwise, delete e from K.

The algorithm of Klotz [23] provides a simple O(n?) alternative. We
chose the Demoucron algorithm instead because we already had an imple-
mentation of it which has been thoroughly debugged and tested in con-
junction with a related project whose aim was to find torus embeddings
29|.
| ]A topological obstruction for a surface M is a graph G with no vertices
of degree less than three such that G is not embeddable on M, but G —e is
embeddable on M for all edges e of G. A minor order obstruction has the
additional property that G with edge e contracted is embeddable on M for
all edges e. For any surface of fixed genus, Robertson and Seymour theory
indicates that the number of obstructions (topological or minor order) is
finite [31]. A proof specifically for orientable surfaces has been provided by
Bodendiek and Wagner [5] and for nonorientable surfaces by Archdeacon
and Huneke [3].

It is well-known that the topological obstructions [24] and the minor
order obstructions [34] are the same for the plane. These graphs are Kj
and K33 (pictured in Figure 5).

For the projective plane, there are 103 topological obstructions and 35
minor order obstructions. Glover, Huneke and Chin first proved that these
were obstructions [19]. Archdeacon later proved that their list was complete
[1]. We verified this result computationally by checking all graphs on up
to 11 vertices with up to 3n + 1 edges (generated using McKay’s makeg
program based on his program nauty [25]). We found exactly the same
obstructions. These computations provide added confidence that both our
program, and the theoretical result of Archdeacon [1] are correct.

It would have sufficed to test graphs on up to 3n — 2 vertices because
a projective planar graph has at most 3n — 3 edges so an obstruction has
at most 3n — 2. The extra computation resulted from not immediately
realizing that Mohar’s upper bound of 3n for the number of edges in a
projective planar graph [26, p. 484] was not tight and that Euler’s formula
actually gives an upper bound of 3n — 3 and not 3n.
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9 Future research

A similar approach could be attempted for designing an algorithm for em-
bedding graphs on the torus. Unfortunately, things are not as simple for
the torus because there are embeddings of K33 and K5 whose faces include
repeated vertices. A fast torus embedding algorithm would be a useful tool
for computing all the obstructions for the torus. The ones known to date
are summarized in {29) and more recently {8]. So far, it is known that
there are at least 239,322 topological obstructions and 16,629 minor order
obstructions [8].

Finding the genus of an arbitrary graph is NP-complete [33]. While
development of a polynomial time algorithm is not likely, an exponential
algorithm whose performance was reasonably fast in practice would be a
useful tool. Such algorithms have been developed for torus embedding [29]
and for various NP-complete problems such as CLIQUE (see for example
[28)).

Finally, many problems that can be solved on the plane in polynomial
time in spite of being intractable in general likely also have polynomial
time algorithms for surfaces of fixed genus. The development of practical
embedding algorithms motivates the search for these types of algorithms.
To date, most of the work has been focussed on orientable surfaces, but it
is likely that these kinds of algorithms also exist for nonorientable surfaces
such as the projective plane.
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