The total number of maximal k-independent sets
in the generalized lexicographical product of graphs
by
Iwona Wioch and Andrzej Wiloch
Department of Mathematics
Technical University of Rzeszé6w
ul. W.Pola 2, 85-959 Rzeszéw
e-mail: iwloch@prz.rzeszow.pl, awloch@prz.rzeszow.pl

ABSTRACT: In this paper we determine the number of all maximal
k-independent sets in the generalized lexicographical product of graphs.
We construct a polynomial which calculate this number using the concept
of Fibonacci polynomial and generalized Fibonacci polynomial. Also for
special graphs we give the recurrence formula.
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1. Introduction

For general concepts we refer the reader to {1] and [2]. By a graph G
we mean a finite, undirected, connected, simple graph. V(G) and E(G)
denote the vertex set and the edge set of G, respectively. By a P, we mean
graph with the vertex set V(P,) = {t1,...,t,} and the edge set E(P,) =
{{ti,tin1lsi = 1,..,n = 1}, n > 1. Let K, denotes complete graph on z
vertices, z > 1. Let G be a graph on V(G) = {t),...,tx},n > 2, and H;,i =
1,...,n, are graphs on V(H;) =V = {y1, ..., ¥z}, 2 > 1. By generalized lexi-
cographical product of G and Hi, ..., H, we mean a graph G[H,, ..., H,] =
{{{ts, 9p), (4, ¥) b5 (s = ¢ and {yp, 44} € E(H;)) or {t;,t;} € E(G)}. If
H; = H,i = 1,...,n, then G[H), ..., H,] = G[H), where G[H] is a lexico-
graphical product of two graphs. By dg(z,y) we denote the length of the
shortest path joining vertices z and y in G.
In {7] it has been proved:
Theorem 1.1 [7]. Let (¢, yp), (tj, ¥q) € V(G[H, ..., Hy]). Then

do(,,....Ha)((Eis Yp)s (5, 9q)) =

da(ts, ;) for i# 7,
1 for t=J and dy,(ypyg) =1,
2 otherwise.

Let k be a fixed integer, £ > 2. A subset S C V(G) is said to be a
k-independent set of G (also named as k-stable set of G) if for two distinct
vertices z,y € S,dg(x,y) > k. In addition the empty set and a subset
containing only one vertex also are meant as k-independent sets of G. Note
that for k = 2 the definition reduces to the definition of an independent
set of the graph G. The total number of independent sets of graph G was
named in (5] by H.Prodinger and R.F.Tichy as Fibonacci number of a graph
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G. They denote it by F(G). Let |V(G)| = n. K fc(n, p) denotes the number
of all p-elements independent sets of G, then F(G) = 3. fa(n,p)-
p20

In [4] it was defined more general concept, namely generalized Fibonac-
¢i number of graph G. It was denoted by Fi(G) and defined as the total
number of k-independent sets of a graph G. If fe(k,n, p) denotes the num-
ber of all p-elements k-independent sets of G then Fi.(G) = Y. fo(k,n,p).

It is interesting to kmow that F(P,) = ;0 ("';""1) and ?’(OC,,) =1+
¥ (";21')2, so they are equal to the ;;bomcci number and the Lu-
Zi; number, respectively, see (1],[5]. For & > 2 it was proved in (4] that
Fi(P,) = ‘go (n—p—(rrl’)(k—z)ﬂ) and Fi(Cp) =1 +I§1L;.(""P(pk_~ll)—l). In
[3] G.Hopkins and W.Staton defined the Fibonacci polynomial Fg (z) of a

graph G by Fg(z) = F(G[K:]), for z > 1. They proved:
Theorem 1.2 [3]. For an arbitrary graph G on n vertices
Fg(z) = go fa(n,p)z?.
p2

In [8] it was determined the generalized Fibonacci number of graph
G[H,, ..., H,) using the concept of a generalized Fibonacci polynomial. It
has been proved:

Theorem 1.3 [8]. Let k > 3, n > 2, z > 1. Then for a given graph G on n
vertices and for an arbitrary seguence of n graphs Hy, ..., H, on z vertices
Fi(G[Hy, ..., Hn]) = ;ofc(k,n,p)w"-

p2

A k-independent set S C V(G) is a maximal if for each vertex ¢t € (V(G)\S)
the set S U {t} is not a k-independent set of G. Evidently every maximal
k-independent set of G has at least one vertex. It is known that every
maximal k-independent set of undirected graph is a (k, k — 1)-kernel of G.
Let jc(k, n, p) denotes the number of all maximal p-elements k-independent
sets of the graph G. If by Ji(G) we denote the number of all maximal k-
independent sets of the graph G, then it is clear that Jx (G) = Y. je(k,n,p).
p21

For k = 2 we put J2(G) = J(G) and jg(2,n,p) = ja(n,p).

The total number of k-independent sets and maximal k-independent sets
in different classes of graphs were determined in (3], [4], [5], [6], [§8]. In
this paper we calculate the total number of maximal k-independent sets in
the lexicographical product of graphs using the concept of the Fibonacci
polynomial and generalized Fibonacci polynomial.

2. Main results

Theorem 2.1. Let k > 3, n > 2,7 > 1. Then for a given graph G onn
vertices and for an arbitrary sequence of n graphs H,, ..., H, on z vertices
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Ji(G[Hy, ..., Hy]) = g je(k,n, p)xP.

Proof: Let G be a given graph on n vertices, n > 2. We shall show that

if k > 3, then for an arbitrary sequence of graphs Hi, ..., H, the number

Jx(G[H), ..., Hy)) is equal to Y jo(k,n,p)zP. It sufﬁces to calculate the
>1

Pz
number Jx(G[H), ..., Hy]). From the definition of the graph G[Hy, ..., Hy]
and by Theorem 1 we deduce that to obtain a p-elements, p > 1, maximal
k-independent set of G[H, ..., H,) first we have to choose a p-elements
maximal k-independent set of the graph G. Evidently we can do it on
Jjc(k,n,p) ways. Next we have to choose one of the z vertices in each of
the p choosen copies of H;, i = 1,...,n. Clearly, by Theorem 1.1 and k > 3,
we deduce that for an arbitrary graph H;, i = 1,...,n only one vertex
from its copy can be choosen to a maximal k-independent set. Because
every vertex of p-copies can be choosen on x ways, so we have jo(k, n, p)zP
maximal k-independent sets having exactly p-elements in G[Hh,..., Hy,].
Hence Jk(G[Hl) 1Hn]) = gjc(kyn)p)xp' |
Pz

In the similar way we can prove:
Theorem 2.2. Let n > 2, x > 1. Then for a given graph G on n vertices
J(G[K:]) = Z j(n,p)zP. 1

Corollary 2.3. Ifz =1, then Ji(G[Hy, ..., H,]) = Ji(G) and J(GIK,]) =
J(G).
Evidently to study numbers Ji(G[H\, ..., Hy]) and J(G[K,]) it suffices to
study the coefficients jc(k,n,p). It is clear that the constant coefficient
is 0, because the empty set is not a maximal k-independent set of graph.
Moreover if diam(G) < k—1, then every vertex is a maximal k-independent
set of graph G and there is not exist a maximal k-independent set of G
having more than one vertex. Consequently Ji(G[Hs, ..., Hp]) = nx

Now we consider the graph P,, n > 2, instead of G and we present
numbers Ji (P [H}, ..., Hy]) and J(Pn[K)). Firstly we calculate the number
jp.(k,n,p), for convinience we denote this number by j(k, n, p).
Theorem 2.4. Let;k 22,n2lLp22Ifn<(p-1)k+lorn>p(2k-1),
then j(k,n,p) =
Proof: Assume that k,n, p are as in the statement of theorem. Then it is cle-
ar that to construct a maximal k-independent set S of P, having p elements
we need at least (p—— 1)k+ 1 vertices, then S = {tl, tht1s .o t(p—l)k-l—l} so if
n < (p—1)k+1 then j(k,n,p) = 0. Moreover let § = {ti, tx+2k—1, tkt2(2k— -1)

tk+(p_1)(2k 1)} Evidently S is a maximal p-elements k-independent set

of P and maximum number of vertices of P, is k+(p—1)(2k—1) +k—1 =
P(2k —1). So if n > p(2k — 1) then there is not exist a maximal p-elements
k-independent set of P,, hence j(k,n,p) =0 [ |
Theorem 2.5. Let k > 2,n > 1,p > 1. Then the number j(k,n,p) satisfy
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the following recurrence relations:

jlk,n,1)=nifl<n<k,
jknl)=n—2rifk+1<n=k+r<2k-1,1<r<k-1,

j(k,n,1) =0 ifn > 2k,

and for p > 2 we have

jlk,n,p) =0ifn< (p—1)k

j(k,n,p) = j(k,n ~ k,p—1) +j(k,n—1,p) for (p— D)k +1<n< 2k
j(kyn)p) =j(k1n - kap"' 1) +J(kan - 1ap) _j(kvn - stp- 1)

for 2k +1 < n < p(2k—1)

j(k,n,p) =0ifn>p(2k —1)+1.

Proof: Let k,n,p be as in the statement of theorem. First let p=1.If 1 <
n < k, then there exists only the maximal k-independent sets having exactly
one vertex. Because every vertex of V(P,) is a maximal k-independent
set of the graph P, so jk,n,1) =n. fk+1<n=k+7 < 2k-1,
1 < r < k—1, then it is clear that every vertex {¢;},r+1<j<n—ris
a maximal k-independent set of P,, so we have exactly n — 2r such sets,
what gives j(k,n,1) = n — 2r. If n > 2k, then it is obviously that there is
not exist a maximal k-independent sets of P, having exactly one vertex, so
j(k,n,1) = 0. Let now p > 2. By Theorem 2.4 we have that j(k,n,p) =0
if n < (p— 1)k. Suppose that (p—1)k+1 < n < p(2k —1) and let S be an
arbitrary maximal k-independent set of P,. We consider two casses.
Casel.t, €8S.

In this case, fori =n—1,n—2,...,n - (k—1),¢; ¢ S. Furthermore if $* is

k-1
an arbitrary (p — 1)-elements maximal k-independent set of P, — | #n—i,

i=0

then S*U{t,} is a k-independent set of P,. We shall show that S*U{t,} is
maximal. By an easy observation it follows that among the vertices of S*
there must be a vertex ¢; such that n —k — (k — 1) < j < n— k. Otherwise
we could add the vertex t,-_i to S*. Consequently to prove that S* U {t,}
is maximal it sufficies to estimate the distance between vertices ¢; and ¢, in
P,,. By an simple calculations we obtain that dp, (tn,t;) < n—(n—2k+1) =
2k — 1 < 2k. This means that it is not possible to add to S* U {t,} any
vertex of the succesive vertices t;, tjt1, ..., tn—1. This shows that §* U {t,}
is maximal and S = $* U {t,}. Because we have j(k,n — k,p — 1) sets S*,
this implies that the number of p-elements maximal k-independent sets of
P, containing the vertex ¢, is equal to j(k,n — k,p—1).

Case2.t, € S.

Then all maximal p-elements k-independent sets of P, — t, are p-elements
k-independent sets of P,. Suppose that S* is a p-elements maximal k-inde-
pendent set of P, —t,. Evidently we have j(k,n — 1,p) such sets. It should
be noted that, if t,_x € S*, then S* could not be a maximal k-independent
set of P,, since then dp, (tn, S*) = k. Observe, that if £,_x ¢ S, then there
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must be a vertex ¢;,n—k < j < n—1, which belongs to S* by the maximality
of S* in the graph P, — t,. This means that to calculate the total number
of maximal p-elements k-independent sets of P, not containing the vertex
t, it sufficies to substract the number of all subsets S* which contain the
vertex ¢, from the number j(k,n — 1,p). Let r denotes the number of
all maximal p-elements k-independent sets of P, —t,, containing the vertex
tn—k-

Consider two possibilities:

Subcase 2.1. (p—1)k+1 < n < 2k.

Since n — k < k, so for any p > 2 there is not exist a p-elements maximal
k-independent set containing the vertex ¢,—x. Consequently r = 0.
Subcase 2.2. 2k + 1 <n<p(2k-—1)

Consider the graph P, — U ty—; isomorphic to P,_j. Since r denotes

the number of all maximal p-e]ements k-independent sets S* of the graph
P, —t, containing the vertex ,_x it follows from case 1 and preceding
observations that r = j(k,n — k — k,p — 1) = j(k,n — 2k,p — 1). All this
togeather gives the result for p > 2

i(k,n,p) =j(kin—k,p—~1)+jkin—1,p) if (p—-1)k+1< n < 2%,
j(k,n,P) =j(k’n_k7p_ 1)+j(kan_ 11p) _j(k!n 2k WP 1) 2k+1<
n < p(2k - 1).

If n > p(2k — 1) + 1, then by Theorem 2.4 we have j(k,n,p) = 0. |
Corrolary 2.6. Let k > 2, n > 2. Then Ji(P,) = Y j(k,n,p).
P21

Corrolary 2.7. Let k > 3, n > 2, z > 1. Then for an arbitrary seqence of
n graphs Hy, ..., H, on z vertices Jx(Pp[Hy, ..., H,]) = 2 j(k,n,p)aP.

Corrolary 2.8. Let n > 2, z > 1. Then J(P, [K )= Z _7(2 n,p)zP.

At the end we present numbers Ji(P,[Ha, ..., Hy)) and J (PulKz)) by the
linear recurrence relations.

Theorem 2.9. Let k > 3, n > 2,z > 1. Then for an arbitrary sequence
of n graphs H,, ..., H,, on x vertices, the number Jx(P,[Hy, ..., Hy,]) satisfy
the following reccurence relations:

Ji(Pu[H1y ..y Hp]) =nz, n=2,...,k,

Ji(Pes1[Hy, ooy Hiy1]) = 2° + (k= 1)z,

Ji(PulH1, ooy Hp)=Ji(Pa-1[Hyy ooy Ha 1)) +2( (P i[Hy, ..., Ha_i))-1),
fork+2<n<2k,

J(Pogy1[Hr, -y Ho g 1)) =Jx(Por {Hy, --., Har]) +2(Ji(Pey1 [Hy, -y Hi1])—2),
Je(PulHy, ..., Ho])=Ji(Pa-1[H1, o) Hn-1])+2(Jic(Po-i[H, oy Hnk])—
~Jk(Pr—2k[H1y ..oy Hn_2kl)), forn > 2k + 2

Proof: Let &k, n, z be as it was mentioned in the statement of the theorem.If
n=2,..., k, then every vertex of V(P,[Hj, ..., Hy,)) is 2 maximal k-indepen-
dent set of the graph P,[H}, ..., Hn]. Moreover there is not exist a maximal

167



k-independent set of P,[H}, ..., H,] having at least two elements. This im-
plies that Ji(Pa[Ha,..., Hy]) = nz.

If n = k + 1, then every set on the form {(zi,;)}, 2< i<k, 1<j<z
is a maximal k-independent set of Py 1[H}, ..., Hk41] so we have (k - 1)z
such sets. Moreover in this case we have also maximal k-independent sets
having exactly two elements. Every two elements maximal k-independent
set has the form {(¢1,%;), (tx+1,%)}, where 1 < j < zand 1 < ¢ < z.
Then we have z? such subsets and consequently Ji(Pet1[Hi, .-, Hkt1]) =
z24(k—1)z. Now suppose that n > k+2 and let S be an arbitrary maximal
k-independent set of P,[Hj, ..., Hy]. Because at most one vertex from each
copy of H;, i = 1,...,n, can belong to the maximal k-independent set of
P,[H,...,H,], by Theorem 1.1 and k > 3, so two cases can occur now:
Case 1. There exists 1 < j < z such that (t,,y;) € S. From the defi-
nition of P,[Hy, ..., Hp] we have that (t,-i,y;) € S, for i = 1,..,,(k — 1),
i=1,..,z Furthermore if S* is an arbitrary maximal k-independent set of

PolHy, ..., Ha] \ U U {(ta-i,¥5)}, then §* U {(tn,y;)} is & k-independent

0 j=

set of Pp,. We shall show that S* U {(ts,y;)} is maximal. By an easy ob-
servation it follows that among of vertices of S* there must be a vertex
(tp,9i) 1 € j < z, such that n — k - (k- 1) < p < n — k. Other-
wise it could be add the vertex (tn—k,y;j) to S*, but it contradicts the
maximality of S*. Consequently, to prove that S* U {(t»,y;)} is maxi-
mal it suffices to estimate the distance between vertices (¢,¥;),(tn, ;)
in P,[Hy, ..., Hy]. By simple calculations and by Theorem 1.1 we obtain
that dp,(m,,...,#.1 (8, ¥5), (80, 95)) = @p,(tnstp) Sn—(n— 2k +1) < 2k.
This means that it is possible to add to S* U {(t.,y;)} no vertex among of
succesive vertices (tp, ¥;), (bp+1,¥5)s s (tn-1,¥5), § = 1, ..., T, which shows
that S*U{(¢n,¥;)} is maximal and S = S*U{(t»,y;)}. Because the vertex
(tn,y;) we can choose on z ways this implies, that the total number of
maximal k-independent sets of P,[H1, ..., Hp] containing the vertex (., y;)
is equal to Jk(Pn—k[H),..., Hn-k]).

Case 2. Foreach j = 1,...,z holds (¢n, ;) ¢ S. Then maximal k-independent

sets of P,[Ha, ..., Ha]\ U {(¢n,y;)} are k-independent sets of P,. Suppose
Jj=1

that $* is a maximal k-independent set of P,[Hy, ..., Hy]\ O {(ta,¥5)}s
j=1

which is isomorphic to P,—1[H),..., Ha—1). It should be noted that if there
exists 1 € j < z, such that (¢n—,y;) € S*, then S* could not be maximal,
gince it would be dp, g, , ... H,a)((tn—~k: ¥j); (Ens ¥3)) = AP, (tn—k,ta) = k. Ob-
serve that if (t,—k, ;) € S*, then there must be a vertex (¢, y,), such that
n—k<p<n-1,1< q< z which belongs to S*, by maximality of S*
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in the graph P,[Hy, ..., Ha} \ U {(ts,¥;)}. (Thus we can conclude that S*
~

j

is a maximal k-independent set of P,[H},..., H,] in this possibility.) This
means that to calculate the total number of maximal k-independent sets
of P,[H), ..., H,] not containing the vertex (.,y;) it sufficies to substract
the number of all subsets S* which contain one of the vertices from set
{(ta—k,¥;), 3 = 1,...,x} from the number Jx(Pn—1[H1, ..., Ha-1])-

Let r denotes the number of all maximal k-independent sets of P, [Hy, ..., Hp]\

U {(tn,y;)} containing one vertex from set {(ta—x,¥;), 7 =1,. , &}

Conmder three possibilities:
Subcase 2.1. k +2< n < 2%.
Since n—k < k, so there exxsts exactly £ maximal k-independent sets S* of

the graph P,[H,...,Ha] \ U {(tn,y;)} containing the vertex (tn—k,¥;),

namely S* = {(ta-x,%;)} 1 < j < z}. This means that r = z. So,
in this case the number of all maximal k-independent sets is equal to
Jk(Pn—I[Hl,---,Hn—l]) — .

Subcase 2.2. n = 2k + 1.

Because n = 2k+1, so n—k = k41, hence every maximal k-independent set

S* of the graph P, [Hy, ..., Hu]\ U {(tn,y;)} containing the vertex (tn-,¥;)

j=
has the form S* = {(t1,¥;), (tk+1,y,)} Because 1 < j<zand1<s<z
then this gives that we have z2 such sets, so r = zz
Subcase 2.3. n > 2k 4 2.

Consider the graph P,(Hj,...,Hy] \ U U {(tn-i,y;)} which is isomor-

l—- ]~

phic to P,_i[H\,..., Hp_k]. Since 7 denotes the number of all maximal
k-independent sets containing one of the vertices from set {(tn—x,¥;);j =
1,...,z}, it follows from Case 1 and preceeding observations that
T = 2(Jk(Pin-k)-k[H1; s Hnk)-1)) = 2T (Pn—2k[H1, ..., Hn—2t])-

All this togeather gives that:
Je(PnlH1, ..y Hp))=Jx(Po-1[H1y oy Ho )+ 2(Jk(Pr—k[H1, ooy Haok])—1),
for k+2 < n< 2k,
an
Ji(PalHa, ooy Hp))=Jk(Pa-1[His ooy Hn 1))+ 2(Jk (Pa—i[H, ooy Hok])—
Jk(Pn_zk[.Hl, ---,Hn—ZkD), for n > 2k + 2.
Using the same method we prove:
Theorem 2.10. Let n > 2, z > 1. Then the number J(P,[K]) satisfy the
following recurrence relations
J(B[K.)) = 2,
J(Bs[K;]) =22 + =,
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J(P4[K,]) = J(P5[Kz)) + 2(J(P2[K:]) - 1),

J(P5|K:]) = J(P4y[K:)) + z(J(P3[Ky]) — z),

J(PalKz)) = J(Po-1[K2]) + 2(J(Pa-2[Kz]) = J(Pa-4[Kz))), forn>6. B

Corollary 2.11. If z = 1, then Jx(Pp[Hy, ..., Hn)) = Jk(Py,) and J(P,[K.]) =

J(P,).
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