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Abstract

Using R. C. Read’s superposition method we establish a for-
mula for the enumeration of Euler multigraphs, with loops al-
lowed and with given numbers of edges. In addition, applying
Burnside’s Lemma and our adaptation of Read’s superposition
method, we also derive a formula for the enumeration of Euler
multigraphs without loops — via the calculation of the number
of perfect matchings of the complement of complete multipar-
tite graphs. MAPLE is employed to implement these enumer-
ations. For one up to 13 edges, the numbers of nonisomorphic
Euler multigraphs with loops allowed are 1, 3, 6, 16, 34, 90, 213,
572, 1499, 4231, 12115, 36660 and 114105, respectively and, for
one up to 16 edges, the numbers of nonisomorphic Euler multi-
graphs without loops are 0, 1, 1, 4, 4, 15, 22, 68, 131, 376,
892, 2627, 7217, 22349, 69271 and 229553, respectively. Sim-
plification of these methods yields the numbers of multigraphs
with given numbers of edges, results which also appear to be
new. Our methods also apply to multigraphs with essentially
arbitrary constraints on vertex degrees.
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1 Introduction

An Euler graph is defined to be a graph with exclusively even
vertex degrees. A multigraph is one which allows multiple edges
to connect the same pair of vertices. Loops are edges originating
and ending on the same vertex. A graph is called simpleif it has
neither loops nor multiple edges. In [1], Robinson gave a formula
enumerating the simple (unlabelled) Euler graphs on n vertices.
In [2], Read provided a method for enumerating vertex-labelled
Euler graphs. In [3], Chié Nara and Shinsei Tazawa enumerated
unlabelled (simple) graphs with specified degree parities. In the
subsequent decades, however, the problem of enumerating non-
simple Euler graphs appears to have been overlooked, that is,
until it was motivated by the development of Bayesian statis-
tics for (-1,41)-binary n-sequences [4]. This application engen-
ders the enumeration of unlabeled Euler multigraphs without
loops and with a given number of edges: the main goal of this
manuscript.

When all is said and done, the further extentions of the state-
of-the-art enumerations —- which we implemented —- yield only
a modest number of the leading coefficients for our enumeration,
not the general terms nor the asymptotics. Indeed, the extent
of the computations in our implementation appear to increase
at least as fast as geometrically with the evaluation of each suc-
cessive coefficient. Thus, the problems which we address herein
comprise significant challenges for future combinatorial analysis.

To facilitate progress, we first considered a related problem
whose solution was at hand: the enumeration of Euler multi-
graphs with loops allowed. R. C. Read established a method of
enumerating graphs with given valencies, referred to as super-
postion theory [5). His approach is modified herein to achieve
our main goal. For the enumeration ‘of Euler multigraphs with-
out loops, the key is to superimpose one graph upon another so
that, in the construct, every edge of each graph links two dif-
ferent components of the other. This construction will be seen
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to involve the enumeration of perfect matchings of the complete
multipartite graph, the complement of G = K;, UK, U---U Kj,:
the union of disjoint complete graphs. From matching theory
6], the number of perfect matchings of the complement G of G,
denoted pm(G) or pm(iy, ia, - - . ,%s), is expressible as

pm(@) === [ eFu(G, )iz o

where u(G, z) is the matching polynomial of the graph G which
is known for our case [6]:

.. ) de
p(iy, g, .., %5, Z) f (G, )

= [l ZoerL%J(_l)rrl(u:;r)!zrxu_2r> -

(2)

Sometimes we borrow notations of set theory to simplify

our symbols like pm(3y,%s,...,15): rewriting this as pm(i,jo =

1,...,s) or simply as pm(i,|0), when there is no ambiguity. For
multiple subscripts we also use pm(i;ulj, k, {).

2 Basics

We first recall some of the essential elements of Read’s su-
perposition theory [5].

(a) Superposition. Let G1,Gs,. .., Gk be k unlabelled graphs
all with n vertices. A superposition of G, Gy, ..., G is defined
as a graph formed by labelling the vertices of each graph G;
with {1,2,...,n} and collapsing the vertices with the same label,
while retaining differentiation of edges from different graphs.
Thus a superposition is, in general, a multigraph with k types
of edges. Two superpositions of Gy, Gs,..., Gy are considered
the same if one can be transformed to the other by a permutation
of {1,2,...,n} and the natural induced action on the k types of
edges. Recall that the automorphism group of a graph is the set
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of permutations of the vertices’ identities which, in their induced
action, stablilize the (multi)set of edges. A theorem enumerates
the distinct superpositions[5]:

Theorem 1 The Superposition Theorem (R.C. Read) The
number of distinct superimposed graphs that can be obtained by
superimposing the graphs G1,Ga,...,Gk, each with n vertices,
is N(H,, Hy,- - -, Hx) where H; is the automorphism group of G;
G = 1,2,...,k) and the function N is defined as follows, in
terms of the cycle-index polynomials P; for the respective auto-
morphism group H;:

P v AD L fafa . fii=1,2,..,k

1J2++Jn
J1+2j24+njn=n

Then, with (j) denoting this domain of summation,

k
N(Hy, Hy, -+, Hi) & S (] Aflyvesn) (Gldl - 5272855 - cmin o2,

@7) r=1

3)
(b) Consider the rectangular array of variables
211, 212y --+y Zn
221, 222, -..; 22
ciey ey ey
Zml, 2 -vy Zmn

and a permutation group K of degree n and a permutation group
Hj of degree m. We can permute this array of objects by, first,
permuting each row with an individual permutation from K
and, then, permuting the rows with any permutation from H.
This plainly yields a permutation group acting upon this array,
denoted H[K]: the wreath product. A Pélya result [7] is that the
cycle index polynomial of H[K] is obtained by “substituting” the
cycle index of K in that of H in the following way. Let Z(H) =
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P(hy,ha, ..., hy) be the cycle index polynomial of H, in the
indeterminates hy, h, . .., hn, and Z(K) = Q(f1, fo, .. -, fn) that
of K, in the indeterminates f1, f2, ..., fa. Then, the substitution
of K into H is effected by replacing h; in P(hy, hs,...,hmn), by
Q(fis f2ir- -, Jui)- (See[7], p. 178.) This composition is referred
to as plethysm [8]. For example, we have

1
2(8) = 5T+ ).
Therefore,

Z(52[5]) = {[2(f1 + fo))? 2(f2 + f4)}
| = (f1 +2f2fa+3f5 +2fa).

(c) Enumeration of bipartite graphs with given valencies be-
cause this will facilitate the enumeration of multigraphs. A bi-
partite graph is a graph whose vertices can be partitioned into
two independent sets A and B. We may translate the enumer-
ation of nonisomorphic bipartite graphs — with given valencies
— into that of superpositions of certain graphs. Suppose a; is
the number of vertices in A of valency i and b; is the number of
vertices in B of valency j; 4,7 = 1,2,.... Then, evidently, with
e denoting the number of edges in the graph,

e=a,1+2a2+3a3+'--=b1+2bz+3b3+---

We consider two graphs: G; composed of the union of a; disjoint
complete graphs of ¢ vertices, K;,t1=1,2,..., and G, composed
of the union of b; disjoint complete graphs of j vertices, Kj,j =
1,2,..., respectively.

o b
Gi= U (UK) G.= U (UK.

i=1,2,- j=1 i=1,2, j=1

The automorphism group H; for G, is, evidently,
Hy = 54,[51] X Sa,[S2] X Sa[Ss] % - -,
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where X denotes the direct product. Similarly, the automor-
phism group of Gs is

Hg = Sbl[Sl] X 852[82] X Sba[S;;] Xoeeo,

Now superimpose G; and G. Then, contract each com-
plete graph of G; and G, into a respective vertex and add as
many edges between the resulting vertices from G, and from G,
as the number of superimposed pairs of vertices of the respec-
tive complete graphs. Fig. 1 shows an example of this super-
position and contraction. A bipartite graph with the desired
valencies is thereby constructed. There is plainly a one-to-one
correspondence between nonisomorphic superimposed graphs re-
sulting from all possible labellings and the bipartite graphs we
wish to enumerate.

(d) Multigraphs with given valencies. Suppose that there are
to be a; vertices of valency i. The number of edges e is given by

1
e=§(a1+2a2+3a3+--~).

Here we allow loops, multiple edges, and disconnection. If we re-
gard the given vertex set as A and insert a vertex at the midpoint
of each edge, we obtain a bipartite graph, the “B part” of the
respective bipartite partition being the set of inserted vertices.
All the vertices in B clearly have valency two. Conversely, given
a bipartite graph with every vertex in one block of the bipartite
partition having valency two, we can delete these vertices and
form the given graph, having the required valencies. Thus, the
correspondence between multigraphs with given valencies and
the desired bipartite graphs is one-to-one.

(e) The enumeration of Euler multigraphs with loops. This
is reduced to the enumeration of the graphs with given valencies,
because, for each partition [a;, as, . . ., ae] of the number of edges
e of the graph, with a; i’s, ¢ = 1,...,e, we can enumerate the
graphs with a; vertices of valency 2i, 1 < i < e and then sum
over all partitions of e. Thus, we have
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Theorem 2 (R. C. Read) The number of Euler multigraphs
of e edges, with loops allowed, is

Ne= 5 N((Say[Se)x Sl x- x5, [S2]), SelS2]).

a3 +2a2+--+eae=¢€

We have employed MAPLE to obtain the numbers of Euler
multigraphs for the number of edges 1, 2, ..., 10: 1, 3, 6, 16,
34, 90, 213, 572, 1499 and 4231, respectively.

3 Formula for the Enumeration: Loops
Forbidden

Building upon the preceding, we next establish the formula
for the enumeration of Euler multigraphs without loops. From
the argument of (c) above, we can infer that the superposition
in (e) is equivalent to the superposition of two graphs:

ai
Gi= |J (UEKx)

1<ige j=1
and G, = K, UKeU:--UKs, a perfect matching of the same
number of vertices as G;. Thus, forbidding loops amounts to not
counting those superpositions in which any edges of G, are su-
perimposed upon an edge of a component of G;. Therefore, our
desideratum is equivalent to enumerating the inequivalent per-
fect matchings of the complement graph G, of G, with equiv-
alence under the automorphism group H; = Aut G,. Note, for
simple graphs such as these Aut G = Aut G.

To use Burnside’s Lemma for this purpose, we will need to
determine the number of perfect matchings fixed by each ele-
ment of H;. This motivates the following detailed analysis of
the natural permutaion representation of H;. We wish to take
advantage of the cycle index of H;. However, the cycle index
only reflects the “cycle types” of the elements of H,, while, un-
fortunately, elementary examples demonstrate that elements of
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the same cycle type don’t necessarily fix the same number of
perfect matchings. This motivates the following expanded char-
acterization.

For this purpose, it suffices to consider only an arbitary direct
factor of H; because such factors may be treated independently.
Let the factor be S,,[S2] and the corresponding graph be the
union of a; Koi's, labelled Aj, Ao, ..., A,. Furthermore, for
any element of S,,, that is, a permutation of {A1, Ag,..., A},
its independent cycles generate disjoint permutations. Let z =
(Ay, Az, ..., As) be such a cycle, without loss of generality, and
suppose A; contains the vertices {vu, Vi, ..., 0}t =1,2,...,s,
and g = 2.

Lemma 1 All the permutations of S,,[S,] with row-action z
are enumerated according to cycle type by (')°Q(fs, fas, - - -, fes)s
where Q(f1, fa,- - -, fq) is the cycle index of S,.

Proof. By induction on s. The lemma is true for s equal
unity. We apply Pdlya’s result, from (b), for Z,[S,] with Z;
denoting the cyclic group ((Ai, As, ..., As)). Note that different
cycles in a permutation of Z; generate disjoint permutations.
Let R(h1,ho, ..., hs—1) + ahs denote the cycle index polynomial
of Z,, where a = ¢(s)/s. Then all the permutations of Z; are
enumerated by s[R(hi,hs,...,hs—1) + ahs). By Pdlya’s result,
the cycle index polynomial of Z,[S,] is

R(Q(fl) f27 e fq)7 Q(f2) f4) CRT) f2q)) sy

Q(f(s—l)7f2(s—l)) ARRP) fq(s—l))) + aQ(fS: f237 KRS qu)'
Thus,

s(q|)s[R(Q(fl) f2) v fq)7 Q(f2: f4) ceey f2q)) ey

Q(f(s—l); f2(s—1); DS fq(s—l))) + aQ(fs; f231 LS qu)]

represents all the permutations of Z,[S,]. By the induction hy-
pothesis,

s(ql)s[R(Q(fl) f2: ey fq)a Q(f21 f4) LRRS) f2q)) c ey
Q(f(s-1); fas=1)s - - -» fats-1))]
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comprises all the permutations of Z,[S;] generated by the per-
mutations of Z; composed of cycles less than s in length. As
a result, ¢(s)(g))*Q(fs, fos, - - -, fqs) represents all the permuta-
tions of Z,[S,] generated by the cycles in Z, of length s. There
are altogether ¢(s) s-cycles in Z;, yielding the desired result. O

Remarks What this lemma means is that Pélya’s plethysm
in (b), Section 2, is true for H equal a cycle as well as for a whole
group.

Note also that since the elements of (¢!)*Q(fs, fos,- - -, fgs)
represent permutations “built upon” 2z, it is plain that they
are permutations composed of cycles of the elements ordered
from A; to A,. For example, fas represents the cycle of or-
der 2s composed of two s-cycles of elements from A; to A;:
(’1)1_,'1'1)2_-,‘2 oo o Vs Utk U2ky + - - 'Usk,)-

Now, there are three kinds of matchings fixed by a given per-
mutation 0€S5,,[S;]. In this respect, there is a natural parallel
to [1].

The first kind involves a perfect matching within a cycle
of o, which will be denoted an in-matching. By the argument
of Proposition 1 in [8], if a cycle has an in-matching, it must
be of even order. Thus, in the case of Q(fs, fas, - - -, fraiys) —
- where Q(f1, fo,. .., foi) is the cycle index polynomial of Ko;
—- in order for the cycle z corresponding to f;; to have an
admissible fixed in-matching s must be even and ¢ must be odd.
This is because z is composed of the cycles of the elements in
the order from A; to Ag, and, also, the first entry of z must
match the (¥ + 1)th entry —- but the two entries must fall into
different A’s in an admissible matching. For instance, the cycle
(V11 V25, - - - Vsj, VikyV2ks - - - Usk,) has 1o in-matching because V14,
would match vy, but they are both in A;. In summary, there
is precisely one admissible fixed in-matching pertaining to f,, if
and only if ¢ is odd and s is even.

The second kind of fixed matching has edges between two
cycles arising from a common cycle of {A;, A, ..., As;}. The
cycles involved must have the same size ts, by the argument
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in [8], and must be paired. The number of ways of pairing
is the same as the number of perfect matchings if we regard
the cycles in question as vertices of a complete graph, invoking
the hemifactorial. Furthermore, for each pair there are exactly
t(s—1) fixed matchings because two points in the same A can not
match each other. For example, suppose a cycle yields two cycles
('Uljl'v2jz e Usgj, U1k U2ky -+« 'Usk,,) and (vlp1v2p2 oo Usp,Vig V2gy - - - 'Usq,,)-
In this case, vy; can not match vyp, or vy, since they are both
in A;.

The third kind includes the rest: that is, those matchings
whose edges lie between different cycles generated by different
cycles of S,,. Cycles of the same size r must be paired, and, for
each pair, there are r fixed matchings; there are no constraints
for these matchings since they involve different A’s. The number
of such matchings is plainly the same as r* times that for a cor-
responding multipartite graph, where w is the number of edges
of the multipartite matchings and where each part corresponds
to a different cycle of S,,. By definations, cycles in S;;[S2] gen-
erated by the same cycle of S,, are not allowed to match one
another in these matchings. For example, if the permutation is
of the form 2511922122 in which z, y and z are cycles of size r
generated from three different cycles of S,,, then the number of
matchings fixed by this permutation is 873, because there are 8
admissible matchings of z, Z2, ¥1, ¥2, 21, 22, and each comprises
3 edges.

Suppose P, (hy,hs, ..., he,) is the cycle index polynomial of
Se; and Qo (f1, fo,- - -, foi) is the cycle index polynomial of Ss;.
By the remark following Lemma 1 in the previous section we can
still implement Pdlya’s plethysm. From the application of the
Burnside lemma, however, we will also need to distinguish the
cycles of S,, in the substitution, for the second kind of match-
ings, and we will also need to record the size of these cycles, for
the first kind of matchings. This is achieved as follows:

1. Obtain P,, from the cycle index polynomial P, (hy, ha, . . . , ha,)
by replacing h{® with hy(i,1)---hi(3,q),i=1,2,...,¢;
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2. Implement the substitution P, {Qx} of Qy into B, by
substituting

Q2i(j:1'(i)j) k)7f2j(i)j) k):-°"f(2i)j(i)j) k))
for hj(i,k) in B,,,i=1,2,...,¢

3. Take the product over %, forming the final cycle index poly-
nomial:

Pa1,02,...,ae{Q} = f[ ﬁag{in}-

i=1
Now for each I, [fi(3, 7, k)] in
H [fl(i7j) k)]rijkl)

g,k

~

Paj 05,.,0.{Q} can have the three kinds of fixed matchings. So
Tijkt is partitioned into cijxi, 26ijx and 7;ju, corresponding to the
in-matchings, matchings between cycles generated by the same
cycle of {A;, A, ..., A, } and the rest, respectively. Recall that
matches of the third kind are between different A-cycles. The
number of such matchings equals

1 » 4
l(z Zi,j.k ’V*Jk‘)pm(')'ijkll'&, T k)

Hence from (1), the number of the fixed perfect matchings by a
permutation of type

H [fl(z) j) k)]rijk‘
1,7,k,0

~

in PO’I;“Z:-")O'@{Q} equa‘ls

F= I;I or / :Je"“’z/ HIL X Qump(wiw, 2)}dz, (4)

1,03k skl Bejit Vijht

where Qijlcl = ( Tiskl )(2,3ijkl - 1)"(l(_7 — 1)/j)5ijkll%“h'jkz, the

Qijkl, 2655kl
first factor denoting a trinomial coefficient, (—1)!! = 1, and
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where the summation over [, i, j, k, are over natural numbers
with their proper ranges, where the summation over ;i Biji, Yijkt
ranges over non-negative integers satisfying the oondltlon OijkiQtijri+
2Bkt + Yijkt = Tijki, With 8y = 1 if j is even and * 3 is odd, oth-
erwise d;;x = 0. Then replace each term J; ik, i3, 4, k)% in
Palm, a{@} with F to get the number N (P%az, ac)

It is not difficult to prove that pm(i;,is,...,%s) > 0 only if

1 . . .
max(il,ig, ces ,is) < 5(1,1 +204+---+ Zs).
On balance we have by Burnside’s Lemma

Theorem 3 The number of Euler multigraphs of e edges and
with no loops is given by

EMG(C) = Z N(ﬁal,ag,...,ae)-
a1+2a+---+ea.=¢e

ma.}qs-iSe{i) a; > 0} < %

O

4 Further Simplification and Gener-
alization

In implementing this enumeration by MAPLE, we have to do
the repetitive calculation of polynomials with many unknowns.
This entails long running times. If we can replace the calculation
of polynomials by numerical caculation, as much as possible,
then it will greatly reduce the operating time. Let’s go back
to what we have done in Section 3. The only purpose of steps
1, 2 and 3 in Section 3 is to distinguish different cycles of Sy,
in order to avoid matchings lying in the same A’s. This only
involves matchings of the first two kinds of the three mentioned
in Section 3 which match nothing outside a single cycle of S,;.
Hence we can compute these matchings within the single cycle
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first with no regard to other cycles of S,,. The consequence is
that we simply substitute

Q2i(fj(i)j), f2j(i)j): ey f(2i)_‘i(i)j))
for any cycle of length j in S,, and work out the details for the
first and second kinds of matchings.

Here we omit the index k since it is not necessary. We note
also that in equation (4), the order of the multiplication and
integration may be transposed (because each integral term of
the product is a constant and can be put in and out of the
integrals):

ZI;II/_: fi(z)dz =/: dz; /_: dxz/: dx;[ll;[l filz)],

where f(x;) denotes the corresponding factor of the integral of
(4). The indices of f and z suffice for our purpose. From the
discussion above, we know how to streamline the algorithm:

1. First introduce an operation ®; on polynomials for each
cycle length j:

Let Q(flx f2, ) fn) = Ei1+2i2+...+m-"=n Ciyig...in H:’:=1 :’. Then

q>J' (Q) = Zi1+2ig+---+ni,.=n Cijig..in
H?=1 ZJ.aa+2ﬁa-l-'7.=i..aaZO,ﬂa20 1
(au'36,) 285 = DG — 1] (s5) 37 (s, o)
Here the subscript sj of z is the product of s and j, and
ds = 1 if j is even and s is odd; otherwise §, = 0.

2. Let ay + 2a2 + 3a3 + - - - + ea, = e, where e is the number
of edges, and Z(S,,) denotes the cycle index of Saiy 1 =
1,2,...,e:

Z(8a) = Poy(ha, he, - . ., ha)).
Qi(f1, f2, - - -, foi) is the cycle index of Sy;. Then we ‘substi-
tute’ Q; into F,, in a fashion similar to Pélya’s plethysm:

Fa1a2-~-a¢ = ]_EI Pa,- (Ql(Qi)a ®2(Qi)7 SR q>ai (Qz))

i=1
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3. Perform the integration, where [ is the number of variables

in Fgap--aet
2 2
oo 1 Il co 1 2.
Nalaz---ae = f_oo72—1-r-e 2 d$1 f_wme 2 dl‘z'--
© LeFduF
f—oo 27,.6 2 1a1a9:-ae
1 \l roo ]
= (75=) [ doa [20 da -

—igd 2
23, dxie 101" Fy oo

—32 . .
When we apply —= [2, €72 2*dz = (k- 1)!!, if k is even,
or 0, otherwise, we can further simplify this formula.

4. Finally

EMG(C) = Z Nalaz...ae-
ay+2a;+--+ea=¢e
maxigice{i,a > 0} < §

Theorem 4 The number of Euler multigraphs of e edges and

with no loops is given by

EMG(C) = Z Na1az...a¢'

ar+2a+---+ea.=e
maxls.-se{i, a; > 0} < %

O

We have programmed our formulas in MAPLE, obtaining
the numbers 0, 1, 1, 4, 4, 15, 22, 68, 131, 376, 892, 2627, 7217,
22349, 69271, 229553 for the respective numbers of edges from
1 to 16.

Remarks The first three steps above provides a method
of enumerating multigraphs with given valencies and with loops
forbidden: replacing e with 2e and 2: with 7 in step 2, we get

Theorem 5 The number of multigraphs with a; vertices of va-
lency i, i=1,2,...,2e, 2e = a; + 2a2 + - -+, and with no loops
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is given by

[o o]

1 l dx Ode Ood _%Zi—lsz
Nalaz---aze = (\/-_2-7-1_-) Loo l[m 2" o Z€ = ajag--age

where | is the number of variables in F, ,,..q,. O
As a result,

Theorem 6 The number of multigraphs with e edges, loops for-
bidden, is given by

> Najag-age-
a1+2a2+---+2eaz.=2e

a

Maple has been employed to yield the numbers of multi-
graphs up to 10 edges: 1, 3, 8, 23, 66, 212, 686, 2389, 8682 and
33160. This result corroborates the multigraph sequence given
by Vladeta Jovovic on the On-Line Encyclopedia of Integer Se-
quences.

In a similar fashion, we can enumerate the multigraphs with
given valencies and with loops allowed ((d) in Section 2), by
regarding the superposition as a kind of perfect matching. And
it can also be generalized to enumerate the multigraphs, the
Euler multigraphs with loops using the “ perfect matching »
approach. The only difference is that, with loops allowed, there
are no restrictions on the perfect matchings. Hence

Theorem 7 The number Ng,q,... of multigraphs with a; vertices
of valency i, i = 1,2,... and with loops allowed is given by the
following steps:

1. Construct the general cycle index polynomial

F = [li=1 Z(5.[Si])
= i1 Pai(Qi(f1; for- -, £i), Qi(foy fas - - -, i), - - -,
Qi(fa¢:f2ai)°'-sﬁai))'
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2. For each term fi* in F, replace it by

. [1a/2] i "
ts = i — s 2a, — 1)l s
fs aaz=153,a 2a, (2as>( 84 ) S
to get Nojag-., where 853 = 0 if s* is odd and, 1 otherwise.
O
And

Theorem 8 The number of multigraphs with e edges and with
loops allowed is:

Nalaz-uaz., )
a1 +4-2a2+--+2eaze=2¢

where Na,ay..ap. 1S obtained through the steps in Theorem 7.

O

MAPLE yielded the numbers: 2, 7, 23, 78, 274, 1002, 3756,
14682, 59445 and 249595 for the number of edges from 1 to 10.

Theorem 9 The number of Euler multigraphs with e edges and
with loops allowed is:

Nala2"'ac )
a1+2a2+--+eae=e

where Nyjaq..a. 18 Oblained through the steps in Theorem 7 by
replacing S; with So;.

a

In summary, we used R.C. Read’s superposition approach
and (3) to enumerate the Euler multigraphs allowing loops,
yielding the numbers 1,3,6,16,34,90,213,572,1499, 4231 for the
numbers of edges up to 10. Then because in our case one of the
superimposed graphs is effectively a perfect matching, we con-
verted the problem to the enumeration of perfect matchings in
the case in which loops are forbidden. This greatly reduced the
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running time for MAPLE. Furthermore, using the same perfect
matching approach, we established formulas to enumerate the
multigraphs with given valencies allowing and forbidding loops
and to obtain the next three numbers, 12115,36660 and 114105,
of the Euler multigraphs with loops allowed.
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Fig. 1 An example of superposition and contraction
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