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In a round robin tournament between » teams each team
plays each other team once. Suppose that the match between two
teams is contested by just two players, one representing each team.
For different matches a team may vary the player, who represents it.
We ask: given a positive integer w, what is the maximum number
M of players, who can achieve at least w wins? Clearly M = 0 if
w > n, since each team only plays #n— 1 matches. For w < n we
shall show

2n-2w-1 i -".:,—'-<w<n

[(2)mw] if 0<ws< &L
Here the notation [x] means the largest integer not exceeding x and it
is assumed that all teams have sufficiently many players.

We present two proofs of this proposition, but both rely on the
recognition of an appropriate pattern of results. The first proof is
constructive, whereas the second has the advantage of proving a
slightly stronger result. It is also shorter, but depends on spotting a
delicate algebraic inequality. The reformulation of the problem in
terms of graphs is as follows: we assign orientations to the edges of
the complete graph with » vertices and let {d\,...,d,} denote the
(unordered) set of outdegrees of the vertices. The proposition gives
the maximum possible value of Z[ & ] In a transportation
problem one might be interested in such a maximisation. For
example, the vertices might represent depots at approximately equal
journey times from each other, which need to have daily contact, and
a messenger can make w return trips per day and one wishes to
minimise the number of messengers.

Proposition: M =

§1 Proof of Proposition in the case %L < w < n.

Since each team plays only »— 1 matches, each team can have
at most one player with at least w wins. Given any set of 2r — 1
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teams thereare (7)) — ("%*') = (n—r)(2r - 1) matches
which involve at least one of the teams. Similarly, given any set of
2r teams, thereare (7) - ("F)=2r(n-r- 1) matches
which involve at least one of these 2r teams. We thus see that
(n-r) and [n—r- —;—] are certainly upper bounds for the number
of matches that (2 — 1) and 2r, respectively, teams can each win.
Setting w = n—r we deduce that at most 27— 2w —1 teams can
have w wins each. We leave it as an exercise for the reader to
exhibit a pattern of match results (along the lines of the pattern in
Case 1 in §2), that will achieve the desired upper bound. An
alternative way to complete the proof is to apply the harem version
of Hall’s Marriage Theorem ([1], 91-97) to show that (2r — 1)
(respectively 2r) teams can indeed win at least w matches each if
and only if w < n—r (respectively w < n—r— ).

§2  Constructive Proof of Proposition in the case n > 2w + 1.
An upper bound for M is [( 7 )/w], since there are only

( , ) matches in total and M is an integer. It remains to show that

this upper bound can be achieved.

Case 1: Suppose n = 2w+ 1.

Denote the teams by A1,42,....,Aw, B1,B2,...,Byw, P. Let A; defeat

A; if i <j,let A; defeat B; if w—i <j, let B; defeat B; if

i >j, let B; defeat 4; if j < w—1i, andlet P defeat 4; and lose

to B; for each i. This allocation of wins is consistent and gives each

of the n teams exactly w wins.

Case2: Suppose - <w < &L,

We have that » = 2w +r, where 1 <r < w+ 1. Denote the teams

by A1,42,.....dw,B1,B2,...Bw,P,C\,..,Cr1. Write (7)) =sw+1,

where 0 < ¢ < w and s,¢ are integers. Note that (1) < m

andso s < ¥l Let C; defeat C; if j > i. Consider the team

sequence, which has been divided by semicolons into w + 1 blocks

of length w for clarity, Bi,Ba,.....,Bw; P,B1,..... Bu-1; P,41,By, ...

s By, Py A1, A2, By ooy By e, :P,A1,A2,..,Aw-1. For k> 2 the

kth block of w entries in this sequence is obtained by prefacing

B\1,Ba, ..., By by the first k— 1 entries of P, 4y, ...,4w-1. Observe

that any w consecutive teams in the sequence are distinct. Let C,

lose to the first team in the sequence (i.e. to B1), let C: lose to the

next two teams in the sequence (i.e. to B2,B3), let C3 lose to the
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next three teams in the sequence, and so on,sothatfor 1 <i<r-1
team C; suffers i — 1 defeats. Apart from the losses mentioned in
the previous sentence let each of Cy,C3,...,C defeat all other
teams A;, B; and P. Take the results in the matches between teams
Ay,A2,....,Aw,B1,Bs,...,By, P asin §2 Case 1, but with the
following exceptions. If s > 0 reverse the results when P plays

B\, B>,...,By (so that now P wins these matches), and if s > 1 also
reverse the results when 4 plays P,B1,Ba,...,Byu-1 (so that 41 now
wins these matches), and in general for all i < s reverse the results
when 4; plays the teams in the (i + 1)th block (so that 4; wins
those matches). With this configuration of results teams
Bi,B3,...,Bw,As,Asn1, ...,Aw can each contribute one player with w
wins, teams C;,C,...,Cr2 and A, for i < s can each contribute
two players with w wins and team P can contribute one such
player if s = 0 and two such players if s > 0. The first ¢ teams in
the (s + 1)th block of the, sequence each have one spare win, apart
from those in a block of w wins.

Remark on the case when n=3w+1: When wis odd and
n=3w+1, wehave that = w+ 1 and hence that s = ‘”T' and

t = 0. However when w iseven and n = 3w+ 1, we have
r=w+landhences =t = <.

Case3: Suppose 2 <w < %L,

We have that n = 3w+r, where 1 <r<w. If w is odd, write
(;) =sw+t, where 0 <t <w (andsos < l—‘z"—). If w iseven,
write () +% =sw+t, where 0 <f<w (andso s < ). Let
the teams be A1,...,4w,B1,....,Bw, P,C1,....,Cy,D1,...,Dsy. Let
team D; defeatteam D; if i > j and letteam C; defeat team C;
if 7> j. Consider the same sequence of teams as was used in Case
2. As before, let C) lose to the first team in the sequence (i.e. to
By), let C lose to the next two teams in the sequence (i.e. to
B3,B3), let C3 lose to the next three teams in the sequence, and so
on until Cy, has lost to w teams. Then let D, lose to the next team
in the sequence, D; to the next two teams in the sequence, and so on
until D, has lostto »—1 teams. Note that the sequence is long
enough to allow all these results, since » < w and hence

(™) + (%) < (w+1)w. Apart from the losses mentioned in the
previous three sentences let each of C1,C3,...,Cy, D1, D3, ...,Dr
defeat all other teams 4;, B; and P. Let each team D; defeat each
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C;. Take the results in matches between teams
Ay, .oy Aw, B, ..., Bw, P asin §2 Case 1, except reverse the results
when P plays Bi,Ba,...., By (so that P wins these matches), when
A, plays P,B\,...B,- (sothat 4, wins these matches) and in
general, for i < [ L] +5, when 4 plays the ith block of w
matches in the sequence. With this configuration of results teams
B1,Ba,...By, A[w1)2]4ss A w caAN each supply one player with at
least w wins, teams P,Ci,...,Cyw, A1, .., A[wst)2pss-1 €an each
supply two players and teams D;,...,Dr1 can each supply three
players. Note that the first ¢ teams in the ([(w+1)/2]+s+ D)th
block of w teams in the sequence each have one spare win apart
from these.
Case 4: Suppose n > 4w.
Write # = n' +2mw, where 2w+ 1 <n' < 4w and n' and m are
integers. If n' < 3w+ 1 denote the teams by

i endl,Bi,.....,BY,P,Cy,...,Cr, Where 1 <i<m+1 and

= n' = 2w. Take the results of the matches between
Al,.. ALY B}, ... ,BL,P,C),...,Cr asin Case 2, take the results of
the matches between A4, ....,4%,Bi,...., BL, P, for each fixed i > 2,
as in Case 1, and let each C; defeat A4i,....,4%,Bj,...., B}, forall
i>2. Similarly, if 3w+ 1 < n' < 4w, denote the teams by

bynAl, By, ...,BY,P,Cl,y...;Coy Diy oy Dy, Where 1 < i< m+1
and » = n' — 3w. Take the results of the matches between
Al,.., A%, B}, ...,BL,P,Ci,...,Cy,Di,...Dry asin Case 3, take the
results of the matches between A, ....,4%, B!, ..., Bi,, P, for each
fixed i > 2, asin Case |, and let each Cjand D; defeat

iy ALy, B, ..., B, forall i > 2.

§3  Alternative proof of Proposition in the case n > 2w + 1.
A celebrated criterion of Landau (see [1]) says that
by <by < ... < b, are possible numbers of wins by the » teams
in a round robin tournament if and only if 3.7 b; = (3 ) and
o bi= () foreach r, 1 <r<n—-1. Weshall use the
criterion to show that it is possible to achieve the maximum number
M= [( 5 )/w] of players with w wins each in such a way that
these players are distributed as equally as possible over the teams,
i.e. the number of such players in any team differs by at most one
from the number of such players in any other team. Explicitly, set
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k=[4],e=(2)-Mwand t = M—nk. Then 0 <e < w,
0<t<nand (g) = nkw + tw + €. We shall verify that the
conditions in Landau’s criterion are satisfied if we take
bi=(k+1w for i>n—t, bij=kwforl <i<n-t and
bpy = kw+e.

It is immediate that 3" b; = (5 ). We next show that
S b= (4) for r<n—t Since 30 b; > rkw, it suffices to
show that kw > 5L, ie.that r < 2kw+ 1. The trick is to rewrite
the identity (#) = nkw +tw + ¢ in the form
newsl) _ 2w _ 20w Gince the righthand side of this equation is
n-(n-t-1) n n(t+1)
strictly less than 1, we deduce that n—~¢~1 < 2kw + 1, and hence
r < 2kw+ 1. Finally tosee that . ;> () for r > n—tone
may argue as follows. We observe that Y.’ b; is obtained from
(%) by subtracting the constant quantity (k+ 1)w from it (n-7r)
times. On the other hand ( ;) is obtained from (7) by
subtracting successively n—1,n—2,...,r. We note that
n—1> (k+1)w (since (%) > n(k+1)w by the definition of k).
Suppose one could find an integer R such that Y~ b; < (?) and
n > R > n—t. It would follow from our observation that for the
maximal such R we had R < (k+ 1)w and hence that for all » in
therange n—¢t<r <R wehad r < (k+1)w and hence
2. bi < (4 ). However we have shown previously that

:11 bi > ("2“ ), hence R cannot exist.

Remark: It is necessary that our pattern of results has taken some
care over the distribution of the & ”spare” wins. For example, when
n =23 and w = 10, there are ( 223 ) = 253 matches. After
distributing blocks of 10 matches as equally as possible one would
have 2 teams with two such blocks and 21 teams with one such
block. The 3 spare wins cannot be assigned to one of the teams who

already have 20 wins, since no results can achieve this pattern of
wins.

§4 Comments
The problem considered is a special case of a more general

problem, which is stated in [2]. Let » teams each with P players
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contest a round robin tournament, where in the match between two
teams each team is represented by p players and each player
representing one team plays each player representing the other team.
The problem is to determine the maximum number of players who
play a specified number (or more) of matches and achieve at least a
specified proportion of wins in their games. The above deals with
the case when p = 1 and P is sufficiently large. In [2] the case

P = p was mainly discussed.
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