On 3-coloring of plane triangulations
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Abstract

For a 3-vertex coloring, a face of a triangulation whose vertices
receive all three colors is called a vivid face with respect to it. In
this paper, we show that for any triangulation G with n faces, there
exists a coloring of G with at least §n faces and construct an infinite
series of plane triangulations such that any 3-coloring admits at most
%(3n — 2) vivid faces.
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1 Introduction

A plane triangulation G is a simple graph embedded in the plane such
that each face is bounded by three edges and that any two faces share at
most one edge. (Hence we don’t regard K3 as a plane triangulation.) The
unbounded face of G is said to be outer and other finite faces are inner.
Let A : V(G) — {1,2,3} be a color-assignment, which we refer to as a
3-coloring of G here. (Note that in our 3-colorings, two vertices with the
same color might be adjacent.) A face f of G is said to be vivid with respect
to A if the three vertices of f receive three distinct colors.

The following is the well-known result for 3-colorings of plane triangu-
lations:
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Theorem 1 (Sperner’s Lemma [5]) Let G be any plane triangulation
with outer face zyz. For any $-coloring X : V(G) — {1,2,3} such that
Mz) =1, My) = 2 and A(z) = 3, there ezists a vivid inner face of G with
respect to A.

Theorem 1 can combinatorially be proved by using the Odd Point
Theorem, but it surprisingly has an application to prove the planar ver-
sion of Brouwer’s fixed point theorem (see [4]). By Sperner’s lemma, for
a plane triangulation G with outer face zyz, every surjective 3-coloring
A V(G) - {1,2,3} with A(z) = 1, AM(y) = 2 and A(z) = 3 yields a
vivid inner face. However, for any plane triangulation G with at least
5 vertices, there exists a surjective 3-coloring A of G with no vivid face
(Since G is not complete, G has two non-adjacent vertices p and ¢q. Thus,
we have a 3-coloring A such that A(p) = 1, Mg) = 2 and A(v) = 3
for any vertex v € V(G) — {p,q}.) Thus, we can define the minimum
number k, called the looseness £(G) of G, such that for any surjection
c: V(G) - {1,2,...,3 + k}, there exists a vivid face [3, 6]. (This notion
is first established to distinguish two embeddings of large complete graphs
into surfaces with high genera [1, 2].)

In this paper, we consider the following problem: Conversely to the
direction of Sperner’s lemma, for a given plane triangulation G, how many
faces of G can we make vivid by specifying some specific 3-coloring to G?
We formalize our problem, as follows:

For a graph G, let C(G) denote the set of 3-colorings of G. Let G(n)
denote the set of plane triangulations with n faces. For G € G(n) and
X € C(G), let hy(G) denote the number of vivid faces of G with respect to
A. Define

h(G) = max{h\(G) | A € C(G)}, and

h(n) := min{h(G) | G € G(n)}
Then the following is our result:

?heorem 2 For any evenn, h(n) > -;-n. And for infintely manyn, h(n) <

2 Lemmas
First we prepare some notations to prove Theorem 2. Let H be the octa-
hedron shown in Figure 1, where H consists of three hilighted faces ACD,

BCE, EDF (called blue faces), four faces ABC, ADF, BFE, CED (called
white faces) and the infinite face.
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Figure 1: Three blue faces and four white faces.

For a 3-coloring X of H, a blue face R is said to be good if |{A(v) | v €
R}| = 2. We define t(\) to be the sum of the number of good blue faces
and the number of vivid white faces in H.

We prepare two lemmas to prove the main theorem.

Lemma 8 Let H be the octahedron as shown in Figure 1. Thent(\) <5
for any 8-coloring X € C(H). Moreover, the equality t()\) = 5 holds only if
IA({A, B, F})| = 2.

Proof. Let X be a 3-coloring of H with ¢(A) > 5. Let B be the set
of good blue faces, and let W be the set of vivid white faces in H. Since
t(A) = [Bl+|W| = 5, we have |B| > 1 and |W| > 2. Note that for each face
in B, one of the faces incident with it cannot belong to W. Since B # 0,
we have [W| < 3, and hence |B| > 2.

Suppose, in particular, that |B|+|W| > 6. Then we have |B| = |W| = 3.
In this case, the unique white face not in W must be the central face
CDE, because each blue face must be incident with it. We may assume
that A(C) = M(D) = A(E) = 1, and A(A), \(B), A\(F) € {2,3}. But then,
one of the white faces ABC, ADF and BEF cannot be vivid. This is a
contradiction.

Thus we have |B| + |W| = 5. (Here, we have proved that ¢(\) < 5.)
Since |B| > 2 and |W)] > 2, we may assume that ABC € W and ACD € B.
We may also assume that A(A) = 1, A(B) = 2 and A(C) = 3. By way of
contradiction, we assume that A(F") = 3.

Since ACD € B, we have A(D) € {1,3}. If A(D) = 3, then the white
faces CDE and ADF are not in W. Since |W| > 2, the white face BEF
must be vivid. Thus we have A(E) = 1. Then, |B| = [W| = 2, which
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contradicts our assumption |B| + |W| = 5. If A(D) = 1, then ADF is not
vivid, and one of CDE and BEF cannot be vivid. Thus (W| = 2, and
hence |B| = 3. The unique way to make both blue faces BCE and EDF
good is to set A(F) = 3. but then we have |W| =1, a contradiction. o

Now we shall define a sequence of plane triangulations Gy as follows.
Let Gp be the tetrahedron. For k& 2> 1, Gy, is defined to be the plane
triangulation obtained from the octahedron H in Figure 1 by replacing
each blue face with Gx—; so that the boundary of the outer face of Gk-1
coincides with the boundary of the blue face (see Figure 2).

For a plane triangulation G and X € C(G), let k\(G) denote the number
of finite vivid faces in G with respect to ), and define h’(G) = max{h}(G) |
A eC(G)}.

F

W

Figure 2: Gi.

Lemma 4 #/(Gj) = 3h'(Gk-1) + 2 for any k > 1. Moreover, if h}(Gx) =
h'(Gx) with k > 0, then X assigns ezactly two colors to the vertices on the
outer boundary of Gi. As a consequence, it holds h(G) = h'(Gk) for any
k>0.

Proof. For the case k = 0, we can easily check the second assertion.
(Note that k'(Go) = 2.)

Let k > 1, and let A € C(Gk) be a 3-coloring with h)(Gx) = h'(Gk).
Let H be the octahedron in G from which we obtain G by replacing each
blue face with Gx_;. Consider the 3-coloring M|z € C(H), and define B to
be the set of good blue faces of H and W to be the set of vivid white faces
of H.

Each finite vivid face of G with respect to X is either a finite vivid face
of one of Gx_1’s or a white vivid face of H. By the induction hypothesis,

160



for each blue face not in B, the Gi_; replaced with it contains at most
h'(Gk-1) — 1 finite vivid faces. Thus, by using Lemma. 3, we have

K'(Gk) = h\(Gk) 3h'(Gk-1) — (3 - |B]) + W]
3h’(Gk_1) —3+t(An)
3hl(Gk_1) + 2.

IA I IA

On the other hand, by setting pu(A) = u(B) = 1, u(F) = 2, and
#(C) = u(D) = pu(E) = 3, we can find a 3-coloring x of G, with k},(Gx) =
3h/(Gk-1) + 2. Thus the equality must hold in the above inequalities. In
particular, we have t(A|y) = 5. Thus by Lemma 3, we have |\({4, B, F})| =
2. This completes the proof of Lemma 4. |

Now we shall prove 2.

Proof of Theorem 2. First we prove that k(n) > in. For any G € G(n),
if we put p := |V(G)|, then by Euler’s formula, we have |[E(G)| = 3p — 6
and n=2p —4.

By the four color theorem, there exists a proper coloring ¢ : V(G) —
{1,2,3,4}. For 4,5 € {1,2,3,4} with i # 7, let ¢;; denote the number of
edges zy € E(QG) such that {c(z), c(y)} = {i,5}. We may assume that gz, is
smallest among all g;;. Since 3>, ; gi; = |E(G)|, we have g34 < LE@)| =
E—1.

: Now, we define a 3-coloring A of G by A(z) := min{c(z),3} for each
z € V(G). Then, the number of non-vivid faces with respect to X 'is at
most 2¢sq < p —2. Hence, we have ha(G) > 2p—4—(p—2) 2 p—2= in.

In order to obtain an upperbound for k(n), we consider the plane tri-
angulation G}, defined in the previous section. It is not difficult to deduce
that the number of faces in G is 5-3* — 1 =: n. By Lemma 4 with the
fact that h(Go) = h'(Go) = 2, we obtain h(Gy) = h/(Gi) = 31 —1 =
3.2l —1=1(3n-2). O

3 Conclusions

In this paper we proved that in < h(n) < £(3n — 2). We would like to
pose a conjecture about this subject.

Conjecture There ezists a constant ¢ such that for any even n

h(n) > %n —-c.
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