The total number of maximal k-independent sets in the generalized lexicographical product of graphs

by

Iwona Włoch and Andrzej Włoch

Department of Mathematics Technical University of Rzeszów ul. W.Pola 2, 35-959 Rzeszów

e-mail: iwloch@prz.rzeszow.pl, awloch@prz.rzeszow.pl

ABSTRACT: In this paper we determine the number of all maximal k-independent sets in the generalized lexicographical product of graphs. We construct a polynomial which calculate this number using the concept of Fibonacci polynomial and generalized Fibonacci polynomial. Also for special graphs we give the recurrence formula.

Keywords: k-independent set, lexicographical product

2000 MSC: 05C20

1. Introduction

For general concepts we refer the reader to [1] and [2]. By a graph G we mean a finite, undirected, connected, simple graph. V(G) and E(G) denote the vertex set and the edge set of G, respectively. By a P_n we mean graph with the vertex set $V(P_n) = \{t_1, ..., t_n\}$ and the edge set $E(P_n) = \{t_i, t_{i+1}\}; i = 1, ..., n-1\}, n \ge 1$. Let K_x denotes complete graph on x vertices, $x \ge 1$. Let G be a graph on $V(G) = \{t_1, ..., t_n\}, n \ge 2$, and H_i , i = 1, ..., n, are graphs on $V(H_i) = V = \{y_1, ..., y_x\}, x \ge 1$. By generalized lexicographical product of G and $H_1, ..., H_n$ we mean a graph $G[H_1, ..., H_n] = \{\{t_i, y_p\}, (t_j, y_q)\}; (t_i = t_j \text{ and } \{y_p, y_q\} \in E(H_i)) \text{ or } \{t_i, t_j\} \in E(G)\}$. If $H_i = H, i = 1, ..., n$, then $G[H_1, ..., H_n] = G[H]$, where G[H] is a lexicographical product of two graphs. By $d_G(x, y)$ we denote the length of the shortest path joining vertices x and y in G.

In [7] it has been proved:

Theorem 1.1 [7]. Let
$$(t_i, y_p), (t_j, y_q) \in V(G[H_1, ..., H_n])$$
. Then $d_{G[H_1, ..., H_n]}((t_i, y_p), (t_j, y_q)) =$

$$\left\{egin{array}{ll} d_G(t_i,t_j) & for & i
eq j, \ 1 & for & i = j & and & d_{H_i}(y_p,y_q) = 1, \ 2 & otherwise. \end{array}
ight.$$

Let k be a fixed integer, $k \ge 2$. A subset $S \subseteq V(G)$ is said to be a k-independent set of G (also named as k-stable set of G) if for two distinct vertices $x,y \in S, d_G(x,y) \ge k$. In addition the empty set and a subset containing only one vertex also are meant as k-independent sets of G. Note that for k=2 the definition reduces to the definition of an independent set of the graph G. The total number of independent sets of graph G was named in [5] by H.Prodinger and R.F.Tichy as Fibonacci number of a graph

G. They denote it by F(G). Let |V(G)| = n. If $f_G(n, p)$ denotes the number G. They denote it by F(G). Let |V(G)| = n. $= \int_{0}^{\infty} \int_{0}^{\infty} f_{G}(n, p)$. of all p-elements independent sets of G, then $F(G) = \sum_{n \geq 0} f_{G}(n, p)$.

In [4] it was defined more general concept, namely generalized Fibonacci number of graph G. It was denoted by $F_k(G)$ and defined as the total number of k-independent sets of a graph G. If $f_G(k, n, p)$ denotes the numnumber of k-independent sets of a graph G is $F_k(G) = \sum_{p \geqslant 0} f_G(k, n, p)$.

It is interesting to know that $F(P_n) = \sum_{p \geq 0} {n-p+1 \choose p}$ and $F(C_n) = 1 +$

 $\sum_{p\geqslant 1} {n-p-1 \choose p-1} \frac{n}{p}$, so they are equal to the Fibonacci number and the Lucas number, respectively, see [1],[5]. For $k \ge 2$ it was proved in [4] that $F_k(P_n) = \sum_{p\geqslant 0} \binom{n-p-(p-1)(k-2)+1}{p}$ and $F_k(C_n) = 1 + \sum_{p\geqslant 1} \frac{n}{p} \binom{n-p(k-1)-1}{p-1}$. In

[3] G.Hopkins and W.Staton defined the Fibonacci polynomial $F_G(x)$ of a graph G by $F_G(x) = F(G[K_x])$, for $x \ge 1$. They proved:

Theorem 1.2 [3]. For an arbitrary graph G on n vertices

 $F_G(x) = \sum_{p\geqslant 0} f_G(n,p) x^p.$

In [8] it was determined the generalized Fibonacci number of graph $G[H_1,...,H_n]$ using the concept of a generalized Fibonacci polynomial. It has been proved:

Theorem 1.3 [8]. Let $k \ge 3$, $n \ge 2$, $x \ge 1$. Then for a given graph G on n vertices and for an arbitrary seguence of n graphs $H_1, ..., H_n$ on x vertices $F_k(G[H_1,...,H_n]) = \sum_{p\geqslant 0} f_G(k,n,p)x^p.$

A k-independent set $S \subseteq V(G)$ is a maximal if for each vertex $t \in (V(G) \setminus S)$ the set $S \cup \{t\}$ is not a k-independent set of G. Evidently every maximal k-independent set of G has at least one vertex. It is known that every maximal k-independent set of undirected graph is a (k, k-1)-kernel of G. Let $j_G(k, n, p)$ denotes the number of all maximal p-elements k-independent sets of the graph G. If by $J_k(G)$ we denote the number of all maximal kindependent sets of the graph G, then it is clear that $J_k(G) = \sum_{p\geqslant 1} j_G(k,n,p)$.

For k = 2 we put $J_2(G) = J(G)$ and $j_G(2, n, p) = j_G(n, p)$.

The total number of k-independent sets and maximal k-independent sets in different classes of graphs were determined in [3], [4], [5], [6], [8]. In this paper we calculate the total number of maximal k-independent sets in the lexicographical product of graphs using the concept of the Fibonacci polynomial and generalized Fibonacci polynomial.

2. Main results

Theorem 2.1. Let $k \ge 3$, $n \ge 2$, $x \ge 1$. Then for a given graph G on n vertices and for an arbitrary sequence of n graphs $H_1, ..., H_n$ on x vertices

$$J_k(G[H_1,...,H_n]) = \sum_{p\geqslant 1} j_G(k,n,p)x^p.$$

Proof: Let G be a given graph on n vertices, $n \ge 2$. We shall show that if $k \ge 3$, then for an arbitrary sequence of graphs $H_1, ..., H_n$ the number $J_k(G[H_1, ..., H_n])$ is equal to $\sum_{p \ge 1} j_G(k, n, p) x^p$. It suffices to calculate the

number $J_k(G[H_1,...,H_n])$. From the definition of the graph $G[H_1,...,H_n]$ and by Theorem 1 we deduce that to obtain a p-elements, $p \ge 1$, maximal k-independent set of $G[H_1,...,H_n]$ first we have to choose a p-elements maximal k-independent set of the graph G. Evidently we can do it on $j_G(k,n,p)$ ways. Next we have to choose one of the x vertices in each of the p choosen copies of H_i , i=1,...,n. Clearly, by Theorem 1.1 and $k \ge 3$, we deduce that for an arbitrary graph H_i , i=1,...,n only one vertex from its copy can be choosen to a maximal k-independent set. Because every vertex of p-copies can be choosen on x ways, so we have $j_G(k,n,p)x^p$ maximal k-independent sets having exactly p-elements in $G[H_1,...,H_n]$. Hence $J_k(G[H_1,...,H_n]) = \sum_{p \ge 1} j_G(k,n,p)x^p$.

In the similar way we can prove:

Theorem 2.2. Let $n \ge 2$, $x \ge 1$. Then for a given graph G on n vertices $J(G[K_x]) = \sum_{p \ge 1} j(n,p)x^p$.

Corollary 2.3. If x = 1, then $J_k(G[H_1, ..., H_n]) = J_k(G)$ and $J(G[K_x]) = J(G)$.

Evidently to study numbers $J_k(G[H_1,...,H_n])$ and $J(G[K_x])$ it suffices to study the coefficients $j_C(k,n,p)$. It is clear that the constant coefficient is 0, because the empty set is not a maximal k-independent set of graph. Moreover if $diam(G) \leq k-1$, then every vertex is a maximal k-independent set of graph G and there is not exist a maximal k-independent set of G having more than one vertex. Consequently $J_k(G[H_1,...,H_n]) = nx$.

Now we consider the graph P_n , $n \ge 2$, instead of G and we present numbers $J_k(P_n[H_1, ..., H_n])$ and $J(P_n[K_x])$. Firstly we calculate the number $j_{P_n}(k, n, p)$, for convinience we denote this number by j(k, n, p).

Theorem 2.4. Let $k \ge 2, n \ge 1, p \ge 2$. If n < (p-1)k+1 or n > p(2k-1), then j(k, n, p) = 0.

Proof: Assume that k, n, p are as in the statement of theorem. Then it is clear that to construct a maximal k-independent set S of P_n having p elements we need at least (p-1)k+1 vertices, then $S = \{t_1, t_{k+1}, ..., t_{(p-1)k+1}\}$, so if n < (p-1)k+1 then j(k, n, p) = 0. Moreover let $S = \{t_k, t_{k+2k-1}, t_{k+2(2k-1)}, ..., t_{k+(p-1)(2k-1)}\}$. Evidently S is a maximal p-elements k-independent set of P_n and maximum number of vertices of P_n is k+(p-1)(2k-1)+k-1=p(2k-1). So if n > p(2k-1) then there is not exist a maximal p-elements k-independent set of P_n , hence j(k, n, p) = 0.

Theorem 2.5. Let $k \ge 2, n \ge 1, p \ge 1$. Then the number j(k, n, p) satisfy

the following recurrence relations:

$$\begin{split} j(k,n,1) &= n \text{ if } 1 \leqslant n \leqslant k, \\ j(k,n,1) &= n-2r \text{ if } k+1 \leqslant n=k+r \leqslant 2k-1, \, 1 \leqslant r \leqslant k-1, \\ j(k,n,1) &= 0 \text{ if } n \geqslant 2k, \\ \text{and for } p \geqslant 2 \text{ we have} \\ j(k,n,p) &= 0 \text{ if } n \leqslant (p-1)k \\ j(k,n,p) &= j(k,n-k,p-1)+j(k,n-1,p) \text{ for } (p-1)k+1 \leqslant n \leqslant 2k \\ j(k,n,p) &= j(k,n-k,p-1)+j(k,n-1,p)-j(k,n-2k,p-1) \\ \text{ for } 2k+1 \leqslant n \leqslant p(2k-1) \\ j(k,n,p) &= 0 \text{ if } n \geqslant p(2k-1)+1. \end{split}$$

Proof: Let k, n, p be as in the statement of theorem. First let p=1. If $1 \le n \le k$, then there exists only the maximal k-independent sets having exactly one vertex. Because every vertex of $V(P_n)$ is a maximal k-independent set of the graph P_n , so j(k,n,1)=n. If $k+1 \le n=k+r \le 2k-1$, $1 \le r \le k-1$, then it is clear that every vertex $\{t_j\}, r+1 \le j \le n-r$ is a maximal k-independent set of P_n , so we have exactly n-2r such sets, what gives j(k,n,1)=n-2r. If $n \ge 2k$, then it is obviously that there is not exist a maximal k-independent sets of P_n having exactly one vertex, so j(k,n,1)=0. Let now $p \ge 2$. By Theorem 2.4 we have that j(k,n,p)=0 if $n \le (p-1)k$. Suppose that $(p-1)k+1 \le n \le p(2k-1)$ and let S be an arbitrary maximal k-independent set of P_n . We consider two casses.

Case 1. $t_n \in S$.

In this case, for $i=n-1, n-2, ..., n-(k-1), t_i \notin S$. Furthermore if S^* is an arbitrary (p-1)-elements maximal k-independent set of $P_n - \bigcup_{i=0}^{k-1} t_{n-i}$, then $S^* \cup \{t_n\}$ is a k-independent set of P_n . We shall show that $S^* \cup \{t_n\}$ is maximal. By an easy observation it follows that among the vertices of S^* there must be a vertex t_j such that $n-k-(k-1) \leqslant j \leqslant n-k$. Otherwise we could add the vertex t_{n-k} to S^* . Consequently to prove that $S^* \cup \{t_n\}$ is maximal it sufficies to estimate the distance between vertices t_j and t_n in P_n . By an simple calculations we obtain that $d_{P_n}(t_n,t_j) \leqslant n-(n-2k+1)=2k-1<2k$. This means that it is not possible to add to $S^* \cup \{t_n\}$ any vertex of the succesive vertices $t_j, t_{j+1}, ..., t_{n-1}$. This shows that $S^* \cup \{t_n\}$ is maximal and $S=S^* \cup \{t_n\}$. Because we have j(k,n-k,p-1) sets S^* , this implies that the number of p-elements maximal k-independent sets of P_n containing the vertex t_n is equal to j(k,n-k,p-1).

Then all maximal p-elements k-independent sets of $P_n - t_n$ are p-elements k-independent sets of P_n . Suppose that S^* is a p-elements maximal k-independent set of $P_n - t_n$. Evidently we have j(k, n-1, p) such sets. It should be noted that, if $t_{n-k} \in S^*$, then S^* could not be a maximal k-independent set of P_n , since then $d_{P_n}(t_n, S^*) = k$. Observe, that if $t_{n-k} \notin S$, then there

must be a vertex $t_i, n-k < j \le n-1$, which belongs to S* by the maximality of S* in the graph $P_n - t_n$. This means that to calculate the total number of maximal p-elements k-independent sets of P_n not containing the vertex t_n it sufficies to substract the number of all subsets S^* which contain the vertex t_{n-k} from the number j(k, n-1, p). Let r denotes the number of all maximal p-elements k-independent sets of $P_n - t_n$ containing the vertex t_{n-k} .

Consider two possibilities:

Subcase 2.1. $(p-1)k + 1 \le n \le 2k$.

Since $n-k \le k$, so for any $p \ge 2$ there is not exist a p-elements maximal k-independent set containing the vertex t_{n-k} . Consequently r=0.

Subcase 2.2. $2k + 1 \le n \le p(2k - 1)$

Consider the graph $P_n - \bigcup_{i=0}^{k-1} t_{n-i}$ isomorphic to P_{n-k} . Since r denotes

the number of all maximal p-elements k-independent sets S^* of the graph $P_n - t_n$ containing the vertex t_{n-k} it follows from case 1 and preceding observations that r = j(k, n-k-k, p-1) = j(k, n-2k, p-1). All this togeather gives the result for $p \ge 2$

$$j(k, n, p) = j(k, n - k, p - 1) + j(k, n - 1, p)$$
 if $(p - 1)k + 1 \le n \le 2k$, $j(k, n, p) = j(k, n - k, p - 1) + j(k, n - 1, p) - j(k, n - 2k, p - 1)$ if $2k + 1 \le n \le p(2k - 1)$.

If
$$n \ge p(2k-1)+1$$
, then by Theorem 2.4 we have $j(k,n,p)=0$.

Corrolary 2.6. Let $k \ge 2$, $n \ge 2$. Then $J_k(P_n) = \sum_{p \ge 1} j(k,n,p)$.

Corrolary 2.7. Let $k \ge 3$, $n \ge 2$, $x \ge 1$. Then for an arbitrary sequence of

n graphs
$$H_1, ..., H_n$$
 on x vertices $J_k(P_n[H_1, ..., H_n]) = \sum_{p \geqslant 1} j(k, n, p) x^p$.
Corrolary 2.8. Let $n \geqslant 2$, $x \geqslant 1$. Then $J(P_n[K_x]) = \sum_{p \geqslant 1} j(2, n, p) x^p$.

At the end we present numbers $J_k(P_n[H_1,...,H_n])$ and $J(P_n[K_x])$ by the linear recurrence relations.

Theorem 2.9. Let $k \ge 3$, $n \ge 2$, $x \ge 1$. Then for an arbitrary sequence of n graphs $H_1, ..., H_n$ on x vertices, the number $J_k(P_n[H_1, ..., H_n])$ satisfy the following reccurence relations:

$$\begin{array}{l} J_k(P_n[H_1,...,H_n]) = nx, \; n=2,...,k, \\ J_k(P_{k+1}[H_1,...,H_{k+1}]) = x^2 + (k-1)x, \\ J_k(P_n[H_1,...,H_n]) = J_k(P_{n-1}[H_1,...,H_{n-1}]) + x(J_k(P_{n-k}[H_1,...,H_{n-k}]) - 1), \\ \text{for } k+2 \leqslant n \leqslant 2k, \end{array}$$

$$\begin{split} &J(P_{2k+1}[H_1,...,H_{2k+1}]) = J_k(P_{2k}[H_1,...,H_{2k}]) + x(J_k(P_{k+1}[H_1,...,H_{k+1}]) - x), \\ &J_k(P_n[H_1,...,H_n]) = J_k(P_{n-1}[H_1,...,H_{n-1}]) + x(J_k(P_{n-k}[H_1,...,H_{n-k}]) - \\ &-J_k(P_{n-2k}[H_1,...,H_{n-2k}])), \text{ for } n \geqslant 2k+2 \end{split}$$

Proof: Let k, n, x be as it was mentioned in the statement of the theorem. If n=2,...,k, then every vertex of $V(P_n[H_1,...,H_n])$ is a maximal k-independent set of the graph $P_n[H_1,...,H_n]$. Moreover there is not exist a maximal

k-independent set of $P_n[H_1, ..., H_n]$ having at least two elements. This implies that $J_k(P_n[H_1, ..., H_n]) = nx$.

If n = k + 1, then every set on the form $\{(x_i, y_j)\}, 2 \le i \le k, 1 \le j \le x$ is a maximal k-independent set of $P_{k+1}[H_1,...,H_{k+1}]$ so we have (k-1)xsuch sets. Moreover in this case we have also maximal k-independent sets having exactly two elements. Every two elements maximal k-independent set has the form $\{(t_1, y_j), (t_{k+1}, y_q)\}$, where $1 \leq j \leq x$ and $1 \leq q \leq x$. Then we have x^2 such subsets and consequently $J_k(P_{k+1}[H_1,...,H_{k+1}]) =$ $x^2+(k-1)x$. Now suppose that $n \ge k+2$ and let S be an arbitrary maximal k-independent set of $P_n[H_1,...,H_n]$. Because at most one vertex from each copy of H_i , i = 1, ..., n, can belong to the maximal k-independent set of $P_n[H_1,...,H_n]$, by Theorem 1.1 and $k \ge 3$, so two cases can occur now: Case 1. There exists $1 \leq j \leq x$ such that $(t_n, y_j) \in S$. From the definition of $P_n[H_1,...,H_n]$ we have that $(t_{n-i},y_i) \notin S$, for i=1,...,(k-1), j=1,...,x. Furthermore if S^* is an arbitrary maximal k-independent set of $P_n[H_1,...,H_n]\setminus \bigcup_{i=0}^{k-1}\bigcup_{j=1}^x\{(t_{n-i},y_j)\}, ext{ then } S^*\cup\{(t_n,y_j)\} ext{ is a k-independent}$ set of P_n . We shall show that $S^* \cup \{(t_n, y_i)\}$ is maximal. By an easy observation it follows that among of vertices of S^* there must be a vertex $(t_p, y_j), 1 \leqslant j \leqslant x$, such that $n - k - (k - 1) \leqslant p \leqslant n - k$. Otherwise it could be add the vertex (t_{n-k}, y_i) to S^* , but it contradicts the maximality of S^* . Consequently, to prove that $S^* \cup \{(t_n, y_j)\}$ is maximal it suffices to estimate the distance between vertices $(t_p, y_i), (t_n, y_i)$ in $P_n[H_1,...,H_n]$. By simple calculations and by Theorem 1.1 we obtain that $d_{P_n[H_1,...,H_n]}((t_p,y_j),(t_n,y_j)) = d_{P_n}(t_n,t_p) \leqslant n - (n-2k+1) < 2k$. This means that it is possible to add to $S^* \cup \{(t_n, y_j)\}$ no vertex among of succesive vertices $(t_p, y_j), (t_{p+1}, y_j), ..., (t_{n-1}, y_j), j = 1, ..., x$, which shows that $S^* \cup \{(t_n, y_j)\}$ is maximal and $S = S^* \cup \{(t_n, y_j)\}$. Because the vertex

is equal to $xJ_k(P_{n-k}[H_1,...,H_{n-k}])$. Case 2. For each j=1,...,x holds $(t_n,y_j) \notin S$. Then maximal k-independent sets of $P_n[H_1,...,H_n] \setminus \bigcup_{j=1}^x \{(t_n,y_j)\}$ are k-independent sets of P_n . Suppose

 (t_n, y_j) we can choose on x ways this implies, that the total number of maximal k-independent sets of $P_n[H_1, ..., H_n]$ containing the vertex (t_n, y_j)

that S^* is a maximal k-independent set of $P_n[H_1,...,H_n] \setminus \bigcup_{j=1}^{\infty} \{(t_n,y_j)\}$, which is isomorphic to $P_{n-1}[H_1,...,H_{n-1}]$. It should be noted that if there exists $1 \leq j \leq x$, such that $(t_{n-k},y_j) \in S^*$, then S^* could not be maximal, since it would be $d_{P_n[H_1,...,H_n]}((t_{n-k},y_j),(t_n,y_j)) = d_{P_n}(t_{n-k},t_n) = k$. Observe that if $(t_{n-k},y_j) \notin S^*$, then there must be a vertex (t_p,y_q) , such that $n-k , <math>1 \leq q \leq x$ which belongs to S^* , by maximality of S^*

in the graph $P_n[H_1,...,H_n]\setminus igcup_{j=1}^x\{(t_n,y_j)\}$. (Thus we can conclude that S^*

is a maximal k-independent set of $P_n[H_1,...,H_n]$ in this possibility.) This means that to calculate the total number of maximal k-independent sets of $P_n[H_1,...,H_n]$ not containing the vertex (t_n,y_j) it sufficies to substract the number of all subsets S^* which contain one of the vertices from set $\{(t_{n-k},y_j), j=1,...,x\}$ from the number $J_k(P_{n-1}[H_1,...,H_{n-1}])$.

Let r denotes the number of all maximal k-independent sets of $P_n[H_1,...,H_n]\setminus$

 $\bigcup_{j=1}^{x} \{(t_n, y_j)\}$ containing one vertex from set $\{(t_{n-k}, y_j), j = 1, ..., x\}$.

Consider three possibilities:

Subcase 2.1. $k + 2 \le n \le 2k$.

Since $n-k \leq k$, so there exists exactly x maximal k-independent sets S^* of

the graph $P_n[H_1,...,H_n]\setminus \bigcup_{j=1}^x \{(t_n,y_j)\}$ containing the vertex (t_{n-k},y_j) ,

namely $S^* = \{(t_{n-k}, y_j)\}, 1 \leq j \leq x\}$. This means that r = x. So, in this case the number of all maximal k-independent sets is equal to $J_k(P_{n-1}[H_1, ..., H_{n-1}]) - x$.

Subcase 2.2. n = 2k + 1.

Because n = 2k+1, so n-k = k+1, hence every maximal k-independent set

 S^* of the graph $P_n[H_1,...,H_n]\setminus \bigcup_{j=1}^x \{(t_n,y_j)\}$ containing the vertex (t_{n-k},y_j)

has the form $S^* = \{(t_1, y_j), (t_{k+1}, y_s)\}$. Because $1 \le j \le x$ and $1 \le s \le x$ then this gives that we have x^2 such sets, so $r = x^2$.

Subcase 2.3. $n \ge 2k + 2$.

Consider the graph $P_n[H_1,...,H_n]\setminus \bigcup_{i=0}^{\kappa-1}\bigcup_{j=1}^x\{(t_{n-i},y_j)\}$ which is isomor-

phic to $P_{n-k}[H_1,...,H_{n-k}]$. Since r denotes the number of all maximal k-independent sets containing one of the vertices from set $\{(t_{n-k},y_j);j=1,...,x\}$, it follows from Case 1 and preceding observations that

 $r = x(J_k(P_{(n-k)-k}[H_1,...,H_{(n-k)-k}]) = xJ_k(P_{n-2k}[H_1,...,H_{n-2k}]).$

All this togeather gives that:

 $J_k(P_n[H_1,...,H_n]) = J_k(P_{n-1}[H_1,...,H_{n-1}]) + x(J_k(P_{n-k}[H_1,...,H_{n-k}]) - 1),$ for $k+2 \le n \le 2k$,

 $J(P_{2k+1}[H_1,...,H_{2k+1}])=J_k(P_{2k}[H_1,...,H_{2k}])+x(J_k(P_{k+1}[H_1,...,H_{k+1}])-x)$ and

$$J_k(P_n[H_1,...,H_n]) = J_k(P_{n-1}[H_1,...,H_{n-1}]) + x(J_k(P_{n-k}[H_1,...,H_{n-k}]) - J_k(P_{n-2k}[H_1,...,H_{n-2k}])), \text{ for } n \ge 2k+2.$$

Using the same method we prove:

Theorem 2.10. Let $n \ge 2$, $x \ge 1$. Then the number $J(P_n[K_x])$ satisfy the following recurrence relations

$$J(P_2[K_x]) = 2x,$$

 $J(P_3[K_x]) = x^2 + x,$

$$J(P_4[K_x]) = J(P_3[K_x]) + x(J(P_2[K_x]) - 1),$$

$$J(P_5[K_x]) = J(P_4[K_x]) + x(J(P_3[K_x]) - x),$$

$$J(P_n[K_x]) = J(P_{n-1}[K_x]) + x(J(P_{n-2}[K_x]) - J(P_{n-4}[K_x])), \text{ for } n \ge 6.$$
Corollary 2.11. If $x = 1$, then $J_k(P_n[H_1, ..., H_n]) = J_k(P_n)$ and $J(P_n[K_x]) = J(P_n)$.

References

- C.Berge, Principles of combinatorics, Academic Press New York and London 1971.
- [2]. F.Harrary, Graph Theory, Addison Wesley, Reading, Mass. 1969.
- [3]. G.Hopkins, W.Staton, Some identities arising from The Fibonacci numbers of certains graphs, The Fibonacci Quarterly (1984), 225-228.
- [4. M.Kwaśnik, I.Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combinatoria, 55(2000), 139-146.
- [5]. H.Prodinger, R.F.Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly 20, (1982) 16-21.
- [6]. H.S.Wilf, The number of maximal independent sets in a tree, SIAM J.Alg. Discrete Math. Vol 7, No 1, January (1986) 125-130.
- [7]. A.Włoch, I.Włoch, On (k,l)-kernels in generalized products of graphs, Discrete Math. 164,(1996) 295-301,
- [8]. I. Włoch, Generalized Fibonacci polynomial of graph, accepted for publication in Ars Combinatoria.