On the nonexistence of Steiner t-(v,k) trades

A. Hoorfar¹ and G.B. Khosrovshahi^{1,2,*,†}

¹Department of Mathematics, University of Tehran, Tehran, Iran

²Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran

Abstract

We establish the nonexistence of: (i) Steiner t-(v,k) trades of volume s, for $2^t + 2^{t-1} < s < 2^t + 2^{t-1} + 2^{t-2}$; (ii) Steiner 4-(v,k) trades of volume s = 29; (iii) Steiner t-(v,k) trades with k > t+1 and volume $s < (t-1)2^t + 2$.

1. Introduction

Let 0 < t < k < v be three positive integer and let X be a v-set. For every i, $0 \le i \le v$, the set of all i-subsets of X will be denoted by $P_i(X)$, and also for any i > 1, we will denote the set $\{x_1, x_2, \dots, x_i\}$ by $x_1x_2 \cdots x_i$. The elements of $P_k(X)$ are called blocks.

A t-(v, k) trade $T = \{T_1, T_2\}$ consists of two disjoint collections of blocks, T_1 and T_2 , such that every element of $P_t(X)$ is contained in the same number of blocks in T_1 and T_2 . For simplicity, the term t-trade is commonly used for this combinatorial object.

Let $T = \{T_1, T_2\}$ be a t-trade. Clearly, $|T_1| = |T_2|$ and $|T_1|$ is called the volume of T and is denoted by vol(T) and we denote vol(T) by s. The subset of X which is covered by T_1 (and T_2) is called the foundation of T and is denoted by found(T).

^{*}Corresponding author: E-mail: rezagbk@ipm.ir; mailing address: G.B. Khosrovshahi, IPM, P.O.Box 19395-5746, Tehran, Iran.

[†]This author was supported in part by IPM.

Repeated blocks in $T_1(T_2)$ are allowed. A trade with no repeated block is called *simple*.

A t-(v, k) trade is called Steiner t-(v, k) trade if every element of $P_t(X)$ appears in at most one block of $T_1(T_2)$.

It has been shown in [4,1] that in every t-(v,k) trade, $|\text{found}(T)| \ge k + t + 1$, and $\text{vol}(T) \ge 2^t$.

A t-trade T with $vol(T) = 2^t$ and |found(T)| = k+t+1 is called *minimal*. A minimal t-(v, k) trade is unique, up to an isomorphism, and can be cast in the following form

$$T = (x_1 - x_2)(x_3 - x_4) \cdots (x_{2t+1} - x_{2t+2})x_{2t+3} \cdots x_{k+t+1},$$

where $x_i \in \text{found}(T)$. After a formal multiplication, the terms with plus(minus) signs are to be considered as blocks of $T_1(T_2)$.

Let $T = \{T_1, T_2\}$ be a t-(v, k) trade with vol(T) = s and $x, y \in found(T)$. Then the number of blocks in $T_1(T_2)$ which contain x is denoted by r_x , and the number of blocks containing $\{x, y\}$ (for $t \geq 2$) is denoted by λ_{xy} . The set of blocks in $T_1(T_2)$ which contains $x \in found(T)$ is denoted by $T_{1x}(T_{2x})$ and the set of remaining blocks by $T'_{1x}(T'_{2x})$.

It has been shown [4] that if $r_x < s$, then $T_x := \{T_{1x}, T_{2x}\}$, is a (t-1)-(v, k) trade with $\operatorname{vol}(T_x) = r_x$, and furthermore, $T'_x := \{T'_{1x}, T'_{2x}\}$ is a (t-1)-(v-1, k) trade with $\operatorname{vol}(T_x) = s - r_x$. If we remove x from the blocks of T_x , then the result will be a (t-1)-(v-1, k-1) trade which is called a derived trade of T and is denoted by

$$D_xT = \{(D_xT)_1, (D_xT)_2\}.$$

It is easy to show that if T is a Steiner trade, then its derived trade is also a Steiner trade.

If $T=\{T_1,T_2\}$ and $T^*=\{T_1^*,T_2^*\}$ are two $t\cdot(v,k)$ trades, then we define $T+T^*=\{T_1\cup T_1^*,T_2\cup T_2^*\}$ and $T-T^*=\{T_1\cup T_2^*,T_1^*\cup T_2\}$. Note that the blocks which appear in both sides are omitted. It is easy to see that $T\pm T^*$ are also $t\cdot(v,k)$ trades.

Let T be a t-(v, k) trade and $T \neq T_x + T_y$ (for $x, y \in \text{found}(T)$), then $T - (T_x + T_y)$ is a (t-1)-(v, k) trade with volume $s - (r_x + r_y) + 2\lambda_{xy}[4]$.

Hwang [4] has shown that there is no t-(v,k) trade of volume s=5, and as a generalization, she has also shown that t-trades with $s=2^t+1$ do not

exist. Malik [6], and Mahmoodian and Soltankhah [5] have shown that there does not exist any t-(v, k) trade of volume $2^t < s < 2^t + 2^{t-1}$. We will refer to this result as Theorem MMS. In [5], the following conjecture has been stated: Conjecture: There does not exist any trade of volume s as long as

$$2^{t+1} - 2^{t-i} < s < 2^{t+1} - 2^{t-i-1}, i = 0, 1, \dots, t-1.$$

In fact Theorem MMS is the answer for the conjecture for i=0. Gray and Ramsay [2], have shown that no 3-(v,4) trade with s=13 exists, and they also prove a generalization of this: For $t\geq 3$, t-(v,t+1) trades of volume $s=2^t+2^{t-1}+1$ do not exist. Of course this is a partial solution for i=1 of the conjecture. Prior to this proof, in [3] it is shown that there does not exist any Steiner 3-(v,4) trade with s=13.

In this paper, for i = 1, we prove the correctness of the conjecture for Steiner trades.

2. Two useful lemmas

Lemma 1. In every Steiner t-trade $T = \{T_1, T_2\}$ with k = t + 1 and volume s and for every $x \in f$ ound (T), we have

$$r_x \leq \frac{1}{2}s$$
.

Proof. Based on the following figure, $A_1(A_2)$ consists of all blocks in $T_1(T_2)$ which contain x: $T_1 T_2$

Every t-subset in A_1 which does not contain x, appears in one of the blocks of B_2 , and every bock in B_2 contains at most one t-subset (without x) from A_1 . For if every block of B_2 contains at least two t-subsets of A_1 say C_1 and C_2 , then $C_1 \cup \{x\}$ and $C_2 \cup \{x\}$ would be two blocks of T_1 which have a t-subset in common, since C_1 and C_2 have a (t-1)-subset in common. This is contradictory with T being a Steiner trade. Therefore, $r_x \leq s - r_x$ and hence the result.

Lemma 2. In a Steiner t-(v, t + 1) trade T with volume $s = 2^t + 2^{t-1}$, for every $x \in \text{found } (T)$, we have

$$r_x = 2^{t-1}$$
 or $2^{t-1} + 2^{t-2}$.

Proof. By Lemma 1, we have

$$r_x \le \frac{1}{2}s = 2^{t-1} + 2^{t-2}.$$

Since T_x is a (t-1) trade of volume r_x , therefore, $r_x \ge 2^{t-1}$ and by Theorem MMS,

$$2^{t-1} < r_x < 2^{t-1} + 2^{t-2},$$

do not hold.

3. Main results

The main problem will be delt with in two parts: k = t + 1 and k > t + 1.

Theorem 3. For $t \ge 3$, there does not exist any Steiner t-(v, t + 1) trade with volume s as long as

$$2^{t} + 2^{t-1} < s < 2^{t} + 2^{t-1} + 2^{t-2}$$

Proof. Induction on t. For t=3, the statement leads to the nonexistence of Steiner 3-trade with k=4 and volume s=13. This was established in [2,3].

Suppose that the theorem is correct for values smaller than t(t > 3) and we have to establish it for t. Suppose that the statement is not correct and

there exists a Steiner t-(v, t + 1) trade T with volume $s = 2^t + 2^{t-1} + i$ where $0 < i < 2^{t-2}$, and [found (T)] = f. Then we derive a contradiction.

Consider $x \in \text{found }(T)$. Since D_xT is a Steiner (t-1)-trade with k=t and volume $s=r_x$. Therefore, $r_x \geq 2^{t-1}$ and by Theorem MMS: $r_x=2^{t-1}$ or $r_x \geq 2^{t-1}+2^{t-2}$ and by Lemma 1, we have

$$r_x \le \frac{s}{2} = 2^{t-1} + 2^{t-2} + \frac{i}{2} < 2^{t-1} + 2^{t-2} + 2^{t-3}.$$

But by induction assumption, the followings:

$$2^{t-1} + 2^{t-2} < r_x < 2^{t-1} + 2^{t-2} + 2^{t-3}$$

do not hold. Therefore, the only values remain to be checked are:

$$r_r = 2^{t-1}$$
 or $r_r = 2^{t-1} + 2^{t-2}$.

Case 1. There exists $x \in \text{ found } (T) \text{ such that } r_x = 2^{t-1}$. Then

(a) Suppose that there exists $y \in \text{found}(T)$ such that $\lambda_{xy} = 0$. This leads to a contradiction. To see this, we look at $T - (T_x + T_y)$ which is a (t-1)-trade of volume

$$s' = s - (r_x + r_y) = 2^t + 2^{t-1} + i - (2^{t-1} + r_y)$$
$$= 2^t + i - r_y.$$

Therefore, if $r_y = 2^{t-1}$, then $s' = 2^{t-1} + i$, which is $2^{t-1} < s' < 2^{t-1} + 2^{t-2}$. By, Theorem MMS, this is a contradiction. If $r_y = 2^{t-1} + 2^{t-2}$, then $s' = 2^{t-2} + i$, that is $0 < s' < 2^{t-1}$, and again we arrive at a contradiction.

(b) Suppose that for every $y \in \text{found}(T), y \neq x$, we have $\lambda_{xy} \neq 0$. Then

$$|\text{found } (T_x)| = |\text{found}(T)| = f.$$

Now, since T_x is a (t-1)-trade with k=t+1 and volume $r_x=2^{t-1}$ such that x appears in all its blocks, must be of the form

$$T_x = (y_1 - y_2) \cdots (y_{2t-1} - y_{2t})x.$$

We note that f = 2t + 1. This is a contradiction since in T we have

$$f > k + t + 1 = 2t + 2$$
.

Case 2. For every $x \in \text{found}(T)$, $r_x = 2^{t-1} + 2^{t-2}$. In this case again if there exists $y \in \text{found}(T)$, $y \neq x$ such that $\lambda_{xy} = 0$, then the volume, s', of the (t-1)-trade $T - (T_x + T_y)$ is

$$s' = s - (r_x + r_y) = 2^t + 2^{t-1} + i - 2(2^{t-1} + 2^{t-2}) = i.$$

This is a contradiction since $0 < i < 2^{t-2}$. Therefore, for all $x, y \in \text{found}(T), \lambda_{xy} \neq 0$. By applying Lemma 2 to D_xT , we conclude that

$$\lambda_{xy} = 2^{t-2}$$
 or $2^{t-2} + 2^{t-3}$.

Now, if there exists a y such that $\lambda_{xy} = 2^{t-2}$, then

$$s' = \operatorname{vol}(T - (T_x + T_y)) = s - (r_x + r_y) + 2\lambda_{xy}$$
$$= 2^t + 2^{t-1} + i - 2(2^{t-1} + 2^{t-2}) + 2 \times 2^{t-2}$$
$$= 2^{t-1} + i.$$

Therefore,

$$2^{t-1} < s' < 2^{t-1} + 2^{t-2},$$

and again by Theorem MMS, we have a contradiction.

Finally, the only remaining case is that for every $x, y \in \text{found}(T)$, we have

$$r_x = 2^{t-1} + 2^{t-2}, \quad \lambda_{xy} = 2^{t-2} + 2^{t-3}.$$

To reach a contradiction, by counting the pairs $(y, B), y \in B \in (D_xT)_1$ in two ways we obtain

$$\sum_{y \in \text{ found}(D_x T)} \lambda_{xy} = t \text{ vol}(D_x T).$$

Since $|\text{found}(D_xT)| = f - 1$, therefore,

$$(f-1)(2^{t-2}+2^{t-3})=t(2^{t-1}+2^{t-2})$$
 or $f=2t+1$,

and this is in contradiction with $f \ge k + t + 1 = 2t + 2$.

Theorem 4. Let $T = \{T_1, T_2\}$ be a Steiner t-(v, k) trade with k > t + 1 and with volume s, then

$$s \ge (t-1)2^t + 2.$$

Note: As a result, it follows that for t = 2, $s \ge 6$ and for t > 2, we have $s \ge 2^{t+1} + 2$, and therefore the theorem establishes the truth of the Conjecture for any Steiner trade with k > t + 1.

Proof. Since k > t+1 and T is a Steiner trade, therefore there exists a (t+2)-subset $U \subseteq \text{found } (T)$ which is contained only in one of the blocks of T_1 and not in any block of T_2 . Suppose that for $i = 0, \ldots, t+2$, $a_i(b_i)$ is the number of blocks of $T_1(T_2)$ which has i intersections with U.

We note that the statement of the theorem can be deduced from

$$s = \sum_{i=0}^{t+2} a_i = \frac{1}{2} \sum_{i=0}^{t+2} (a_i + b_i) \ge \frac{1}{2} \sum_{i=0}^{t+2} |a_i - b_i|, \tag{1}$$

and we show that the sum on the right hand side of (1) can be expressed only just in terms of b_{t+1} . Since T is a Steiner trade and based on choosing U, we have

$$a_{t+2} = 1, b_{t+2} = 0, a_{t+1} = 0, b_{t+1} \in \{0, 1\}.$$
 (2)

Now suppose that for $j = 0, \ldots, t$,

$$P_j(U) = \{U_1^{(j)}, \ldots, U_{\binom{t+2}{j}}^{(j)}\}$$

be the set of all j-subsets U and

$$U_1^{(j)},\ldots,U_{\binom{i+2}{j}}^{(j)}$$

appear

$$\lambda_1^{(j)}, \ldots, \lambda_{\binom{i+2}{j}}^{(j)}$$

times in the blocks of $T_1(T_2)$, respectively. Now by counting in two ways the number of pairs

$$(U_i^{(j)}, B), \ U_i^{(j)} \subseteq B \in T_1, \ i = 1, \dots, {t+2 \choose j},$$

(also for $B \in T_2$) and considering the property of balancedness, we obtain

$$\sum_{i=j}^{t+2} a_i \binom{i}{j} = \sum_{i=j}^{t+2} b_i \binom{i}{j} = \sum_{i=1}^{\binom{t+2}{j}} \lambda_i^{(j)}, \quad j = 0, \dots, t.$$

Therefore,

Therefore

To solve this system, we consider the following polynomial:

$$i(1+(1-z))(id-ia)\sum_{0=i}^{t+1} \sum_{j=0}^{t+1} (a_i-b_i)(a_j-b_i)(a_j-b_i)$$

$$= \sum_{i=0}^{t+1} (a_i-b_i)\sum_{0=i}^{t} \sum_{j=0}^{t+1} (a_j-b_i)$$

$$= \sum_{i=0}^{t+1} \sum_{j=0}^{t+1} \sum_{j=0}^{t+1} a_j \sum_{j=0}^{t+1} (a_j-b_i) \sum_{j=0}^{t+1} a_j \sum_{j=0}^{t+1} a_$$

But by (3), the expression within the bracket, for $j=0,\ldots,t$, is equal to zero.

 $\int_{-1}^{1} (1-z) \left| \left(i - i a \right) \left(\int_{1}^{1} \sum_{i=1}^{2+1} \left| \sum_{i=1}^$

 $a_{i+1}, a_{i+2}, b_{i+1}, b_{i+2}$ appear. By $a_{i+1} = b_{i+2} = 0$ and $a_{i+2} = 1$, we obtain We note that on the right hand side of this equality, only the coefficients of

$$^{1+i}(1-z)(_{1+i}d-2+i)+^{2+i}(1-z)=(z)t$$

Two cases have to be dealt with:

(i)
$$b_{i+1} = 0$$
:

$$\sum_{i=0}^{i+2} (a_i - b_i) z^i = (z - 1)^{i+2} + (i+2)(z-1)^{i+1}$$
(ii)

 $z = \frac{1}{2} \left(\left(\frac{2+i}{i} \right) - \left(\frac{1+i}{i} \right) (2+i) \right)^{i-1+i} (1-i) = \frac{1+i}{2} + \frac{2+i}{2} = \frac{1}{2}$

From this it follows that

$$a_i - b_i = 0 \quad \left(\binom{1+i}{i} - \binom{1+i}{i} - \binom{1+j}{i} \right) = i - 1 + i + 1 = i - 1 = i$$

Since for $0 \le i \le t + 1$, we have

$$0 \le {\binom{2+3}{i}} - {\binom{1+3}{i}}(2+3)$$

therefore

$$s \geq \frac{1}{2} \sum_{i=0}^{t+2} |a_i - b_i| = \frac{1}{2} \left\{ 1 + \sum_{i=0}^{t+1} \left[(t+2) \binom{t+1}{i} - \binom{t+2}{i} \right] \right\}$$
$$= \frac{1}{2} \left\{ 1 + (t+2)2^{t+1} - (2^{t+2} - 1) \right\} = t \times 2^t + 1.$$

(ii) $b_{t+1} = 1$:

$$\sum_{i=0}^{t+2} (a_i - b_i) z^i = (z - 1)^{t+2} + (t+1)(z-1)^{t+1}$$

$$= z^{t+2} - z^{t+1} + \sum_{i=0}^{t} (-1)^{t+1-i} \left[(t+1) {t+1 \choose i} - {t+2 \choose i} \right] z^i,$$

and since for $0 \le i \le t$, we have

$$(t+1)\binom{t+1}{i} - \binom{t+2}{i} > 0,$$

therefore

$$s \ge \frac{1}{2} \sum_{i=0}^{t+2} |a_i - b_i| = \frac{1}{2} \left\{ 1 + 1 + \sum_{i=0}^{t} \left[(t+1) \binom{t+1}{i} - \binom{t+2}{i} \right] \right\}$$
$$= \frac{1}{2} \left\{ 2 + (t+1)(2^{t+1} - 1) - \left(2^{t+2} - \binom{t+2}{t+1} - 1 \right) \right\}$$
$$= (t-1)2^t + 2.$$

Since these are the only cases which occur for f(z) and consequently for $\sum |a_i - b_i|$, therefore,

$$s \ge \min\{t2^t + 1, (t-1)2^t + 2\} = (t-1)2^t + 2.$$

Theorem 5. There does not exist any 4-(v, k) trade with volume s = 29. [Note that s = 29 belongs to the interval $(2^{t+1} - 2^{t-2}, 2^{t+1} - 2^{t-3})$ and t = 4, which is smallest.]

Proof. It suffices to prove the theorem for k=t+1=5, since by Theorem 4, for $k\geq 5$ we have $s\geq 50$. By Lemma 1, for every $x\in \text{found}(T), r_x\leq \frac{s}{2}$, that is $r_x\leq 14$. On the other hand, D_xT is a Steiner 3-trade with k=4 and volume r_x . Therefore $r_x\geq 2^3=8$ and $r_x\neq 13$ and by Theorem MMS, $r_x\neq 9,10,11$. Therefore, the possible values for r_x are

$$r_x = 8, 12, 14.$$

Now from

$$\sum_{x \in \text{found}(T)} r_x = ks = 5 \times 29,$$

we end up with a contradiction, since the sum on the left hand side is an even number.

References:

- R.L. Graham, S.-Y.R. Li, and W.-C.W. Li, On the structure of tdesigns, SIAM J. Algebraic Discrete Methods 1(1980), 8-14.
- 2. B.D. Gray and C. Ramsay, On the spectrum of [v, k, t] trades, J. statist. Plann. Inference 69(1998), 1-19.
- 3. A. Hartman and Z. Yehudai, Intersections of Steiner quadruple systems, Discrete Math. 104(1992), 227-244.
- 4. H.L. Hwang, On the structure of (v, k, t) trades, J. Statist. Plann. Inference 13(1986), 179-191.
- 5. E.S. Mahmoodian and N. Soltankhah, On the existence of (v, k, t) trades, Australas. J. Combin. 6(1992), 279-291.
- F. Malik, On (v, k, t) trades, M.S. Dissertation, University of Tehran, Tehran, 1988.